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Estimation of time-varying decision thresholds
from the choice and reaction times
without assumptions on the shape
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Abstract

When a decision is made based on a series of samples of evidence, the threshold for decision
may change over time. Here we propose a one-shot algorithm that gives the entire threshold
from the choice and decision times. Combined with a standard gradient descent procedure, the
algorithm can efficiently identify the correct shape of the threshold without any hyperparameter
for the threshold.

Introduction

When a decision is made based on a series of samples of evidence, it can be often modeled by
cumulative summation of a series of noisy numbers, where the summed evidence triggers
choice when it is above some threshold. The number of accurate decisions per time can be
often maximized when the quality of evidence is fixed, i.e., when there is only one signal to
noise ratio. When there are multiple levels of signal to noise ratio, it is optimal to decrease the
threshold over time, because when the threshold is not reached after a long time, it means that
the quality of evidence is poor, so it is better to move onto the next decision (Drugowitsch et al.
2012; Shadlen et al. 2006).

Although it has been reported that the normative solution for the optimal threshold over time can
be found using Bellman Equation (Drugowitsch et al. 2012), there has been no efficient method
to estimate the shape of the threshold from the data. Many previous studies have imposed a
particular functional form (linear, quadratic, exponential, Weibull, etc., see, e.g., (Hawkins et al.
2015)), and fitted its parameters, but they may have missed the form of the thresholds if it
cannot be expressed by the functional forms. At least one study used a cosine basis function
(Drugowitsch et al. 2012), but fitting the model is inefficient because it involves fitting many
parameters using a gradient descent procedure, and it still involves several arbitrary
hyperparameters, including the width of the cosine basis function.

Here we propose a one-shot algorithm that gives the entire threshold from the choice and
decision times. Combined with a standard gradient descent procedure, the algorithm can
efficiently identify the correct shape of the threshold without any hyperparameter for the
threshold.
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Methods

Symmetric thresholds with one drift rate

We first describe a simple case where there are two conditions with one drift rate, such as a
two-alternative forced choice paradigm with one level of difficulty. We observe that the bounded
evidence accumulation process can be modeled by a discretized diffusion process. Then, at
each time step, we observe that the probability of absorption at each boundary is determined by
the height of the threshold, and that it can be calculated simply by first computing the density
after an unbounded diffusion then summing the density outside each proposed threshold.
Finally, we observe that the dispersion of the nondecision time allows us to determine the
threshold at all times despite the fact that the data is a collection of discrete events that gives
only one time point per trial which often lines the time only sparsely.

What has been previously done for the forward modeling of the RTs is to convolve the predicted
decision time r with the nondecision time distribution g(t, z) to obtain a prediction of the RTs,
h,ed(t, 2)- Then the likelihood of the data, h,((f, z) can be calculated. Here we apply the opposite
approach to determine the likelihood of the decision time given the observed RTs, using the
nondecision time backwards. That is,
Tpackzs = PR, =t|H;=t+71,Z;=2}P{g, =7} = Y g(t—H;z)
i i€{H >t}

Where i is the trial index, H; and Z; are the observed RT and choice of the i-th trial. To allow a
flexible shape of the nondecision time, we use the gamma probability distribution with two free
parameters, mean Mg and standard deviation o,. Then, for each time point, we generate the

prediction for the decision time for each threshold level and calculate the likelihood as a function
of the threshold. For predicting the decision time, we model the evidence accumulation process
with one dimensional diffusion process with two absorbing boundaries. Given a diffusion
process

y@) =w+oW,

¥(0)=0
Here, o is fixed to 1 by convention because it is redundant with the combination of » and the
threshold height (Palmer, Huk, and Shadlen 2005). With two absorbing boundaries b, with

z€{1,2} for the two choices, we discretize the time and evidence space to model it
numerically. That is, at the initial time r=0,

u,, = 0(y=0).
For all later times, we use a coarse yet simple approximation (for more accurate methods, see,
e.g., (Smith 2000)):

Ve = Une * (p(MC’Gz)

Uy, =V, I(bz:u <y< bzzz,;)
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Importantly, we can calculate the likelihood of the threshold height efficiently in O(TY) where Y
is the number of bins on the evidence axis, because the log likelihood of b is obtained from the
Dirichlet distribution simply as:
b w b b
By, :=log P{B,=b|v. } «r__log ¥ u, +r_,logy u, +(Y u,)log ¥ u,
y=—o y=b y==b y==b

Note that the mode of {3,, over b can be calculated simply by matching the proportions of r and
u, i.e., by finding b such that

b
X uy,
y=—b

1-5
2 ) Uy,

y=—o

r +r

==t T =y =

Which can be done faster in O(TY). However, to combine the results across multiple drift rates,
we need the values of 3, ,, as explained in the following section.

Symmetric thresholds with multiple drift rates

When there are multiple absolute drift rates, as is the case for an experiment with multiple levels
of difficulty, we need to combine the estimates of thresholds across conditions. Fortunately, it
can be done simply by summing the likelihood across conditions:

Bb,t,' = Zﬁb,t,c
C

This is one reason why we need to compute the likelihood f3,, .. Another reason is because it

allows application of priors, e.g., about smoothness.

Note that we still need to fit the parameters governing the drift and the nondecision time. It can
be done efficiently using the standard gradient descent algorithm: Given an initial guess of b_,

and 0= (%, ¢, K, 0z), compute v,, then update b,, to maximize 3,. Then using the updated

b,,, find 0 that maximizes the likelihood with gradient ascent.

Asymmetric thresholds
The method can be easily generalized to two asymmetric thresholds. Here, we calculate the

joint distribution
b b* b*

Bb+,b—,t = log P{B+r = b+’B_z =b | V-,r} x l’zz_’tlog > Uy, + I‘Z:_’tlog ) Uy, +( X ”y,t)log > Uy
y=b*, y=— y=b", y=b",

Then identify the maximum likelihood estimate

(b*,,b",) = argmax By

The time complexity is still only O(TY?). The memory complexity is O(Y?).

Simulation and test
We simulated the data by sampling the choice and RT from the distribution predicted by the
diffusion model with thresholds of various shapes. The diffusion model we used has a linear
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transformation between the stimulus strength ¢ and the drift rate, controlled by two free
parameters » for the slope and ¢, for the bias:

w=2n(c—cy)
With the drift rate, we modeled the diffusion process in terms of v, u, and r as mentioned in
the section “Symmetric thresholds with one drift rate.” Then we computed the predicted
distribution of the reaction time r by convolving the decision time & with the nondecision time g

r?forward,z,t = ZP{Rz,i =1 | Hi =1- ‘C’Zi = Z}P{gz = 'E} = ) Z g(t_Hi’Z)
i ie{H <t}

To parametrically generate the thresholds, we used the incomplete beta function

A1) = Ag(1 = 1.(B;,B2))
and parameterized it with B, =log,,(B,B,) which correlates with the slope of the collapse and
t;=B,/(B,*B,) for convenience.

We used stimulus strengths 0, 0.032, 0.064, 0.128, 0.256, and 0.512 for ¢, and generated the
trials in a balanced way. For example, when we generate 1200 total trials, there are 200 ftrials for
each stimulus strength, divided evenly between the two choice options (for strength O it is
determined randomly). For the free parameters, we used »= 5 or 10, ¢, =0, p,=03s,

og =0.05s, B,,,=10r 0.5, ,=0.2 or 0.4s, and A;=0.7 or 1.

log
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Results
We show with simulated data that the method captures arbitrary shapes of the thresholds, with

as few as 600 total trials.
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Figure 1. Comparison of the fitted and the true thresholds for symmetric case.

Examples of the fitted and the true thresholds (monotonically decreasing). Black solid line is the
maximum likelihood estimate, the shade is the 95% confidence interval from the Dirichlet
posterior, and the red line is the true threshold. Estimates are plotted between 5 and 95

percentile RTs.
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In case of asymmetric thresholds, the fits capture the qualitative difference between the two
thresholds. Not surprisingly, the fit was worse compared to the symmetric case when the data
was small, but it was overcome with bigger data.
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Figure 2. Comparison of the fitted and the true thresholds for asymmetric cases.
Examples of the fitted and the true thresholds (flat or monotonically decreasing). Black solid line
is the maximum likelihood estimate, the shade is the 95% confidence interval, and the red line is
the true threshold. Estimates are drawn between 5 and 95 percentile RTs.
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Discussion

We showed that we can fit time-varying decision thresholds without prior assumption about its
shape with a simple greedy algorithm. The method does not require any parameter regarding
the threshold, yet it is highly accurate and efficient, in that it captures the threshold shape with
as few as 600 total trials.

There are a number of directions that the method can be extended. The simplest would be to
introduce a smoothness parameter. The appropriate smoothness may be found using cross
validation. Another direction is to use a full posterior for the density v by considering the
dispersion of the estimate of the threshold at each time point. Yet another approach is to derive
the gradient of the likelihood with regards to the thresholds and parameters. The last approach
may resolve the discrepancy we see in our one shot estimate, especially in the asymmetric
case. The method we described here may serve as a simple yet useful starting point for the
more elaborate methods.
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