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Abstract 28 

Genomic stability depends on faithful genome replication. This is achieved by the concerted 29 

activity of thousands of DNA replication origins (ORIs) scattered throughout the genome. In 30 

spite of multiple efforts, the DNA and chromatin features that determine ORI specification are 31 

not presently known. We have generated a high-resolution genome-wide map of ORIs in 32 

cultured Arabidopsis thaliana cells that rendered a collection of 3230 ORIs. In this study we 33 

focused on defining the features associated with ORIs in heterochromatin. We found that 34 

while ORIs tend to colocalize with genes in euchromatic gene-rich regions, they frequently 35 

colocalize with transposable elements (TEs) in pericentromeric gene-poor domains. 36 

Interestingly, ORIs in TEs associate almost exclusively with retrotransposons, in particular, of 37 

the Gypsy family. ORI activity in retrotransposons occurs independently of TE expression 38 

and while maintaining high levels of H3K9me2 and H3K27me1, typical marks of repressed 39 

heterochromatin. ORI-TEs largely colocalize with chromatin signatures defining GC-rich 40 

heterochromatin. Importantly, TEs with active ORIs contain a local GC content higher than 41 

the TEs lacking them. Our results lead us to conclude that ORI colocalization with TEs is 42 

largely limited to retrotransposons, which are defined by their transposition mechanisms 43 

based on transcription, and they occur in a specific chromatin landscape. Our detailed 44 

analysis of ORIs responsible for heterochromatin replication has also implications on the 45 

mechanisms of ORI specification in other multicellular organisms in which retrotransposons 46 

are major components of heterochromatin as well as of the entire genome. 47 

 48 

 49 

Introduction 50 

Reliable and complete genome duplication is crucial to maintain genomic stability. In 51 

eukaryotes, DNA replication occurs during the S-phase of the cell cycle and is initiated at 52 

multiple genomic locations, known as DNA replication origins (ORIs). Over the past years, 53 

detailed genome-wide maps of ORIs have been generated for various multicellular 54 
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organisms such as cultured Drosophila, mammalian and Arabidopsis cells (Sanchez et al. 55 

2012; Mechali et al. 2013; Renard-Guillet et al. 2014; Comoglio et al. 2015). ORI 56 

specification and activation depends on several variables, including the cell’s type and the 57 

physiological state as well as specific chromatin features, frequently including those 58 

associated with open chromatin (MacAlpine and Almouzni 2013; Mechali et al. 2013; 59 

Sequeira-Mendes and Gutierrez 2015). A preference of ORIs for colocalizing with genic 60 

regions, in particular highly expressed genes, seems to be a common observation across all 61 

organisms studied so far (Costas et al. 2011; Lubelsky et al. 2014; Cayrou et al. 2015; 62 

Sequeira-Mendes and Gutierrez 2015). 63 

Chromatin can be divided into heterochromatin, which is densely compacted for most of 64 

the cell cycle, and euchromatin, with a relatively less dense organization. Genes are not 65 

evenly located throughout the chromosomes, as they are more frequent in the euchromatic 66 

chromosome arms. This distribution is the inverse of that of transposable elements (TEs), 67 

which tend to accumulate in heterochromatic domains (Bennetzen and Wang 2014). In 68 

Arabidopsis, several TE families account for 21% of the genome and, although some of them 69 

are scattered along chromosome arms, most TEs concentrate in the pericentromeric 70 

heterochromatin (Ahmed et al. 2011; Feng and Michaels 2015). Whilst previous studies have 71 

reported the link between DNA replication fork progression and the establishment of 72 

heterochromatin (Nikolov and Taddei 2016), the genomic features that contribute to specify 73 

ORIs in heterochromatin have not been studied and, consequently, are very poorly 74 

understood. 75 

Here we have used Arabidopsis cultured cells to study in detail the genomic features 76 

defining ORI localization in heterochromatin, largely concentrated in the pericentromeric 77 

regions. We found that whereas in euchromatic chromosome arms the vast majority of ORIs 78 

(94.9%) colocalize with genes, in the pericentromeric gene-poor regions TEs contribute a 79 

significant fraction of ORIs (33.7%). Our study also shows that not all TEs serve equally as 80 

ORIs. Retrotransposons, and in particular Gypsy elements, more frequently colocalize with 81 

them. Furthermore, we found that a specific chromatin landscape mainly characterized by a 82 
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GC-rich heterochromatic state, is a determinant feature for ORI localization in 83 

heterochromatin. Together, our findings suggest that the characteristics of the chromatin 84 

associated to each family of TEs, their genomic organization and the retrotransposons’ 85 

potential for transcription are key to determine their capacity to contain ORIs. Our study 86 

serves the basis to tackle in the future the question of how the ORI specification and 87 

replication machineries gain access to the highly compact heterochromatic regions to 88 

achieve its duplication during S-phase. 89 

 90 

Results 91 

High-resolution identification of ORIs in transposable elements 92 

One of the strategies to identify ORIs relies on the isolation of small newly synthesized 93 

DNA molecules from replication bubbles. The identification of ORIs responsible for 94 

replication of pericentromeric heterochromatin requires very reliable genome annotation and 95 

peak calling algorithms. Probably because of that, it has never been undertaken 96 

systematically. In the case of Arabidopsis thaliana, an updated genome annotation (TAIR10), 97 

including highly repetitive pericentromeric regions, is now available. Also, various peak 98 

calling algorithms have been reported, among which we found that MACS1.4 (Zhang et al. 99 

2008) is well suited for our purpose as it detects peaks of relatively small size (<0.5-1kb) and 100 

of low representation in the sample. 101 

We have used these tools and sequencing data of purified BrdU-pulsed DNA extracted 102 

from Arabidopsis cultured cells (GSE21828) to generate a high-resolution map of ORIs, 103 

paying particular attention to those located in heterochromatic regions. Genes and TEs in 104 

Arabidopsis are not homogenously distributed along the chromosomes. TEs are largely, 105 

although not exclusively, concentrated in heterochromatic domains, and in particular at 106 

pericentromeric regions, whereas most genes are located in non-pericentromeric 107 

euchromatin domains (Ahmed et al. 2011). Since heterochromatin domains contain highly 108 

repetitive sequences, such as TEs, we first concentrated in hits that unequivocally aligned to 109 

only one genomic location, leaving multihit reads for a subsequent analysis. This approach 110 
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obviously rendered an underestimation of ORIs mapping to these regions but it provided a 111 

more confident dataset of ORIs responsible for heterochromatin replication (Fig. 1A).  112 
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Figure 1. Genomic location of Arabidopsis DNA replication origins. (A) Representative 115 
genome-browser views of regions containing ORIs of chromosomes 1 and 5, as indicated. 116 
BrdU-peaks defining ORIs relative to the control are indicated (light blue bars). Genes (dark 117 
green) transcribed from each strand and TEs (light green) are shown along the chromosome 118 
together with the coordinate scale. Fraction of ORIs found in genes, TEs and non-annotated 119 
regions in (B) all the Arabidopsis genome, (C) the non-pericentromeric regions and (D) the 120 
pericentromeric regions, defined as having a gene frequency ≤40%, shown with the 121 
respective genome coverage. (E) Overall correlation between gene, TE and non-annotated 122 
fraction coverage and total ORIs and ORIs not located in genes. Correlations are 123 
represented with circles (gradation of red, anticorrelation; gradation of blue, positive 124 
correlation). The size of the circles corresponds to the correlation coeficient, also indicated in 125 
the other half of the plot. (F) TE density (% of nucleotides in TEs per 1 Mb bin) (upper 126 
panels) and chromosomal distributions of ORI-TEs across the five Arabidopsis chromosomes 127 
(lower panels).  128 

 129 
Our analysis showed that ORIs have a strong preference to colocalize with genes. Out of 130 

a total of 3230 ORIs in the entire genome (Table S1), 2888 (89.4%) colocalized with genes 131 
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and 161 (4.9%) with TEs (Figure 1B; Fig. S1; Table S2), a result in accordance with our 132 

previous overall analyses (Costas et al. 2011). However, this analysis also showed that the 133 

proportions change drastically when we consider separately non-pericentromeric 134 

(chromosome arms) and pericentromeric regions. Indeed, whereas almost all ORIs (94.9%) 135 

colocalize with genes in gene-rich domains of chromosome arms, less than half of ORIs 136 

(46.7%) colocalize with genes in the pericentromeric gene-poor regions (Fig. 1C,D; Table 137 

S2). Furthermore, the distribution of ORIs not located in genes positively correlates with the 138 

distribution of TEs, and not with the distribution of non-annotated regions (Fig 1E). Analysis 139 

of ORI-TE density along the Arabidopsis chromosomes visualizes the preference of non-140 

genic ORIs to colocalize with TEs in pericentromeric regions (Fig. 1F). These results suggest 141 

that TE sequences may be selected as ORIs in regions with a low gene density such as 142 

pericentromeric regions. To evaluate if the distribution of ORIs in TEs was affected by 143 

choosing the uniquely mapped reads, we repeated the analysis using the multihit sequence 144 

reads and found very similar results (Table S3). Also importantly, similar results were 145 

obtained using the BayesPeak algorithm (Cairns et al. 2011) (data not shown). 146 

 147 

ORI-TEs preferentially colocalize with retrotransposons 148 

TEs constitute a very heterogeneous type of repetitive elements that can be divided in 149 

different classes and families based on their structure and transposition mechanisms (Wicker 150 

et al. 2007; Deragon et al. 2008). Therefore, we first asked whether ORIs in TEs were 151 

homogenously distributed among the various TE families and found a striking preference for 152 

ORIs to associate with certain TE families (Table S4). The vast majority of ORI-TEs (83.9%) 153 

is located in retrotransposons of the Gypsy, Copia and LINE families that account only for 154 

42.4% of the TE genome space (Fig. 2A). In particular, Gypsy elements that cover 29.4% of 155 

the TE genome space contain ~50% of all ORI-TEs. On the contrary, ORI-TEs are clearly 156 

under-represented in other families, especially of DNA transposons. Helitrons, which have a 157 

similar prevalence compared to Gypsys, lack any detectable ORI-TEs and DNA/MuDR that 158 

account for 15.7% of the TE genome space contain only 3.4% of all ORI-TEs (Fig. 2A). Since 159 
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the pericentromeric regions concentrate most ORI-TEs, the tendency of ORI-TEs to 160 

colocalize with Gypsy elements could simply be due to the skewed distribution of Gypsy 161 

elements towards pericentromeric regions. However, our data show that ORI-TEs are 162 

overrepresented in Gypsy elements also in non-pericentromeric regions (Fig. 2B,C).  163 

Fig. 2
Vergara et al.
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 164 
 165 
Figure 2. Frequency distribution of ORI-TEs in TE families. (A) All the Arabidopsis 166 

genome. (B) Non-pericentromeric regions. (C) Pericentromeric regions, (blue bar) shown 167 
with the respective TE family nucleotide coverage of total TE nucleotides (black bar). 168 
 169 
Moreover, the complete lack of ORIs in Helitrons, which account for more than 18% of the 170 

TEs in pericentromeric regions, also shows that this is not the case. Analysis of the multihit 171 

sequences revealed similar results (Fig. S2), indicating that the lack of ORIs in Helitrons is 172 

not due to a bias derived from sequence alignments problems. Together, these observations 173 

demonstrate that when ORIs associate with TEs they have a significant preference to 174 

colocalize with retrotransposons and specifically Gypsy elements, whereas they tend to be 175 

excluded from DNA transposons, in particular from Helitron elements. 176 

 177 

Short nascent DNA strands (SNS) enrichment confirms the activity of ORIs mapped by 178 

BrdU-seq 179 

To validate our ORI mapping strategy using an independent method we determined the 180 

activity of a number of ORIs by quantitative PCR enrichment of a purified sample of short 181 

nascent strands (SNS) isolated from DNA replication bubbles (Gerbi and Bielinsky 1997; 182 

Cayrou et al. 2012b). For a detailed validation of ORI activity we designed sets of primer 183 

pairs across a chromosomal region containing one ORI overlapping with a TE in the arm of 184 
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chromosome 1 (AT1TE62820) and another ORI ~70 kb apart, colocalizing with a 185 

downstream gene (AT1g51350) within a typical euchromatic region. Cultured Arabidopsis 186 

cells were synchronized in G0 by sucrose deprivation and then samples were extracted 2 187 

(G1/S), 3.5 (early S) and 7 h (late S) after release from the sucrose block. qPCR analysis 188 

was carried out in two consecutive fractions of the sucrose gradient to ensure reproducibility 189 

of the data. As expected, none of the ORIs selected were active at the earliest time point 190 

analyzed, 2h after release of the sucrose block (Fig. 3A). At later time points, a clear 191 

enrichment was detected in both cases, revealing the activity of these two ORIs in the cell 192 

population. Also, it is worth noting that the ORI located within a gene (Fig. 3A, right panels) 193 

was ~5-10-fold more active than the ORI colocalizing with a TE (Fig. 3A, left panels). These 194 

experiments confirm that both predicted ORIs, located in a TE and in a gene, indeed function 195 

as ORIs. This analysis also showed that an ORI located at a TE in a chromosome arm is 196 

active in cultured cells, even when another stronger ORI is in the neighborhood, less than 197 

~70 kb apart. 198 

We also wanted to evaluate the activity of different ORI-TEs according to the TE family 199 

they colocalize with. Thus, we chose to validate and analyze in asynchronous cells, four 200 

genomic regions containing ORI-TEs: two belonging to the Gypsy family and two belonging 201 

to the LINE family (where ORIs are highly and moderately over-represented, respectively), 202 

and in each case one ORI located in pericentromeric heterochromatin and another in non-203 

pericentromeric heterochromatic patches within the euchromatic arms. These regions were 204 

also selected based on the possibility to design a set of primer pairs that unequivocally 205 

identify them. We found that all ORI-TEs analyzed here were active as revealed by the qPCR 206 

enrichment of purified SNS (Fig. 3B). These experiments confirm that the results obtained by 207 

direct sequence mapping of BrdU-labeled material represents a bona fide collection of active 208 

ORIs at heterochromatin and that TEs are a major source of ORIs in pericentromeric regions. 209 
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 211 

Figure 3. DNA replication origin activity determined by short nascent strand (SNS) 212 
abundance by qPCR. (A) Measurement of ORI activity in synchronized Arabidopsis MM2d 213 
cells at various times after releasing the block, as indicated (2h, G1/S; 3.5h, S; 7h, late S). In 214 
each case, the confidence of ORI activity was assessed by analyzing in two biological 215 
replicates two consecutive fractions, as indicated at the top. The fractions belong to the same 216 
gradient used for purification of SNS and contain DNA molecules ranging 500-2500 bp in 217 
size. Two ORI-containing regions (left panels, ORI colocalizing with a TE; right panels, ORI 218 
colocalizing with a neighbor gene) were analyzed. The location of primer pairs scanning the 219 
region is indicated by small dots on the X-axis. Enrichment values were made relative to the 220 
flanking region and normalized against gDNA. The genomic region under study depicting the 221 
location of ORI, genes and TEs is at the bottom. Chromosomal coordinates are indicated. (B) 222 
Measurement of ORI activity in asynchronous Arabidopsis MM2d cell cultures. The ORI-TEs 223 
were chosen according to their family (Gypsy and LINE) and location (non-peri- and 224 
pericentromeric), as indicated. The location of primer pairs is indicated by small dots on the 225 
X-axis. Two consecutive fractions were analyzed, as described for panel A. Fractions 226 
containing smaller DNA fragments did not give reproducible SNS-qPCR enrichment. 227 
Enrichment values were made relative to a negative region that does not content any ORI or 228 
TE (AT2G28970). The genomic region under study depicting the location of ORI, genes and 229 
TEs is at the bottom. Chromosomal coordinates are indicated 230 
 231 
Are TEs containing ORIs reactivated in cell cultures? 232 

The activity of ORIs has been frequently associated with the expression level of the 233 

genomic loci where they are located (Sequeira-Mendes et al. 2009; Mechali et al. 2013). 234 

Although the expression of TEs is usually strongly repressed, some TEs can be activated 235 

under stress situations (Deragon et al. 2008; Lisch 2013). Notably, it was reported that in an 236 

Arabidopsis cell culture line typical heterochromatin marks change and some TEs are 237 
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reactivated (Tanurdzic et al. 2008), in agreement with reports in Drosophila Kc and S2 238 

cultured cells (Di Franco et al. 1992). Therefore, we determined the RNA levels across the 239 

ORI-containing region in each of the TEs selected previously. Our data showed that the 240 

RNAs derived from these elements were below detectable levels in all cases (Fig. S3). 241 

Similar results were obtained using either polyA-containing RNA or total RNA (Fig. S3). 242 

Furthermore, it is worth noting that the Athila elements, members of the Gypsy family, are 243 

among the most frequently reactivated TEs whereas the Atlantys elements, also from the 244 

Gypsy family, are very poorly reactivated (Tanurdzic et al. 2008). We found that ORIs 245 

colocalizing with Atlantys elements that account for ~11% of all Gypsy elements are over-246 

represented (43% of all ORIs in Gypsy elements). Consequently, we concluded that ORI-TE 247 

activity in our Arabidopsis cell culture line is independent of the transcriptional status of the 248 

TEs they are associated with. Based on these observations, we sought to identify whether a 249 

unique signature can be associated with the high preference of retrotransposon families for 250 

ORI specification. 251 

 252 

The activity of ORI-TEs is maintained with high levels of mC and is independent of G 253 

quadruplexes 254 

The majority of ORIs colocalize with genes which, when highly expressed, tend to be 255 

highly methylated at CG positions within the gene body, but not at CHG or CHH, the other 256 

sequence contexts where C methylation is found in plants (Zhang et al. 2006). Moreover, the 257 

±100 nt region around the ORI in euchromatin tends to be depleted of CG methylation 258 

(Costas et al. 2011), which suggests that ORI specification and activity may depend on low 259 

levels of methylation. TEs are heavily methylated in C residues of the three sequence 260 

contexts, and their methylation is actively maintained by RNA-directed DNA methylation 261 

(RdDM) and siRNAs (Matzke and Mosher 2014; Fultz et al. 2015). However, TEs may differ 262 

in their methylation state depending on the type, size or location (Ahmed et al. 2011; Zemach 263 

et al. 2013). Thus, we used the available methylation data of the Arabidopsis genome 264 

(Stroud et al. 2013) to ask whether differences in C methylation correlate with the preferential 265 
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location of ORIs in certain TE family members. We found a tendency of Helitron elements, 266 

which do not colocalize with ORIs, to contain lower levels of C methylation for the three 267 

sequence contexts, whereas Gypsy elements, the most ORI-enriched TEs, showed higher 268 

methylation level (Fig. S4). This is in line with previous reports that showed that Helitrons 269 

tend to be less heavily methylated than Gypsy elements in Arabidopsis (Ahmed et al. 2011). 270 

Moreover, the level of C methylation of Gypsy elements does not vary depending on whether 271 

they colocalize or not with ORIs (not shown). Therefore, our data suggest that a low 272 

methylation level is not a requirement for ORI specification in TEs. Similar observations have 273 

been made for the heterochromatic X chromosome in mammalian cells where the level of C 274 

methylation does not affect ORI specification and usage (Gomez and Brockdorff 2004).  275 

G quadruplexes (G4) have been frequently found in association with TEs (Kejnovsky et al. 276 

2015) and with ORIs in mammalian cells (Besnard et al. 2012; Cayrou et al. 2012a; Valton et 277 

al. 2014; Comoglio et al. 2015). Thus, we also asked whether the presence of G4 was a 278 

determinant factor in the distribution of ORIs in Arabidopsis cells. We found first that G4 279 

motifs are far more frequent in TEs than in genes whereas ORIs highly prefer a 280 

colocalization with genes. Second, most G4 motifs occur in a TE family known as ATREP18, 281 

which contains a canonical telomeric repeat (Cardenas et al. 2012) and that is also found in 282 

pericentromeric regions. This family is included within the annotation class “DNA/Other” that 283 

contains less than ~1% of all ORI-TEs (Fig. S5). Third, and perhaps more relevant, both 284 

Gypsy and Helitron elements contain a very similar fraction of G4 motifs whereas they show 285 

an opposite preference to contain ORI-TEs (Fig. S5). Hence, our observations do not support 286 

the idea that G4 structures may be directly influencing ORI activity in Arabidopsis, and they 287 

do not explain the distribution of ORI-TEs among the different TE families found here. 288 

 289 

ORI-TE activity and the chromatin landscape 290 

We next focused on the chromatin landscape around ORI-TEs to identify a possible 291 

common signature. We have previously shown that the entire Arabidopsis genome is 292 

characterized by nine different chromatin states (Sequeira-Mendes et al. 2014). To gain an 293 
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overall view of the chromatin associated with ORI-containing TEs we looked for possible 294 

differences within TE families. We first investigated the whole chromatin signatures 295 

associated with the different TE families according to the known Arabidopsis chromatin 296 

states. Interestingly, we found that the majority of Gypsy, LINE and Copia families, which 297 

concentrate more than 80% of all ORI-TEs are associated with chromatin state 9 (Fig. 4A left 298 

pannels), which is characteristic of the GC-rich heterochromatin. 299 

 300 
 301 

Figure 4. Distribution of retrotransposons and DNA transposons in the different 302 
chromatin states. (A) Relative frequency of several TE families (Gypsy, LINE, Copia, 303 
Helitron and DNA/MuDR), or ORI-TE of those families with respect to total nucleotide family 304 
content, in the nine chromatin states. Chromatin states, largely corresponding to various 305 
genomic elements, are as follows: state 1, TSS; state 2, proximal promoters; state 3, 5’ half 306 
of genes; state 4, distal promoters enriched in H3K27me3; state 5, Polycomb-regions; state 307 
6, average gene bodies; state 7, long gene bodies; state 8, AT-rich heterochromatin; state 9, 308 
GC-rich heterochromatin. (B) Average G+C content of TEs with (blue) and without (white) 309 
ORIs in the different TE families. ***, p<0.0001; **, p<0.001 (unpaired t-test with Welch’s 310 
correction; wiskhers at 10-90 percentiles, outliers not represented in the graph). 311 
 312 
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This is particularly striking for the Gypsy elements, of which ~95% are found in this 313 

heterochromatic state. On the contrary, Helitrons, which have a very low tendency to contain 314 

ORIs, are not associated with chromatin state 9 but to chromatin states 4 and 8 (Fig. 4A left 315 

panels). Chromatin state 4 is mainly associated with intergenic regions enriched in the 316 

Polycomb mark (H3K27me3), whereas chromatin state 8 is an heterochromatin state 317 

characterized by a lower GC content and a higher H3K27me3 level, as compared with the 318 

heterochromatin of chromatin state 9 (Sequeira-Mendes et al. 2014). Very interestingly, ORI-319 

containing TEs tend to be in the chromatin state 9, independently of their family (Fig. 4A, 320 

right panel).  321 

The main feature distinguishing the two heterochromatic states is the GC content, which is 322 

higher in chromatin state 9. In fact, this is a striking difference between TEs since the families 323 

that tend to contain ORIs (Gypsy, Copia and LINE) have a higher than genome average GC 324 

content. For instance, Gypsy elements contain 42.1% GC, the highest among TEs, 325 

compared with the 36.5% average GC content of the Arabidopsis genome (Fig. S6). On the 326 

contrary, Helitron elements are characterized by having a very low GC content (24.2%; Fig. 327 

S6). These differences in GC content do not have any impact on the potential to form G4 328 

structures, as shown earlier, although they may have a direct impact on nucleosome 329 

organization (Liu et al. 2015; Zhang et al. 2015). Importantly, however, calculation of the 330 

average GC content of TEs that contain ORIs revealed that it was statistically significantly 331 

higher than in TEs of the same family that do not contain ORIs (Fig. 4B). This clearly 332 

suggests that a high GC content behaves as a determinant for ORI preference also at 333 

heterochromatic loci. 334 

 335 

ORI-TE activity is maintained with high H3K9me2 levels 336 

The association of ORI-TEs with a heterochromatin state is somehow surprising as most 337 

ORIs are located within genes that colocalize with euchromatic marks found in very different 338 

chromatin states (Sequeira-Mendes et al. 2014). Even though we have already shown that 339 

transcription at ORI-TEs is not reactivated in cultured cells (Fig. S3) as chromatin may 340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2016. ; https://doi.org/10.1101/090183doi: bioRxiv preprint 

https://doi.org/10.1101/090183
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

undergo changes in some cultured cells (Chupeau et al. 2013), we decided to analyze the 341 

chromatin marks associated with ORI-TEs in the Arabidopsis MM2d cultured cells. 342 

We first looked at the overall levels of H3K9me2 and H3K27me1, two typical 343 

heterochromatic marks that strongly contribute to maintaining the silenced state of TEs in 344 

Arabidopsis (Law and Jacobsen 2010; West et al. 2014), by immunolocalization in cultured 345 

cells. H3K27me1 showed a pattern colocalizing with increased DAPI signal whereas 346 

H3K9me2 had a dotted appearance in nuclear sites enriched for H3K27me1 and DAPI 347 

positive regions (Fig. 5A), as it occurs in the nuclei of Arabidopsis plants. It must be noted 348 

that DAPI-stained chromocenters were not very apparent in nuclei of these cultured cells, 349 

suggesting a less condensed organization of the pericentromeric heterochromatin. 350 
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Figure 5. Heterochromatin marks in Arabidopsis MM2d cultured cells. (A) 353 
Immunolocalization of H3K9me2 (magenta) and H3K27me1 (green) in nuclei of cultured 354 
cells. Nuclei were stained with DAPI (blue). Levels of H3K9me2 (B) and H3K27me1 (C) 355 
determined by ChIP-qPCR in TEs representative of various families, chromatin states (CS) 356 
and with (blue bars) or without ORIs (grey bars). Enrichment values were made relative to 357 
the local H3 content determined by ChIP with anti-H3 antibody, as described in Methods. 358 
Two biological replicates and three technical replicates were evaluated. The mean values ± 359 
standard error of the mean is plotted. The codes for the primer pairs used to identify each 360 
TE, according to the list in Supplementary Table 5, are: A, AT2TE13970; B, AT4TE16735; C, 361 
AT2TE16335; D, AT4TE17050; E, AT4TE16726-2; F, AT4TE16726-3; G, AT1TE62820-3; H, 362 
AT1TE62820-5; I, AT2TE15565-2; J, AT2TE15565-3; K, AT4TE03295. 363 
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To determine more precisely the levels of H3K9me2 and H3K27me1 marks in cultured 364 

cells we performed ChIP and analyzed a subset of TEs containing a functional ORI. Although 365 

Helitron elements are not associated with ORIs, we also evaluated some Helitron elements 366 

located in the two heterochromatin states (AT-rich and GC-rich chromatin states 8 and 9, 367 

respectively). In all cases we normalized the measurements to the local H3 content 368 

determined by ChIP with anti-H3 antibody. We found that, in all the examples analyzed, the 369 

Gypsy and LINE elements (GC-rich heterochromatin state 9) contain a high level of 370 

H3K9me2 (Fig. 5B). We also found that in general the H3K9me2 level was higher in 371 

retrotransposons than in Helitron elements, independently of their chromatin state (Fig. 5B), 372 

similar to what was reported in maize (West et al. 2014). In the case of H3K27me1, which is 373 

typical of heterochromatin and crucial to prevent re-replication (Jacob et al. 2010), ChIP 374 

experiments revealed that the TEs analyzed showed various levels of H3K27me1 375 

independently of (i) being Gypsy, LINE or Helitron, (ii) their chromatin signature and (iii) their 376 

colocalization with ORIs (Fig. 5C). Alterations in the nuclear DNA content are indicative of 377 

massive defects in re-replication control and, indirectly, of possible decrease in H3K27me1, 378 

as it occurs in the atxr5,atxr6 mutant (Jacob et al. 2010). Consistent with our ChIP data, we 379 

could not detect any significant alteration in the DNA content profile of cultured Arabidopsis 380 

cells (Fig. S7). Since retrotransposons are enriched for ORIs and H3K9me2 and there is a 381 

lack of correlation of H3K27me1 with ORI-TEs, these marks seem to be unrelated to ORI 382 

activity. 383 

 384 

Discussion 385 

The results presented here show that whereas in euchromatic regions ORIs are almost 386 

exclusively located within genes, in the heterochromatic pericentromeric regions a significant 387 

fraction of ORIs colocalizes with TEs. This underscores the relevance of retrotransposons in 388 

contributing to genome replication, a key process during the cell cycle. We show here that 389 

the epigenetic marks associated with ORI-TEs (high methylation at all cytosine contexts, 390 

H3K9me2 and H3K27me1) are typical of heterochromatin and very different from those 391 
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associated with euchromatic ORIs, suggesting that these marks do not interfere with ORI 392 

specification. Interestingly, ORI-TEs are not randomly distributed among TEs and show a 393 

striking tendency to colocalize with retrotransposons, and in particular with Gypsy elements. 394 

Transcription is the first and obligate step for mobilization of all retrotransposons, whereas 395 

DNA transposons are mobilized by a DNA intermediate and don’t need to be transcribed. 396 

This makes retrotransposons more similar to genes than any other TE. Indeed, whereas 397 

most retrotransposons are silent in most plant tissues, their activation under stress or in 398 

particular mutant backgrounds confirms that they retain the capacity to be transcribed and to 399 

transpose (Bucher et al. 2012; Cavrak et al. 2014). However, activity of ORI-TEs cannot be 400 

explained by transcription through TE sequences. In addition, both genes and 401 

retrotransposons show an above average GC content, which makes their sequences 402 

different from most DNA transposons and particularly Helitron elements. Importantly, TEs 403 

with ORIs possess a higher GC content than TEs without ORIs, independently of their TE 404 

family. Therefore, these results lead us to propose that a high local GC content, typical of the 405 

heterochromatin state 9 where the vast majority of ORI-TEs are located, in combination with 406 

the potential to be transcribed, characteristic of the genomic organization of 407 

retrotransposons, are the major features of ORIs colocalizing with TEs. These characteristics 408 

allow certain TE families to contribute to a significant fraction of ORIs in heterochromatic 409 

regions. This can be crucial to ensure correct replication of heterochromatic domains, which 410 

have a low gene density, thus compensating for the high preference of ORIs to localize in 411 

genes. 412 

 413 

 414 

Methods 415 

Plant material and growth conditions 416 

Arabidopsis thaliana MM2d cell line (Menges and Murray 2002) was grown at 26 ºC and 120 417 

rpm, in the absence of light. The cells were subcultured every 7 days into fresh Murashige & 418 

Skoog medium (MS, pH 5.8, Duchefa) supplemented with 3% sucrose (Duchefa), 0.5 µg/mL 419 
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1-naphthaleneacetic acid (Duchefa), 0.1 µg/mL kinetin (Sigma) and 0.103 µg/mL vitamins 420 

(Duchefa). 421 

 422 

BrdU sequencing data analysis 423 

BrdU sequencing data reads (GEO GSE2182; (Costas et al. 2011)) were trimmed down to 424 

50 nt from the 3’ end and mapped to the reference Arabidopsis genome (TAIR10) using 425 

BOWTIE aligner (Langmead et al. 2009), allowing up to three mismatches and discarding 426 

multihit reads. PCR duplicate reads were removed using an in-house script. Peak calling was 427 

performed using MACS1.4 (Zhang et al. 2008) with a cutoff value of 10-6. Neighboring peaks 428 

were merged when interpeak distance was less than 260 nt. Peaks smaller than 200 nt were 429 

removed from the analysis. Analogous results were obtained when using a similar (Spyrou et 430 

al. 2009) algorithm (data not shown). The same analysis was carried out using only the 431 

multihit reads. 432 

 433 

ORI distribution and classification 434 

General annotation coverage was calculated with the complete set of annotations from 435 

TAIR10, discarding “transposon_fragment” as it is redundant with the 436 

“transposable_element” annotation. Pericentromeric regions were defined as the regions 437 

where the gene coverage in 1 Mb bin was equal or lower to 40%. ORIs were attributed to a 438 

type of annotation (genes, TEs or particular TE families) only for unambiguous non-439 

overlapping annotation. TE family coverage was calculated within the TE genome space 440 

(total TE nucleotide content). 441 

 442 

C methylation, G quadruplex, GC content and chromatin states analysis 443 

CG, CHG and CHH methylation data were retrieved from (GEO GSE39901) (Stroud et al. 444 

2013). The presence of G quadruplexes in the Arabidopsis genome was predicted using the 445 

Quadparser software (Hershman et al. 2008) allowing a spacing of 7 nt between G strings. 446 

The GC content of the genome was calculated in bins of 50 nt. For the analysis of the 447 
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distribution of TE among the different chromatin states (Sequeira-Mendes et al. 2014), the 448 

relative frequency of each TE family in each state was determined by the coverage of the 449 

family in that particular state relative to the total coverage of the TE family in the genome. For 450 

the distributions of ORI-TEs among the different chromatin states the ORI midpoint was 451 

considered. All the bioinformatics analyses were performed with in-house Perl scripts and 452 

BEDtools suite utilities (makewindows, genomecov, merge, intersectBed) (Quinlan 2014). 453 

 454 

Cell synchronization 455 

Cells on exponential phase (4 days after subculture) were synchronized in G0/G1 by growing 456 

them in MS without sucrose for 24 hours. To release the cell cycle block the medium was 457 

replaced with MS with sucrose (Menges and Murray 2002). Samples for analysis were taken 458 

at 2 (G1/S transition), 3.5 (early S) and 7 (late S) hours. 459 

 460 

Isolation of Short DNA Nascent Strands (SNS) 461 

The short replication intermediates used in the ORI activity qPCR assays were purified 462 

essentially as described (Costas et al. 2011). At day 4 after passage, 100 mL of the 463 

asynchronous cell suspension were either directly collected for SNS preparation or 464 

synchronized at the desired time points (2, 3.5 or 7 h) before SNS isolation. 465 

 466 

RNA analysis 467 

Total RNA from asynchronous cells was isolated at day 4 after subculture using Trizol 468 

reagent (Invitrogen) according to manufacturer’s instructions. Total RNA was treated with 469 

DNase I (Roche) and 1 µg was reverse-transcribed with SuperScript III (Invitrogen) using an 470 

oligo-dT primer (mRNA) or random hexamers (total RNA). Two microliters of a 3-fold diluted 471 

cDNA reaction were used as template in qPCR, and the primers listed in Table S5.  472 

 473 

Immunolocalization 474 

MM2d cells were collected at 4 days after subculture and fixed in 4% paraformaldehyde in 475 
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microtubules stabilizing buffer (MTSB; 50 mM PIPES, pH 6.9, 5 mM EGTA, 5 mM MgSO4), 476 

for 10 min plus 5 min with vacuum infiltration. Cells were washed with MTSB, PBS and water 477 

and air-dried on superfrost plus slides (Thermo Scientific). Cells were re-fixed in 4% 478 

paraformaldehyde in MTSB for 30 min and washed with MTSB. Cell wall was partially 479 

digested with 20 mg/mL driselase (Sigma) in MTSB for 45 min at 37 ºC and the slides were 480 

washed with PBS. Membranes were permeabilized with 10% DMSO, 3% Igepal CA-630 in 481 

MTSB for 1 h. Non-specific sites were blocked in 3% BSA, 10% Horse Serum (HS) in PBS 482 

for 1 h at 37 ºC. H3K9me2 and H3K27me1 were detected with antibodies (Abcam ab1220 483 

and Millipore 07-448, respectively) diluted 1:1000 in 1% BSA, 10% HS, 0.1% Tween-20 in 484 

PBS at 4 ºC overnight. Slides were washed with 3% BSA in PBS and incubated with donkey 485 

anti-mouse 555 and anti-rabbit 488 (A-31570 and A-21206 Thermo Scientific, respectively) 486 

diluted 1:500 in 1% BSA, 10% HS, 0.1% Tween-50 in PBS for 1 h. Following washes in 3% 487 

BSA in PBS, nuclei were counterstained with DAPI (Merck), washed with PBS and mounted 488 

in Mowiol 4-88 (Sigma). The localization of H3K9me2 and H3K27me1 in immunostained cells 489 

was analyzed by confocal microscopy (LSM710 Zeiss). Images were processed using Fiji. 490 

 491 

Chromatin immunoprecipitation 492 

MM2d cells were harvested 4 days after subculture and fixed using ice-cold 1% 493 

formaldehyde in PBS and applying vacuum infiltration (3 rounds of 6 min on/4 min off). The 494 

cross-linking was stopped by the addition of 0.125 M glycine, infiltrating for another 5 495 

minutes. The grinded material was resuspended in Extraction Buffer (0.25 M sucrose, 10 mM 496 

Tris-HCl, pH 8.0, 10 mM MgCl2, 1% Triton X-100, 1 mM PMSF, and protease inhibitor 497 

cocktail for plant cell extracts (Sigma)). Nuclei were pelleted by centrifugation, resuspended 498 

in Lysis Buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS, 1 mM PMSF, and protease 499 

inhibitor cocktail) and disrupted by sonication in a Bioruptor Plus (Diagenode) for 30-45 500 

cycles of 30 s on and 30 s off, at high power mode. One microgram of soluble chromatin was 501 

employed per ChIP reaction, using the following antibodies: anti-H3K9me2 (Abcam ab1220, 502 

3 µg), anti-H3K27me1 (Millipore 07-448, 1 µg), anti-total H3 (Abcam ab1791, 2 µg), or anti-503 
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rat IgG (Abcam ab6703, 2 µg) as a negative control. Immune complexes were recovered with 504 

50 µL of protein G agarose beads (SCBT) and washed and eluted essentially as described 505 

(Villar and Kohler 2010). 506 

All qPCRs (SNS, cDNA, and ChIP) were performed using GoTaq Master Mix (Promega) 507 

according to the manufacturer’s instructions in an ABI Prism 7900HT apparatus (Applied 508 

Biosystems) using the primers listed in Table S5. 509 

 510 

Flow cytometry 511 

MM2d cells were collected at either 4 or 7 days after subculture by vacuum filtration and the 512 

retentate was chopped in Galbraith solution (45 mM MgCl2, 20 mM MOPS, 30 mM sodium 513 

citrate, 0.1% Triton X-100, pH 7.0). Nuclei were filtered through a 30-µm nylon net filter 514 

(Millipore) and stained with 2 µg/mL DAPI. Nuclei populations were analyzed using a 515 

FACSCanto II High Throughput Sampler cytometer (Becton Dickinson) and FlowJo v10.1rS 516 

software (FlowJo). 517 

 518 

Supplemental files 519 

Figures S1 to S7. 520 

Tables S1 to S5. 521 
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