
	 1	

SCnorm: A quantile-regression based approach for robust 

normalization of single-cell RNA-seq data 

 
Rhonda Bacher1,5, Li-Fang Chu2,5, Ning Leng2, Audrey P. Gasch3, James A. Thomson2, 

Ron M. Stewart2, Michael Newton1,4, and Christina Kendziorski4* 

 
1Department of Statistics, University of Wisconsin–Madison, Madison, WI  
2Morgridge Institute for Research, Madison, WI  
3Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 
4Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, 

Madison, Wisconsin 
5Equal contributors 

*Corresponding author: Christina Kendziorski: kendzior@biostat.wisc.edu 

 

Summary 

 Normalization of RNA-sequencing data is essential for accurate downstream inference, but the 

assumptions upon which most methods are based do not hold in the single-cell setting. Consequently, 

applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias 

downstream analyses. To address this, we introduce SCnorm for accurate and efficient normalization 

of scRNA-seq data.  

 

Protocols to quantify mRNA abundance introduce systematic sources of variation 

that obscure signals of interest; consequently, an essential first step in the majority of 

mRNA expression analyses is normalization, whereby systematic variations are adjusted 

for in an effort to make expression counts comparable across genes and/or samples. 

Within-sample normalization methods adjust for gene-specific features such as GC-

content and gene length to facilitate comparisons across genes within an individual 
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sample, whereas between-sample normalization methods adjust for sample-specific 

features such as sequencing depth to allow for comparisons of a gene’s expression across 

samples1. In this work, we present a method for between-sample normalization, although 

we note that the R implementation, R/SCnorm, also allows for adjustment of gene-

specific features (Supplementary Section S1).  

A number of methods are available for between-sample normalization in bulk 

RNA-seq experiments2,3. Although the details differ slightly among approaches, each 

attempts to identify genes that are relatively stable across cells, then uses those genes to 

calculate global scale factors (one for each sample applied commonly across genes in the 

sample) to adjust each gene’s read counts in each sample for sequencing depth. Although 

these methods demonstrate excellent performance for bulk RNA-seq, the abundance of 

zeros and increased technical variability present in scRNA-seq data compromise their 

performance in the single-cell setting4. Recent methods have been developed specifically 

for scRNA-seq normalization that accommodate both an abundance of zeros and 

increased technical variability5,6, however, like many bulk methods, they too calculate 

global scale factors. 

Although existing methods for scRNA-seq normalization show considerable 

improvement over bulk approaches, they are unable to accommodate a major bias that to 

date has been unobserved in scRNA-seq data. Specifically, scRNA-seq data show 

systematic variation in the relationship between read counts and sequencing depth 

(referred to hereinafter as the count-depth relationship) that is not accommodated by a 

single scale factor common to all genes in a cell.  For highly expressed genes, counts 

increase directly with increases in depth, similar to most genes in a bulk RNA-seq 
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experiment. That is not the case for moderate and lowly expressed genes, where counts 

typically increase at a slower rate than expected with increases in depth (Fig. 1 and 

Supplementary Figure S1). Global scale factors adjust for a count-depth relationship 

that is assumed common across genes. When this is not the case, normalization via global 

scale factors leads to over-correction for lowly and moderately expressed genes and, in 

some cases, under-normalization of highly expressed genes (Fig. 1).  As a result, 

normalization methods that rely on global scale factors are not appropriate for scRNA-

seq.  

 To address this, we propose SCnorm for robust normalization of scRNA-seq data. 

Briefly, SCnorm uses quantile regression to estimate the dependence of read counts on 

sequencing depth for every gene. Genes with similar dependence are then grouped, and a 

second quantile regression is used to estimate scale factors within each group. Within-

group adjustment for sequencing depth is then performed using the estimated scale 

factors to provide normalized estimates of expression. Although SCnorm does not require 

spike-ins, performance may be improved if good spike-ins are available (Supplementary 

Section S2).   

SCnorm was evaluated and compared with MR3, transcripts-per-million (TPM)7, 

scran5, SCDE8, and BASiCS6. Because BASiCS requires spike-ins, results are only 

shown for data sets where spike-ins are available. In the simulation study, we assessed 

the ability with which normalized estimates of expression could be used to estimate fold-

change as well as the sensitivity and specificity for identifying differentially expressed 

(DE) genes. The simulations vary with respect to assumptions and extent of DE, which 

should help to ensure a reasonably realistic evaluation of the operating characteristics of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2016. ; https://doi.org/10.1101/090167doi: bioRxiv preprint 

https://doi.org/10.1101/090167
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

SCnorm. 

In SIM I, two scenarios were considered where the number of groups of genes 

having different count-depth relationships (K) is set to 1 and 4, respectively. When K = 1, 

the relationship between expression and sequencing depth is similar across all genes, as 

in bulk RNA-seq. Each simulated data set contains two conditions, the second condition 

having approximately four times as many reads; 20% of the genes are defined to be DE 

where overall the DE is balanced (10% up-regulated and 10% down-regulated on 

average). Prior to normalization, counts in the second condition will appear 4 times 

higher on average given the increased sequencing depth. However, if normalization for 

depth is effective, fold-change estimates should be near one, and only simulated DE 

genes should appear DE.  Supplementary Figure S2a shows that when K = 1, with the 

exception of TPM, fold-change estimates are consistently robust among methods, and all 

normalization methods provide data that results in high sensitivity and specificity for 

identifying DE genes (Supplementary Fig. S2b). However, when K = 4, only SCnorm 

maintains good operating characteristics, whereas global scale factor based approaches 

overestimate fold-changes for low to moderately expressed genes due to overcorrection 

of sequencing depth (Supplementary Fig. S2c, d).  

In SIM II, counts are generated as in Lun et al. 20165, following their simulation 

study scenarios 1, 2, 3, and 4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, 

and 4 contain moderate DE, strong DE, and varying magnitudes of DE, respectively. 

Supplementary Figure 3 shows that SCnorm is similar to scran with respect to fold 

change estimation; it also retains relatively high sensitivity and specificity for identifying 

DE genes (Supplementary Fig. S4). 
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To further evaluate SCnorm, we conducted an experiment that, similar to the 

simulations, sequenced cells at very different depths. Specifically, we used the Fluidigm 

C1 system to capture 92 H1 human embryonic stem cells (hESCs). Each cell’s 

fragmented, indexed cDNA was then split into two groups prior to pooling for 

sequencing. In the first group (referred to as H1-1M), indexed cDNA from cells was 

pooled at 96 cells per lane and in the second (H1-4M) cDNA from cells was pooled at 24 

cells per lane, resulting in approximately 1 million and 4 million mapped reads per cell in 

the two groups, respectively. Prior to normalization, counts in the second group will 

appear four times higher on average given the increased sequencing depth. However, if 

normalization for depth is effective, fold-change estimates should be near one, and all 

genes should appear to be EE since the cells between the two groups are identical.  

Figure 2 (a) shows estimates of fold-changes calculated between the two groups. As 

shown, SCnorm provides normalized data that results in fold-change estimates near one, 

whereas other methods show biased estimates.  

 To evaluate the extent to which biases introduced during normalization affect the 

identification of DE genes, we applied MAST (FDR = 0.05) to identify DE genes 

between the H1-1M and H1-4M conditions. Normalization with SCnorm resulted in the 

identification of 50 genes, whereas MR, TPM, scran, SCDE, and BASiCS resulted in 

530, 315, 553, 401, and 1147 DE genes, respectively, being identified. The majority of 

DE calls made using data normalized from these latter approaches are lowly expressed 

genes (Fig. 2 (b)), which appear to be over-normalized (Fig. 2 (a)). Similar results were 

obtained when the experiment was repeated using H9 cells (Supplementary Fig. S5). 

 The performance of SCnorm was also evaluated on a number of case study data 
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sets. For these evaluations, a data set was considered well normalized if the relationship 

between counts and depth was removed following normalization for all genes. Figure 3 

and Supplementary Figures S6-S12 demonstrate that SCnorm provides for robust 

normalization of scRNA-seq data when the count-depth relationship is common across 

genes, as in a bulk RNA-seq experiment (or a deeply sequenced scRNA-seq experiment); 

and that SCnorm outperforms other approaches when this relationship varies 

systematically, as in a typical scRNA-seq experiment.  

 The scRNA-seq technology offers unprecedented opportunity to address biological 

questions, but accurate data normalization is required to ensure meaningful results. Our 

approach allows investigators to accurately normalize data for sequencing depth, and 

consequently to improve downstream inference.  
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Figure 1: For each gene, median quantile regression was used to estimate the count-
depth relationship before normalization and after normalization via MR for the H1 bulk 
RNA-seq data set (panels (a) – (d)) and the DEC scRNA-seq data set (panels (e)-(h)).  
Panel (a) shows log-expression vs. log-depth and estimated regression fits for three genes 
having low, moderate, and high expression defined as median expression among non-
zero un-normalized measurements in the 10th-20th quantile, 40th-50th quantile, and 80th-90th 
quantile, respectively. Panel (b) shows densities of slopes within each of ten equally 
sized gene groups where a gene’s group membership is determined by its median 
expression among non-zero un-normalized measurements. Panels (c) and (d) show the 
same data as panels (a) and (b), respectively, but here the data are normalized via MR. 
Panels (e)-(h) are structurally identical to (a)-(d) for the DEC scRNA-seq data set.  
Qualitatively similar results are observed if slopes are calculated via generalized linear 
models (Supplementary Section S3 and Supplementary Figure S1).  
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Figure 2: For each gene, the fold-change of non-zero counts between the H1-4M and 

H1-1M groups was computed for data following normalization via SCnorm, MR, TPM, 

scran, SCDE, and BASiCS. Box-plots of gene-specific fold-changes are shown in panel 

(a) for data normalized by each method. The number of genes identified as DE using 

MAST is shown in panel (b). Genes are divided into four equally sized expression groups 

based on their median among non-zero un-normalized expression measurements and 

results are shown as a function of expression group. Motivation for considering non-zero 

counts to calculate fold-change is discussed in Supplementary Section S4. 
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Figure 3: For each gene, median quantile regression was used to estimate the count-

depth relationship after normalization via SCnorm for the H1 bulk RNA-seq data set 

(panels (a) – (b)) and the DEC scRNA-seq data set (panels (c)-(d)). Results are 

structurally identical to those shown in Figure 1, but with data normalized by SCnorm.  

Qualitatively similar results are observed if slopes are calculated via generalized linear 

models (Supplementary Section S3 and Supplementary Figure S6).  
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ACCESSION CODES   

The H1 bulk and the H1-1M, H1-4M, H9-1M, H9-4M case study datasets will be 

released at the gene expression omnibus (GSE85917) upon acceptance of the manuscript.  
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ONLINE METHODS 

 
Filter. Genes without at least 10 cells having non-zero expression were removed prior to 

all analyses. They are not shown in plots. 

 

SCnorm. SCnorm requires estimates of expression, but is not specific to one approach. 

Estimates may be obtained via RSEM7, HTSeq9, or any method providing counts per 

feature. Let Yg,j denote the log non-zero expression count for gene g in cell j for g = 1,…, 

m and j = 1,…, n; Xj denote log sequencing depth for cell j. Motivation for considering 

non-zero counts is provided in Supplementary Section S4. 

 The number of groups for which the count-depth relationship varies substantially, 

K, is chosen sequentially. SCnorm begins with 𝐾 = 1. For each gene, the gene-specific 

relationship between log expression and log sequencing depth is represented by 

𝛽%,'	using median quantile regression with a first degree polynomial: 

𝑄*.,	 𝑌%,.|𝑋. = 𝛽%,* + 𝛽%,'𝑋..  The overall relationship between log expression and log 

sequencing depth for all genes in the 𝐾 = 1 group is also estimated via quantile 

regression. Since the median might not best represent the full set of genes within the 

group, and since multiple genes allow for estimation of somewhat subtle effects, in this 

step SCnorm considers multiple quantiles t and multiple degrees d:  

𝑄23,43 𝑌.|𝑋. = 	𝛽*
23 + 𝛽'

23𝑋. + ⋯+	𝛽4
23𝑋.

43.  (1) 

 

The specific values of 𝜏7 and 𝑑7, 𝜏7∗ 	and 𝑑7∗ , are those that minimize 𝜂'
23 − 𝛽<,'%					

=>4? , 

where 𝜂'
23	represents the count-depth relationship among the predicted expression values 

as estimated by median quantile regression using a first degree polynomial: 
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𝑄*.,	 𝑌.
23|𝑋. = 𝜂*

23 + 𝜂'
23𝑋.. Scale factors for each cell are defined as 𝑆𝐹. =

?BC
D3
∗ ,E3

∗ 	

?B
D3
∗ 	  

where 𝑌23
∗ 	 is the t*th quantile of expression counts in the kth group.  Normalized counts 

𝑌%,.F  are given by ?
BG,H

IJH
 .  

To determine if 𝐾 = 1 is sufficient, the gene-specific relationship between log 

normalized expression and log sequencing depth is represented by the slope of a median 

quantile regression using a first degree polynomial as detailed above. 𝐾 = 1 is considered 

sufficient if the modes of the slopes within each of 10 equally sized gene groups (where a 

gene’s group membership is determined by its median expression among non-zero un-

normalized measurements) are all less than 0.1. Any mode exceeding 0.1 is taken as 

evidence that the normalization provided with 𝐾 = 1 is not sufficient to adjust for the 

count-depth relationship for all genes and, consequently, K is increased by one and the 

count-depth relationship is estimated within each of the K groups using equation (1). For 

each increase, the K-medoids algorithm is used to cluster genes into groups based on 𝛽%,'; 

if a cluster has fewer than 100 genes, it is joined with the nearest cluster. 

 When multiple biological conditions are present, SCnorm is applied within each 

condition and the normalized counts are then re-scaled across conditions. During 

rescaling, all genes are split into quartiles based on median expression among non-zero 

un-normalized measurements. Within each group and condition, each gene is scaled by a 

common scale factor defined as the median of the gene specific fold-changes between 

each gene’s condition-specific mean and the gene-specific mean across conditions, where 

means are calculated over non-zero counts. Motivation for considering non-zero counts 

during re-scaling is discussed in Supplementary Section S4.  
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SCnorm.SI. SCnorm does not require spike-ins, since we find that the performance of 

spike-ins in scRNA-seq is often compromised (Supplementary Fig. S13-S14), and many 

labs do not use them for normalization10. However, if good spike-ins are available, 

performance of SCnorm may be improved in the post-normalization scaling step, which 

is required when multiple conditions are available. Recall that in SCnorm, during 

rescaling, all genes are split into quartiles based on median expression among non-zero 

un-normalized measurements. In SCnorm.SI, the same is done with spike-ins and, if the 

spike-ins are representative of the full range of expression, we expect them to be 

approximately evenly divided among the four groups. Within each group and condition, 

each gene is scaled by a common scale factor defined as the median of the spike-in 

specific fold-changes between each spike-in’s condition-specific mean and the spike-in’s 

specific mean across conditions, where means are calculated over non-zero counts. 

For more on SCnorm.SI, see Supplementary Section S2. 

 

Application of comparable methods. All analyses were carried out using R version 

3.3.0 unless otherwise noted. The method MR, originally described by Anders and 

Huber3, was implemented using the DESeq R package version 1.24.0 using the default 

settings of the estimateSizeFactorsForMatrix function. TPM estimates were obtained as 

output from RSEM version 1.2.3. The method scran was implemented with the scran R 

package version 1.0.0; size factors were obtained using the function computeSumFactors. 

The pool sizes were set to 5, 10, 15, and 20; and size factors were constrained to be 

positive. SCDE was implemented in R version 3.2.2 using the SCDE R package version 

1.99.1 with default parameter settings, and normalized counts were obtained using the 

function scde.expression.magnitude.  Finally, BASiCS was implemented using the 
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BASiCS R package version 0.4.1 using R vesion 3.2.2, obtained from Github at  

https://github.com/catavallejos/BASiCS; and normalized expression estimates were 

obtained using the function BASiCS_DenoisedCounts where BASiCS_MCMC was run 

with N = 20,000, Burn = 10,000,  and default parameters used otherwise.  

 

Evaluation of methods.  Gene-specific count depth relationships were estimated using 

median quantile regression as well as regression with a negative binomial generalized 

linear model (glm). The quantreg package in R was used with the Frisch–Newton interior 

point method to carry out the median regressions; MASS in R was used to fit the glms. 

Zeros are not included in the fits since our goal is to estimate the count-depth relationship 

present in data before and after normalization, and that relationship is obscured by 

dropouts, which are largely technical. Because glm's are sensitive to outliers, an initial 

glm to estimate the count-depth relationship is fit on the un-normalized data and the top 

two and bottom two residual gene expression values were removed from each gene prior 

to estimating the final count-depth relationship via glm. Since the same set of putative 

outliers were removed for every method, excluding these values will not bias results in 

favor of any one method.  

 

MAST was used to identify DE genes, using the MAST R package version 0.933, 

obtained from Github at https://github.com/RGLab/MAST. The continuous component 

test was considered and differential zeros were not used to evaluate performance of 

normalization methods since all normalization methods leave zeros un-normalized. P-

values from MAST were adjusted using Benjamini & Hochberg11. Unless otherwise 
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noted, a DE gene was defined as one with corrected p-value < 0.05, which controls the 

false discovery rate at 5%. ROC curves were plot using the R package ROCR. The false 

positive and true positive rates were calculated by ROCR, with a positive representing a 

DE gene.  Average ROC curves show the average true positive rate.   

 

Simulation SIM I. Data were simulated to match characteristics of the H1-1M and H1-

4M datasets. For each gene g, gene-specific intercepts 𝛽%,*, slopes 𝛽%,', and variance 

intercepts 𝜎L%	were estimated using median quantile regression on the H1-1M data. Two 

SIM I simulation scenarios were generated: 𝐾 = 1 and 𝐾 = 4. In the 𝐾 = 1 simulations, 

only genes having at least 75% non-zero expression values and 𝛽%,' ∈ . 9, 1.1  were 

used.  For the 𝐾 = 4 simulations, genes were split into four equally sized groups based 

on 𝛽%,'. The medians of 𝛽%,' were calculated within each group; denote these by 𝛽=?4,', 

𝛽=?4,L, 𝛽=?4,P, and 𝛽=?4,Q, respectively.  For genes in the kth group, genes having 𝛽%,7 ∈

𝛽=?4,7 − 0.1, 𝛽=?4,7 + 0.1  were used, where 𝛽=?4,7 is the median 𝛽%,7 over all genes.  

 For a given gene, counts were simulated on the log scale as 𝛽%,' log 𝑋. + 𝛽%,* +

𝜖%,. and then exponentiated, where 𝜖%,.	~𝑁 0, 𝜎L% .  Two biological conditions were 

simulated: one condition with 90 cells simulated from sequencing depths ranging from 

500,000 to 1.5 million reads (Xj was sampled uniformly between 500,000 and 1.5 

million) and a second condition with 90 cells simulated with depths ranging from 2 to 6 

million reads (Xj was sampled uniformly between 2 and 6 million). For a randomly 

selected set of cells, counts were set to zero, where the proportion set to zero was defined 

to match the proportion observed empirically. Each simulated dataset contained 1200 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2016. ; https://doi.org/10.1101/090167doi: bioRxiv preprint 

https://doi.org/10.1101/090167
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

genes, 80% EE and 20% DE.  For approximately half of the DE genes, fold-changes were 

sampled uniformly between 2 and 4, and counts in the second condition were multiplied 

by the sampled fold-change. The other (approximately) half of DE genes were simulated 

similarly, but with counts in the first condition multiplied by the sampled fold change to 

keep the DE balanced.  Supplementary Figure S15 shows that basic summary statistics 

are well preserved between the simulated and case study data. 

 

Simulation SIM II. Counts are generated as in Lun et al. 20165 following their 

simulation study scenarios 1, 2, 3, and 4.  In that simulation set up, three populations 

were simulated. We here consider populations 1 and 2. 

 

H1 bulk data. The dataset contains 48 samples of H1 hESCs as described in detail in 

Hou et al. 201512. The H1 bulk RNA-seq data have an average sequencing depth of 3 

million mapped reads per sample.  

 

H1 and H9 case studies. Undifferentiated H1 or H9 hESCs were cultured in E8 

medium13 on Matrigel-coated tissue culture plates with daily media feeding at 37 °C with 

5% (vol/vol) CO2. Cells were split every 3-4 days with 0.5 mM EDTA in 1 X PBS for 

standard maintenance. Immediately before preparing single cell suspensions for each 

experiment, hESCs were individualized by Accutase (Life Technologies), washed once 

with E8 medium, and resuspended at densities of 5.0-8.0 X 105 cells/mL in E8 medium 

for cell capture. The H1 hESCs are registered in the NIH Human Embryonic Stem Cell 

Registry with the Approval Number: NIHhESC-10-0043. Details of the H1 cells can be 
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found online (http://grants.nih.gov/stem_cells/registry/current.htm?id=29). The H9 

hESCs are registered in the NIH Human Embryonic Stem Cell Registry with the 

Approval Number: NIHhESC-10-0062. Details of the H9 cells can be found online 

(http://grants.nih.gov/stem_cells/registry/current.htm?id=414). All the cell cultures 

performed in our laboratory have been routinely tested and have been found negative for 

mycoplasma contamination and authenticated by cytogenetic tests. 

 Single-cell loading, capture, and library preparations were performed following 

the Fluidigm user manual “Using the C1 Single-Cell Auto Prep System to Generate 

mRNA from Single Cells and Libraries for Sequencing.” Briefly, 5,000-8,000 cells were 

loaded onto a medium size (10-17 𝜇𝑚) C1 Single-Cell Auto Prep IFC (Fluidigm), and 

cell-loading script was performed according to the manufacturer’s instructions. The 

capture efficiency was inspected using EVOS FL Auto Cell Imaging system (Life 

Technologies) to perform an automated area scanning of the 96 capture sites on the IFC. 

Empty capture sites or sites having more than one cell captured were first noted and those 

samples were later excluded from further library processing for RNA-seq. Immediately 

after capture and imaging, reverse transcription and cDNA amplification were performed 

in the C1 system using the SMARTer PCR cDNA Synthesis kit (Clontech) and the 

Advantage 2 PCR kit (Clontech) according to the instructions in the Fluidigm user 

manual. Full-length, single-cell cDNA libraries were harvested the next day from the C1 

chip and diluted to a range of 0.1-0.3 ng/µL. Diluted single-cell cDNA libraries were 

fragmented and amplified using the Nextera XT DNA Sample Preparation Kit and the 

Nextera XT DNA Sample Preparation Index Kit (Illumina). Libraries were multiplexed 

either at 24 or 96 single cell cDNA libraries per lane to target 4 or 1 million mapped 
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reads per cell, respectively, and single-end reads of 67-bp were sequenced on an Illumina 

HiSeq 2500 system. We refer to the data obtained from 24 libraries per lane as the H1-

4M set, since approximately 4 million mapped reads per cell were generated. For similar 

reasons, H1-1M is used to refer to the data obtained from 96 libraries per lane. 

 Reads were mapped against the Hg19 Refseq reference via Bowtie 0.12.814 

allowing up to two mismatches and up to 20 multiple hits. The expected counts and 

TPM’s were estimated via RSEM 1.2.37. Cells having less than 5,000 genes with 

expected counts > 1 or those that upon inspection of cell images displayed doublets or 

appeared dead were removed in quality control. 92 H1 cells passed the quality control. 91 

H9 cells passed quality control.  

 

Buettner case study15. Single cell RNA-seq expression data were downloaded from 

ArrayExpress E-MTAB-2805. In this experiment, Mus musculus embryonic stem cells 

were sorted using fluorescence-activated cell sorting (FACS) to determine cell cycle 

stage; cells were then captured using the C1 Fluidigm system. Libraries were multiplexed 

and sequenced across four lanes using an Illumina HiSeq 2000 system. Gene-level read 

counts were generated by HTSeq version 0.6.1. Here we consider the three data sets each 

having 96 cells in either G1, S, or G2M stage of the cell cycle. The data have average 

sequencing depths of 4.9, 6.5, and 4.5 million, respectively.  Cells having sequencing 

depths less than 10,000 were removed prior to analysis which resulted in 95 G1, 88 S, 

and 96 G2M cells.  

 

Islam case study16. Single cell RNA-seq expression data were downloaded from GEO 

GSE29087. In this experiment, Mus musculus R1 embryonic stem cells (ES) and 
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embryonic fibroblasts were captured using a semi-automated cell picker on a 96-well 

capture plate; libraries were generated using the STRT protocol and sequenced using on a 

Genome Analyzer IIx system. Gene-level counts were obtained by counting reads 

mapped using Bowtie14 for each feature. Here we consider two datsets, one having 48 ES 

cells and the other having 44 EF cells. The datasets have average sequencing depths of 

180,000 reads and 800,000 reads, respectively. 

 

DEC case study. The dataset contains 64 H1 cells consisting of the first batch of 

experiments studying H1 differentiation towards definitive endodermal cells as described 

in detail in Chu et al. 201617. The DEC scRNA-seq data have an average sequencing 

depth of 4 million mapped reads per cell. The data can be downloaded from GEO 

GSE75748. 
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