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ABSTRACT 13 

The degree to which adaptation in recent human evolution shapes genetic variation remains 14 

controversial. This is in part due to the limited evidence in humans for classic “hard selective 15 

sweeps,” wherein a novel beneficial mutation rapidly sweeps through a population to fixation. 16 

However, positive selection may often proceed via “soft sweeps” acting on mutations already 17 

present within a population. Here we examine recent positive selection across six human 18 

populations using a powerful machine learning approach that is sensitive to both hard and soft 19 

sweeps. We found evidence that soft sweeps are widespread and account for the vast majority of 20 

recent human adaptation. Surprisingly, our results also suggest that linked positive selection 21 

affects patterns of variation across much of the genome, and may increase the frequencies of 22 

deleterious mutations. Our results also reveal insights into the role of sexual selection, cancer 23 

risk, and central nervous system development in recent human evolution.  24 

 25 

INTRODUCTION 26 

Spurred by the ongoing revolution in DNA sequencing capacity, human population genetic 27 

datasets have grown exponentially in size over the past five years (Auton et al. 2015; Consortium 28 

2015). Such growth enables insight into the evolutionary histories of human populations with 29 

hitherto unrivaled precision. A central question in the study of human evolution is the extent to 30 

which adaptation has driven recent evolution and affected patterns of genetic diversity (Akey 31 

2009). This can be addressed by scanning genomic data for evidence of selective sweeps, 32 

wherein a beneficial mutation is favored by natural selection and therefore rapidly increases in 33 

frequency within a population. Such selective sweeps leave a characteristic footprint in variation; 34 

they create a valley of diversity around the selected site (Maynard Smith and Haigh 1974; 35 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2016. ; https://doi.org/10.1101/090084doi: bioRxiv preprint 

https://doi.org/10.1101/090084
http://creativecommons.org/licenses/by/4.0/


Kaplan et al. 1989; Stephan et al. 1992), a deficit of both low- and high-frequency derived alleles 36 

at linked sites (Fay and Wu 2000), and an increase in linkage disequilibrium in flanking regions 37 

(Kim and Nielsen 2004). Thus there are multiple population genetic signals to exploit. 38 

Accordingly numerous theoretical and methodological advances (Kaplan et al. 1989; Stephan et 39 

al. 1992; Fu 1997; Kim and Stephan 2002; Nielsen et al. 2005b; Voight et al. 2006) in the study 40 

of selective sweeps have given researchers the ability to uncover the genetic basis of adaptation 41 

on a genome-wide scale. 42 

 There are two complimentary approaches to studying the impact of adaptive evolution on 43 

genetic variation. The first approach aims to infer genome-wide rates of adaptive evolution by 44 

estimating the mean effects of selective sweeps across the genome (Wiehe and Stephan 1993; 45 

Kern et al. 2002; Andolfatto 2007; Jensen et al. 2008; Hernandez et al. 2011; Sattath et al. 2011). 46 

Such approaches may estimate the rates of sweeps or their effects with respect to the genomic 47 

background, but do not focus on the targets of sweeps themselves. An alternative approach is to 48 

focus on finding individual selective sweeps throughout the genome, and in so doing characterize 49 

specific cases of the adaptation with hopes of gaining general insight into the adaptive process 50 

(Sabeti et al. 2002; Voight et al. 2006; Williamson et al. 2007). Such approaches have yielded 51 

valuable insights into the recent evolutionary histories of natural populations in various species, 52 

such as revealing the pervasive impact of adaptive evolution on polymorphism in Drosophila 53 

melanogaster (Begun et al. 2007; Macpherson et al. 2007; Langley et al. 2012; Lee et al. 2013; 54 

Garud et al. 2015). In humans, the picture remains less clear: while scans for selective sweeps 55 

have discovered numerous compelling candidates for strong positive selection (e.g. Ruwende et 56 

al. 1995; Stephens et al. 1998; Tishkoff et al. 2007; Bryk et al. 2008; Huerta-Sánchez et al. 57 

2014), some recent studies have suggested that the impact of adaptation on patterns of variation 58 
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genome-wide is quite limited (Hernandez et al. 2011; Lohmueller et al. 2011). Conversely, Enard 59 

et al. (2014) argue that the genome-wide reduction in diversity around substitutions is driven in 60 

part by positive selection. 61 

One possible explanation for the difficulty in characterizing the contributions of adaptive 62 

and non-adaptive forces in human populations is that genetic hitchhiking effects may be muted 63 

by human demographic history. Many human populations appear to have experienced 64 

bottlenecks and/or recent growth (Marth et al. 2004; Fagundes et al. 2007; Gravel et al. 2011; 65 

Auton et al. 2015), which cause much of the genome to resemble selective sweeps (Nielsen et al. 66 

2005b). Moreover, positive selection has historically been modeled as the process of a de novo 67 

beneficial mutation rapidly sweeping to fixation, a process now referred to as a hard sweep. 68 

However selection may act on previously segregating neutral or weakly deleterious variants (Orr 69 

and Betancourt 2001; Innan and Kim 2004). Selection on standing variation will produce 70 

qualitatively different skews in linkage disequilibrium and allele frequencies, along with a 71 

shallower valley in diversity (Hermisson and Pennings 2005; Przeworski et al. 2005; Berg and 72 

Coop 2015; Schrider et al. 2015)—such an event is thus referred to as a soft sweep. If selection 73 

typically proceeds through soft sweeps, as may be the case in Drosophila (Garud et al. 2015), 74 

then many sweeps may have been missed by previous scans that were designed to detect 75 

signatures produced under a hard sweep model. 76 

We sought to address the controversy over the impact of adaptation on human genomic 77 

variation by conducting a genome-wide scan for both hard and soft selective sweeps across 78 

human populations. We previously developed S/HIC (Soft/Hard Inference through 79 

Classification), a machine learning method capable of detecting completed sweeps and inferring 80 

their mode of selection with unparalleled accuracy and robustness to non-equilibrium 81 
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demography (Schrider and Kern 2016). Here we apply S/HIC to uncover hard and soft sweeps in 82 

six population samples from the 1000 Genomes Project (Auton et al. 2015), thereby performing 83 

the most comprehensive investigation of completed selective sweeps in humans to date. 84 

Surprisingly, our results suggest that patterns of polymorphism across much of the human 85 

genome may be affected by linked positive selection—primarily soft sweeps. Moreover, we find 86 

evidence that the mode of selection differs substantially across populations, with non-African 87 

populations adapting via hard sweeps to a much greater extent than African populations. Finally, 88 

we investigate the biological targets of selection in recent human evolution, with particular 89 

processes such as immunity, cancer, and sexual reproduction playing outsized roles. 90 

 91 

RESULTS 92 

We set out to detect completed hard and soft selective sweeps in six populations from Phase 3 of 93 

the 1000 Genomes Project: two West-African populations (YRI and GWD from Yoruba and The 94 

Gambia, respectively), one East-African population (LWK from Kenya), one European 95 

population (CEU, from Utah, USA), one East Asian population (JPT from Japan), and one from 96 

the Americas (PEL from Peru). For each population we trained and applied a S/HIC classifier to 97 

identify hard and soft selective sweeps across the genome (Methods), distinguishing them from 98 

neutrally evolving regions as well as those linked to sweeps (Schrider and Kern 2016). Briefly, 99 

S/HIC is a machine learning method that leverages spatial patterns of a variety of statistics across 100 

a large genomic window in order to infer the mode of evolution at the center of the window. We 101 

previously showed that S/HIC is exceptionally robust to the confounding effect of linked 102 

selection (i.e. the "soft shoulder" effect; Schrider et al. 2015), as well as non-equilibrium 103 

demographic histories, making it well suited for a survey of positive selection in humans. We 104 
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also assessed the accuracy of our classifiers on simulated test data with the same demographic 105 

history used to generate training data, finding that S/HIC achieved good power for each 106 

demographic history, with somewhat higher accuracy for histories inferred from the African than 107 

non-African populations (Figure S1). We also examined values of Garud et al.’s (2015) H12 and 108 

H2/H1 within windows classified by S/HIC as hard, soft, or neutral, noting that as expected, H12 109 

is higher in sweeps than neutral regions, while H2/H1 is higher for soft sweeps than hard sweeps 110 

(Figure S2). Below, we begin with a brief overview of the broad patterns of adaptation we 111 

observe across populations, before discussing genomic features and biological pathways with a 112 

strong enrichment of selective sweeps, as well as compelling novel candidates for recently 113 

completed selective sweeps. 114 

 115 

The majority of sweeps in humans resemble selection on standing variation 116 

We found a total of 1,927 distinct selective sweeps merged across all six populations (Methods). 117 

190 (9.9%) of these are present in all populations, 59 (3.1%) are shared among the African 118 

populations, 71 (3.7%) are shared among the non-African populations, and 701 (36.4%) are 119 

population-specific. The remaining 906 (47.0%) sweeps were present in more than one 120 

population but do not fit into any of the categories above. We observe that across populations, 121 

the vast majority (1,776, or 92.2%) of sweeps were classified as soft. While hard sweeps appear 122 

to be quite rare globally, the fraction of hard sweeps is significantly higher in non-African than 123 

African populations (Table 1). For example, when comparing PEL to GWD, we observe a 124 

significantly higher fraction of hard sweeps in PEL (4.7% versus 1.6%; p=0.05). For each other 125 

African vs. non-African comparison we see an even greater (and more significant) disparity. 126 

Further, we observe a suggestive correlation between the fraction sweeps in a population that 127 
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were classified as soft and the harmonic mean of its population size within the last 4N 128 

generations (Pearson’s ρ=-0.96; Methods). Though taken at face value this correlation appears to 129 

be highly significant, we note that due to the six populations’ shared evolutionary history a 130 

statistical test of this correlation would be invalid. 131 

Comparing our results to those of previous scans we find that 519 of S/HIC’s sweep calls 132 

(26.9%) have previously been identified according to dbPSHP, a database of candidate regions 133 

for recent positive selection across human populations (Li et al. 2013). This accounts for 10.9% 134 

of the loci in the dbPSHP set (ignoring regions not classified by S/HIC). The remaining 1,408 135 

sweeps called by S/HIC (73.1% of calls) represent potentially novel selective sweeps. There are 136 

several possible explanations for the modest overlap between our set of sweep candidates and 137 

those in dbPSHP. First, the sweep candidates in dbPSHP have been identified by a variety of 138 

methods, some of which are designed to detect selective scenarios other than completed sweeps 139 

(e.g. partial sweeps, spatially varying selection). Second, when comparing results from methods 140 

designed to detect the same type of sweeps, the intersection between studies is often fairly small 141 

(Akey 2009). The presence of false positives may in part be responsible for the imperfect 142 

concordance between scans. 143 

 144 

Selective sweeps preferentially target genes involved in cancer and viral infection 145 

Examining the locations of selective sweeps across the genome, we find that regions classified as 146 

selective sweeps are significantly overrepresented for both coding sequence and untranslated 147 

regions (q<0.05 in several populations for hard sweeps, and each population for soft sweeps; 148 

Figure 1A, B; Table S1), relative to data sets with permuted classifications (see Methods). 149 

Enrichment for transcription factor binding sites was less pronounced, and only significant in 150 
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soft sweeps for the three African populations along with PEL. The most striking result we 151 

observed was a dramatic enrichment of sweep windows for mutations in the COSMIC data set of 152 

somatic mutations that have been observed in cancer cells (Forbes et al. 2015) and may therefore 153 

play a role in tumor suppression/progression. Averaged across populations, the number of 154 

COSMIC mutations found in soft sweeps represents a 3.7-fold increase relative to that observed 155 

in permuted data sets; this enrichment was significant in each population, and peaked at 4.5-fold 156 

in PEL. For hard sweeps, this enrichment was 12-fold on average, reaching as high as 21-fold in 157 

CEU, though this was the only population for which the enrichment was statistically significant. 158 

We also observed a sizeable overrepresentation of genes encoding virus-interacting proteins 159 

(VIPs) curated by (Enard et al. 2016) in soft sweeps, with a 1.9-fold increase relative to 160 

permuted sets (averaged across populations). VIPs show a similar magnitude of enrichment in 161 

hard sweeps for some populations, but does not achieve significance at q<0.05. 162 

 163 

Selective sweeps increase linked deleterious variation 164 

Because S/HIC not only detects selective sweeps, but also attempts to identify regions of the 165 

genome that appear to be linked to recent sweeps, our classifications allow us to examine the 166 

effect of linked selection in a principled way. We found that while a minority of genomic 167 

windows were classified as selective sweeps (7.6% on average across all populations), a large 168 

fraction of windows were classified as linked to a completed selected sweep, either hard or soft 169 

(56.4% on average). These estimates range from 41.5% in JPT to 74.0% in GWD (Figure 2). 170 

 We also asked whether selective sweeps have a detectable impact on linked deleterious 171 

variation. As beneficial alleles increase in frequency in a population, they may carry along with 172 

them linked deleterious polymorphisms as hitchhikers, potentially increasing the frequency of 173 
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deleterious variants over what would be expected given mutation-selection-drift equilibrium 174 

(Birky and Walsh 1988; Hartfield and Otto 2011). To this end we asked whether relatively 175 

common candidate deleterious mutations were enriched in regions classified as either hard-176 

linked or soft-linked. Indeed, we observed a fairly subtle but significant overrepresentation of 177 

SNPs with derived allele frequencies of at least 0.01 but predicted to by damaging by SIFT 178 

(Kumar et al. 2009) in both the hard-linked (mean enrichment across populations: 1.3-fold) and 179 

soft-linked (mean enrichment: 1.1-fold) classes for most populations (Fig 1C, D; Table S1). We 180 

find a similar enrichment in these sweep-linked classes of common SNPs in regions inferred to 181 

be conserved across primates according to phastCons (Siepel et al. 2005). Phenotype-associated 182 

variants from the GWAS catalogue (Welter et al. 2014) were also significantly overrepresented 183 

sweep-linked regions in several populations (Fig 1C, D). 184 

 185 

Sexual reproduction, the central nervous system, and immunity are targets of recent 186 

sweeps 187 

In order to determine if positive selection preferentially acts on particular organismal functions, 188 

we asked which Gene Ontology (GO) terms were enriched in our sweep calls relative to the 189 

permuted data (Methods). In soft sweeps, we found a sizeable and significant enrichment 190 

(q<0.05) of terms related to sperm development, structure, and function. Terms enriched in at 191 

least one population include spermatogenesis (4.4-fold enrichment averaged across populations), 192 

“sperm flagellum” (3.9-fold enrichment), and “sperm-egg recognition” (3.3-fold enrichment). 193 

These terms were not significantly enriched for hard sweeps in any population, though this may 194 

be due in part to reduced power because of the smaller number of sweeps. 195 
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We also observed an overrepresentation of genes involved in the “glutamate receptor 196 

signaling pathway” in our soft sweep sets (q<0.05 for each population; 4-fold mean enrichment). 197 

Glutamate receptors are the primary excitatory neurotransmitter in the central nervous system, 198 

and important for both proper brain development and function (Luján et al. 2005). Indeed, soft 199 

sweeps are enriched for “central nervous system development” in multiple populations (1.6-fold 200 

mean enrichment). Numerous terms related to immune response, especially adaptive immunity, 201 

were also significantly enriched among soft sweeps. These, and the many other GO terms 202 

overrepresented in our sweep sets are listed in Table S2. We also found numerous KEGG 203 

pathways enriched for sweeps, including many pathways related to immunity, cancer 204 

progression/tumor suppression (see Table S2 for full list). 205 

 206 

Positive selection on interacting gene pairs 207 

We examined three types of gene interaction networks: protein-protein interactions (PPIs), 208 

transcription factor-target gene interactions, and genetic interactions where one gene modifies 209 

the effect of another (Methods). Interestingly, we observed a dramatic enrichment of sweeps in 210 

genes that encode proteins that physically interact with one another (Figure 3A–B): if a gene 211 

experienced a soft sweep, genes that interact with this gene were on average 3.3 times more 212 

likely to have experienced a soft sweep than expected by chance (p<0.0001 for each population; 213 

Figure 3B). Despite the smaller number of candidate regions, we found a significant enrichment 214 

for PPIs in hard sweeps, though this was only significant in for non-African populations (4.0-fold 215 

enrichment averaged across populations; p<0.05 in CEU, JPT, YRI; Figure 3A). For 216 

transcription factor-target interactions, we observe no overrepresentation of soft sweeps, but a 217 

significant enrichment of hard sweeps in non-African populations (p<0.05 for each; 8.5-fold 218 
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enrichment on average; Figure 3C–D). There were no populations exhibiting an 219 

overrepresentation of pairs of genes with genetic interactions and experiencing sweeps of either 220 

type (Figure 3E–F). 221 

 222 

Examples of novel selective sweep candidates 223 

In this section we describe several sweep candidates that exemplify the set of sweeps, and 224 

functions of putative targets of selection, that we were able to detect. As discussed above, our 225 

sets of sweeps were highly enriched for glutamate receptor-encoding genes. In Figure S3, we 226 

show a sweep candidate region on chromosome 4 that encompasses the glutamate receptor gene 227 

GRIA2. This sweep was previously detected in non-African populations by Pickrell et al. (2009), 228 

who did not find any evidence of selection in Africa. However, S/HIC infers that this region has 229 

experienced a soft sweep that is found in GWD and YRI, as well as the non-African populations. 230 

Consistent with this, Europeans, Asians, and African populations show a reduction in π, a trough 231 

in Tajima’s D (Tajima 1989), and a peak in Nielsen et al.’s SweepFinder composite likelihood 232 

ratio (CLR) test statistic, which captures regions that appear to be at the epicenter of the spatial 233 

skew in the SFS expected around sweeps (Nielsen et al. 2005b). Intriguingly, GRIA2 interacts 234 

with the GRID2 glutamate receptor gene (Kohda et al. 2003), which itself is classified as a soft 235 

sweep in CEU, LWK, PEL, and GWD. The remaining glutamate receptors overlapping identified 236 

sweeps are GRIA4, GRID1, GRIK1, GRIK3, GRM2, and GRM7. Of these genes, GRIA4 and 237 

GRID2 were shown by Liu et al. (2012) to have evolved a human-specific developmental 238 

expression profile. 239 

 Figure 4 shows a region on chromosome 9 that exhibits strong evidence of a previously 240 

undetected hard sweep in each of our six populations. This region contains several members of 241 
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the spermatogenesis associated 31 gene family: SPATA31B1, SPATA31D1, SPATA31D3, and 242 

SPATA31D4. Across populations this region shows dramatic valleys in π and Tajima’s D, as well 243 

as an elevated CLR near the center of the sweep window. These genes are highly testis-specific 244 

according to data from the GTEx project (Lonsdale et al. 2013), and male mice are infertile when 245 

lacking Spata31, another member of these gene family (Wu et al. 2015). Figure 4 also shows that 246 

each of these genes overlaps a cluster of non-repetitive piRNAs (data from piRBase; Zhang et al. 247 

2014). Also near this region is DDX10P2, which GENCODE annotates as a processed 248 

pseudogene (Pei et al. 2012). DDX10P2, which is located at the center of the CLR peak for CEU, 249 

is expressed with a high degree of testis-specificity according to GTEx data, similar to the 250 

neighboring SPATA31 genes. A BLAT search (Kent 2002) revealed that this putative 251 

pseudogene exhibits 99.5% sequence identity to the orthologous sequence in chimpanzees. The 252 

parent gene of DDX10P2, DDX10, is expressed in many tissues, but shows highest expression in 253 

the testis. 254 

 On chromosome 11 we detected what appear to be several novel soft sweeps present in 255 

and upstream of CADM1 (cell adhesion molecule 1; Figure 5), one of which is present in each 256 

population. This gene is essential for spermatogenesis in mice (Van Der Weyden et al. 2006), 257 

and is also a tumor suppressor that is hypermethelated in various cancers (Kuramochi et al. 2001; 258 

Allinen et al. 2002; Fukuhara et al. 2002), as it works with the adaptive immune system to 259 

suppress metastasis (Faraji et al. 2012). CADM1 is also active in the brain where it is involved in 260 

synaptic adhesion and has been linked to autism (Zhiling et al. 2008; Fujita et al. 2010). CADM1 261 

forms a complex with those other genes: the GABA receptor GABBR2, which has a soft sweep in 262 

YRI, and MUPP1, which has a soft sweep found in each population; this complex appears to 263 

localize to Purkinje cell dendrites (Fujita et al. 2012). Thus, this example encompasses many of 264 
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the functions that we find are highly enriched across our sweep sets: adaptation in multiple 265 

interacting genes (one of which is a neurotransmitter), spermatogenesis, and tumor suppression 266 

(via adaptive immunity). 267 

 268 

DISCUSSION 269 

Understanding the history of human adaptation at the genetic level is a central goal of population 270 

genomics and human evolutionary biology. Accordingly, since the completion of the human 271 

genome assembly (Lander et al. 2001) and subsequent proliferation of population genomic data, 272 

numerous genome-wide scans for selection have been conducted using differing methodologies 273 

(Sabeti et al. 2002; Voight et al. 2006; Sabeti et al. 2007; Pickrell et al. 2009; Field et al. 2016). 274 

The majority of these studies searched primarily for partial selective sweeps—the signature of a 275 

beneficial mutation currently sweeping through a population (see Williamson et al. 2007 for a 276 

notable exception)—and rightly so, as these sweeps can reveal the targets of ongoing adaptation 277 

in human populations. However, because the sojourn of an adaptive mutation to fixation should 278 

be rapid, the success of efforts to detect ongoing selection implies the presence of a larger 279 

number of recently completed sweeps. We have therefore focused on completed sweeps in order 280 

to complement previous studies and to construct a more comprehensive catalogue of the loci 281 

underpinning recent human adaptation. Using a powerful and robust machine learning method 282 

that we have recently introduced (S/HIC; Schrider and Kern 2016) for finding completed 283 

selective sweeps,  we performed a genome-wide search for the targets of recent positive selection 284 

in six human populations. Furthermore, we sought to determine the mode of positive selection, 285 

distinguishing between selection on de novo mutations and on previously standing variation. 286 

 287 
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Soft sweeps dominate human adaptation 288 

Perhaps our most consequential result is the finding that the majority of our candidate sweeps 289 

resemble soft sweeps on standing variation. This result implies that adaptation in humans may 290 

not be mutation-limited (Gillespie 1991; Karasov et al. 2010): rather than waiting for a novel 291 

mutation to arise, human populations may often be able to respond via selection on previously 292 

segregating polymorphisms, thereby more rapidly responding to novel environmental challenges. 293 

This may be surprising given the apparently small effective population size and low nucleotide 294 

diversity levels in humans. However, if the mutational target for the trait to be selected on is 295 

fairly large, then the probability of a population harboring a mutation affecting that trait may be 296 

appreciable. 297 

While soft sweeps appear to be the dominant mode of selection globally, there is a 298 

significant increase in the proportion of putative hard sweeps in non-African populations relative 299 

to African populations. This is consistent with theoretical expectations, as larger populations 300 

have more standing variation for selection to act on (Hermisson and Pennings 2005). Moreover, 301 

the human migration out of Africa was associated with a severe population bottleneck (Marth et 302 

al. 2004; Fagundes et al. 2007). Soft selective sweeps may be “hardened” by a reduction in 303 

population size, which can result in the stochastic loss of some genetic backgrounds harboring 304 

the adaptive allele so that only a single haplotype reaches fixation (Wilson et al. 2014). Thus, 305 

though one might expect selection on segregating neutral or nearly neutral variation when a 306 

population enters a new environment with novel selective pressures, if the migration event is 307 

accompanied by a bottleneck then the population may experience a somewhat counterintuitive 308 

increase in the proportion of hard sweeps. Moreover, the causal relationship between population 309 

size and mode of adaptation may not be unidirectional. As Orr and Unckless (2014) have shown 310 
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in the context of evolutionary rescue, when faced with a changing environment, a population 311 

which does not harbor standing variation that is beneficial may experience a more protracted 312 

decline in size while it waits for an adaptive de novo mutation. 313 

Our genome-wide results amplify results of earlier studies that by design have tried to 314 

infer the mode of adaptation in a smaller number of targeted loci. For instance Peter  et al. (2012) 315 

attempted to infer the mode of adaptation among 7 loci previously identified to be under 316 

selection in human populations. They report that half of the loci that they could confidently 317 

classify supported selection on standing variation. In Drosophila melanogaster, when looking 318 

among strong outliers of haplotype homozgosity, Garud et al. (2015) found that patterns of 319 

variation in those regions were consistent with recent soft selective sweeps. Our finding, that the 320 

vast majority of sweeps in human populations are soft sweeps, thus underscores the ubiquity of 321 

selection from standing variation in natural populations. Indeed it seems plausible that adaptation 322 

from standing variation might be the rule, rather than the exception. 323 

There are two caveats affecting our ability to discriminate between selection on standing 324 

variation and on de novo mutations. First, while we have trained our classifier to detect soft 325 

sweeps on previously segregating mutations, soft sweeps may also occur via recurrent mutation 326 

to the adaptive allele (Pennings and Hermisson 2006b; Pennings and Hermisson 2006a). Though 327 

there are some qualitative differences between these two models of soft sweeps (Berg and Coop 328 

2015; Schrider et al. 2015), these are fairly subtle in comparison to the differences between the 329 

other models we consider. Thus, our classifiers may have sensitivity to both types of sweeps. If 330 

this is so, then some of the soft sweeps that we detect may result from recurrent mutation. 331 

Additionally, gene conversion during a sweep can transfer the adaptive mutation on to new 332 

genetic backgrounds (Jones and Wakeley 2008), thereby “softening” the sweep (Schrider et al. 333 
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2015). This implies that selection on a single de novo mutation could sometimes appear to be a 334 

soft sweep in our classification. In any case, our finding that most sweeps in humans do not 335 

appear to be hard sweeps underscores the importance of using methods that are sensitive to soft 336 

sweeps. 337 

 338 

Extensive impact of linked positive selection 339 

Our analysis demonstrates that the impact of linked positive selection on genetic variation is 340 

considerable, with roughly half of the genome classified by S/HIC as being influenced by a 341 

nearby sweep. This result has important implications for efforts to infer demographic histories 342 

from patterns of genetic polymorphism, as most inference methods hinge on the assumption of 343 

neutrality. Indeed, we have recently shown that linked positive selection has the potential to 344 

severely confound demographic inferences (Schrider et al. 2016). Similarly, Ewing and Jensen 345 

(2016) have found that background selection, the effect of purifying selection on polymorphism 346 

at linked unselected sites (Charlesworth et al. 1993), can also bias demographic estimates. One 347 

strategy is to use only those polymorphisms that are distant from genes and conserved noncoding 348 

elements to mitigate these effects (Gazave et al. 2014). One could further supplement such an 349 

approach by using S/HIC to directly ask which intergenic regions are unaffected by hitchhiking 350 

in order to further diminish the bias introduced by linked selection. 351 

If linked positive selection affects much of the genome, then that implies that the 352 

frequencies of many neutral or weakly deleterious mutations may be altered by genetic draft 353 

(Gillespie 2000). That is to say, deleterious mutations that happen to reside on chromosomes that 354 

begin to sweep may be able to reach higher frequencies than expected from mutation-selection-355 

drift equilibrium. Consistent with this, we observe a slight but significant excess of potentially 356 
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deleterious polymorphisms in windows classified as linked to selective sweeps. Previously, Chun 357 

and Fay (2011) found evidence that the ratio of deleterious to neutral polymorphisms is elevated 358 

in sweep regions, concluding that hitchhiking carries linked deleterious variants to higher 359 

frequencies. Our finding that SNPs from the GWAS catalogue are also enriched regions linked to 360 

selective sweeps lends further support to this hypothesis. Indeed, several compelling examples of 361 

hitchhiking mutations known or suspected of causing disease have been described in the 362 

literature (Helgason et al. 2007; Chun and Fay 2011; Huff et al. 2012). It seems that the 363 

phenomenon of deleterious alleles hitchhiking along with strongly beneficial alleles is not 364 

restricted to humans: a recent study also uncovered evidence that selection during domestication 365 

increased the frequency of deleterious polymorphisms in dogs (Marsden et al. 2016). 366 

 367 

Targets of recent human selective sweeps 368 

Our catalogue of sweep candidates allowed us to characterize the biological functions that are 369 

overrepresented in sweeps. Notably, we found a strong excess of spermatogenesis genes within 370 

sweep regions, a phenomenon previously observed by Voight et al. (2006). This signature may 371 

be a result of sexual selection, sexual conflict, and/or sperm competition (Swanson and Vacquier 372 

2002). We also observed a significant enrichment of cancer-related genes among our sweep 373 

candidates. Nielsen et al. (2005a) found a similar enrichment of candidate genes under selection 374 

related to cancer when examining protein divergence between humans and chimpanzees. These 375 

authors found that some of these genes are also involved in spermatogenesis (much like our 376 

CADM1 example), and concluded that genomic conflict between tumor suppression and the 377 

advantage of avoiding apoptosis during spermatogenesis may explain the selection on cancer 378 

genes. An alternative (and non-mutually exclusive) explanation is that the increase in longevity 379 
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along the human lineage has created an immense selective pressure to reduce the rate of cancer 380 

progression by orders of magnitude (Nunney and Muir 2015). 381 

We also observed a significant excess of glutamate receptor genes targeted by sweeps, 382 

suggesting that these loci may underlie some of the dramatic neurological changes that have 383 

occurred along the human lineage. Consistent with this, we previously found evidence 384 

suggesting some of these glutamate receptor genes may have recently gained novel regulatory 385 

elements in humans (Schrider and Kern 2015). The most striking examples of glutamate 386 

receptors experiencing sweeps are GRIA2 and GRID2, which show strong signatures of selection 387 

in multiple populations and physically interact with one another. The action of positive selection 388 

on multiple members of the protein complex appears to be a general phenomenon (Figure 3). For 389 

a more in-depth examination of positive selection in the PPI network, see Qian et al. (2015), who 390 

found that genes in candidate regions for positive selection were more likely to lie close together 391 

in the PPI network. 392 

 393 

Conclusions 394 

Our investigation has revealed several valuable insights into the adaptive process in human 395 

populations. The success of our approach exemplifies the potential of machine learning methods 396 

to elucidate the adaptive process in humans and other species (Fan et al. 2016). To date several 397 

machine learning methods have been devised to detect selective sweeps (Pavlidis et al. 2010; Lin 398 

et al. 2011; Ronen et al. 2013; Pybus et al. 2015; Sheehan and Song 2016), and they tend to 399 

substantially outperform more traditional approaches (see Schrider and Kern 2016). We suspect 400 

that machine learning could be used to make important inroads in answering a variety of 401 

evolutionary questions. 402 
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 Finally, Hernandez et al. (2011) argued that hard selective sweeps might be rare in human 403 

populations, and instead suggested that the majority of adaptation might be a consequence of 404 

selection on standing variation or selection on polygenic traits. We here find direct evidence that 405 

indeed this is the case—the vast bulk of human adaptation is occurring as a consequence of soft 406 

sweeps. Our observation thus reconciles Hernandez et al.’s findings with those of Enard et al., 407 

who conclude that the reduction in diversity around amino acid substitutions is caused by 408 

widespread selective sweeps (Enard et al. 2014). Moreover, while our scan leveraged a method 409 

that performs very well in detecting both hard and soft sweeps, it was not trained to detect cases 410 

of polygenic selection (e.g. Berg and Coop 2014). It is fair to assume that a large majority of 411 

phenotypes are determined by multiple loci, thus polygenic selection should be expected to be 412 

common. If that were the case, then it could very well be that an even larger portion of genetic 413 

variation is influenced by natural selection and its linked effects throughout the genome. 414 

 415 

METHODS 416 

Sequence and annotation data 417 

We downloaded phased genotype data from Phase 3 of the 1000 Genomes Project (Auton et al. 418 

2015). This data set consists of 26 population samples from Africa, East Asia, South Asia, 419 

Europe, and the Americas. We wished to include only populations where the influence of 420 

admixture/migration on genetic variation appeared to be minimal, while still allowing us to 421 

characterize selection across multiple continents. We therefore chose to scan the following 422 

populations for selective sweeps: the GWD (Gambians in Western Divisions in The Gambia) and 423 

YRI (Yoruba in Ibadan, Nigeria) populations from West Africa, LWK (Luhya in Webuye, 424 

Kenya) from East Africa, JPT (Japanese in Tokyo, Japan) from Asia, CEU (Utah residents with 425 
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Northern and Western European Ancestry) from Europe, and PEL (Peruvians from Lima, Peru) 426 

from the Americas. Examining Auton et al.’s results from running ADMIXTURE (Alexander et 427 

al. 2009), we see that for most values of K, each of these populations appears to correspond 428 

primarily to a single ancestral population rather than displaying multiple clusters of ancestry (see 429 

Extended Data Figure 5 from Auton et al. 2015). One exception may be the PEL population, but 430 

among the highly admixed American samples it appears to exhibit the smallest amount of 431 

possible mixed ancestry (for most values of K), so we retained this population in order to have 432 

some representation from the Americas. We opted not to examine any South Asian population, 433 

as for each of these samples ADMIXTURE inferred evidence of ancestry from three or more 434 

ancestral populations. 435 

 We downloaded numerous annotation data sets containing genomic features to test for 436 

enrichment/depletion of selective sweeps and perform other downstream analyses. These 437 

included GENCODE gene model release 19 (Harrow et al. 2012) including pseudogenes (Pei et 438 

al. 2012), virus-interacting proteins from Enard et al. (2016), enhancers gained or along the 439 

human lineage since diverging from Old World monkeys (Cotney et al. 2013), and SIFT’s 440 

(Kumar et al. 2009) predictions of damaging amino acid polymorphisms from dbNSFP version 441 

3.2a (Liu et al. 2016). We obtained Gene Ontology (GO) annotations from ENSEMBL release 442 

75 (Yates et al. 2016). We also downloaded coordinates of previously identified selective sweeps 443 

from dbPSHP (Li et al. 2013). 444 

We used the UCSC Table Browser (Karolchik et al. 2004) to obtain the following data 445 

sets: phenotype-associated SNPs from the GWAS Catalog (accessed Apr 12, 2016; Welter et al. 446 

2014), ClinVar pathogenic SNPs and indels ≤ 20 bp in length (Apr 26, 2016; Landrum et al. 447 

2016), COSMIC somatic mutations in cancer (accessed Feb 25, 2014; Forbes et al. 2015), 448 
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phastCons elements conserved across primates (accessed Jun 2, 2013; Siepel et al. 2005), 449 

ENCODE transcription factor binding sites version 3 (accessed Aug 25, 2013; Dunham et al. 450 

2012), tables of genes and SNPs implicated in Mendelian phenotypes from OMIM (accessed 451 

May 2, 2016; Amberger et al. 2015), and KEGG pathway annotations (accessed Apr 27, 2016; 452 

Kanehisa et al. 2015). For each of these data sets we used GRCh37/hg19 coordinates. 453 

In order to examine the prevalence of selective sweeps within interacting gene networks, 454 

we downloaded physical and genetic interactions from BioGRID version 3.4.136 (Chatr-455 

Aryamontri et al. 2015). Our set of genetic interactions consisted of those annotated as “synthetic 456 

genetic interaction defined by inequality,” “suppressive genetic interaction defined by 457 

inequality,” or “additive genetic interaction defined by inequality.” Physical interactions 458 

included those annotated as “direct interaction,” “association,” or “physical association.” We 459 

extracted transcription factor-target interactions from ORegAnno (accessed Dec 22, 2015; 460 

Griffith et al. 2008), retaining only interacting pairs where the ENSEMBL gene identifier were 461 

provided for both genes in order to avoid ambiguity. 462 

 463 

Building classifiers to detect selective sweeps 464 

To detect sweeps we used S/HIC (https://github.com/kern-lab/shIC), a machine learning 465 

approach we previously described and showed to be remarkably powerful and robust to non-466 

equilibrium demography (Schrider and Kern 2016). Briefly, the S/HIC machine learning 467 

approach leverages spatial patterns (along a genome) of a variety of population genetic summary 468 

statistics to classify genomic windows as being the target of a completed hard sweep (hard), 469 

being closely linked to a hard sweep (hard-linked), a completed soft sweep (soft), linked to a soft 470 

sweep (soft-linked), or evolving neutrally (neutral). While this classification approach allows 471 
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inference when considering a large number of features jointly, it necessitates training from a 472 

large number of data instances known to belong to each class. Because the number of genomic 473 

windows known to belong to each our five classes is limited, we must rely on simulation to 474 

generate our training data. To this end we used the program discoal (Kern and Schrider 2016) to 475 

simulate large chromosomal regions, subdivided into 11 sub-windows. Training examples for the 476 

hard class experienced a hard sweep in the center of the central sub-window (i.e. the 6th 477 

window), while examples for the hard-linked class experienced a hard sweep in the center of one 478 

of the remaining sub-windows (selected randomly). Analogous simulations with soft sweeps 479 

were generated for the soft and soft-linked classes, respectively. Finally, neutrally evolving 480 

examples did not experience any selective sweep. 481 

 We sought to train a classifier for each population under a demographic model that offers 482 

a better approximation to the population size history than the standard neutral model. For this we 483 

used Auton et al.’s (2015) population histories inferred by PSMC (Li and Durbin 2011). The 484 

1000 Genomes Project’s PSMC output did not contain estimates of θ, the population mutation 485 

rate parameter. Thus for each population we conducted a grid search by simulating genomic 486 

windows with the appropriate sample size under each demographic model with varying values of 487 

θ=4NuL (where L is the length of the locus, which we set to 100 kb); the grid of θ values raged 488 

from 10 to 250, examining multiples of 10. For each value of θ, we compared the values of π 489 

(Nei and Li 1979), 𝜃! (Watterson 1975), 𝜃! (Fay and Wu 2000), H2/H1 (Garud et al. 2015), and 490 

ZnS (Kelly 1997) from 1000 simulations to those from 1000 randomly selected genomic loci 491 

(calculated as described below), calculating the mean of each statistic in the real and simulated 492 

datasets. We chose as the final values of θ that for which the sum of the percent deviations of the 493 

simulated from the observed means of each statistic was minimized. This estimate of θ allowed 494 
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us to calculate estimated population sizes and times scaled by the number generations for each 495 

time point in the history inferred by PSMC. The harmonic mean of each population’s size was 496 

calculated by taking the estimated population size for each of the last 4N generations. We note 497 

that these models may not accurately capture the demographic histories of the populations we 498 

examined due to the confounding effects of positive (Schrider et al. 2016) and negative (Ewing 499 

and Jensen 2016) selection. However, because of S/HIC’s robustness to demographic 500 

misspecification, we do not expect this to severely impact our analysis (Schrider and Kern 2016). 501 

 For each population we simulated a total of 2000 regions for each of our five classes. For 502 

simulations involving sweeps, we drew the selection coefficient from U(0.005, 0.1), the sweep 503 

completion time from U(0, 2000), the initial selected frequency for soft sweeps from U(1/N, 0.2). 504 

We drew values of θ uniformly from a range spanning exactly one order of magnitude, specified 505 

so that the mean value of θ was equal to that estimated for the population as described above. We 506 

drew recombination rates from an exponential distribution with mean 1×10-8, truncated at triple 507 

the mean due to memory constraints. The simulation program discoal requires some of these 508 

parameters to be scaled by the present-day effective population size; we did this by taking the 509 

mean value of θ and dividing by 4uL, where u was set to 1.2×10-8 (Kong et al. 2012). The full 510 

command lines we used to generate 1.1 Mb regions (to be subdivided into 11 windows each 100 511 

kb in length) for each population are shown in Table S3. We also simulated 1000 test examples 512 

for each population in the same manner as for the training data. 513 

Our feature vector for each simulated region examined the spatial patters (following 514 

Schrider and Kern 2016) of each of the following statistics: π (Nei and Li 1979), 𝜃! (Watterson 515 

1975), 𝜃! (Fay and Wu 2000), the number of distinct haplotypes, average haplotype 516 

homozygosity, Garud et al.’s (2015) H12 and H2/H1 statistics, ZnS, ω (Kim and Nielsen 2004), and 517 
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the maximum frequency of derived mutations (Li 2011). Before calculating these summary 518 

statistics we masked a number of sites within each simulation by randomly selecting a 1.1 Mb 519 

region from our empirical windows sampled throughout the genome and masking the same 520 

regions in the simulated window as were masked in the genomic window (see below). Thus our 521 

simulated windows exhibit the same distribution of regions of missing data as the windows to 522 

which we applied our classifiers. We then used S/HIC to train extra-trees classifiers (Geurts et al. 523 

2006), one for each population. 524 

 525 

Classifying genomic windows in each population 526 

Having trained our classifiers, we then applied them to genomic data from the corresponding 527 

population. We inferred ancestral states of polymorphisms and masked inaccessible sites 528 

(whether polymorphic or not) in the same manner as described previously (Schrider and Kern 529 

2016). We then used S/HIC to classify the central 100 kb sub-window of 1.1 Mb windows across 530 

the autosomes, while taking the stringent approach of omitting those for which any sub-window 531 

was less than 25% accessible, before sliding 100 kb downstream to examine the next window. 532 

We also removed windows where any of the three central sub-windows had a mean 533 

recombination rate of zero (using data from Kong et al. 2010). Importantly, for each retained 1.1 534 

Mb window, we recorded the locations of all sites deemed inaccessible for use in masking our 535 

training data (see above). In total we classified 13,968 windows, accounting for 48.5% of the 536 

assembled autosomes. 537 

 In order to count the number of distinct sweep candidates found within our set of 538 

populations , we simply merged all 100 kb windows classified as a sweep of either type that were 539 

located either at the exact same coordinates or adjacent to one another, repeating this until no 540 
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more sweep regions could be merged. If all constituent windows were classified as soft, we 541 

counted the sweep as soft; otherwise we counted it as a hard sweep. We used a similar approach 542 

but examining classifications from only one population at a time in order to count the number of 543 

sweeps of each type in that population. If a gene found within a sweep window identified by 544 

S/HIC was not found in an entry of dbPSHP (Li et al. 2013), we referred to it as a novel sweep. 545 

Visualization of sweep candidates was performed using the UCSC Genome Browser (Kent et al. 546 

2002) , along with custom tracks showing values of various population genetic summary 547 

statistics and selection scan scores for the CEU, YRI, and JPT populations from the Human 548 

Positive Selection Browser (Pybus et al. 2013). Our classification results are available at 549 

http://kerndev.rutgers.edu/~dan/shicHumanScan/. 550 

 551 

Permutation tests for enrichment of annotation features in sweeps 552 

To determine whether certain annotation features were enriched within any of our five classes, 553 

we carefully designed a permutation test to account for the subset of the genome that we 554 

examined with S/HIC, as well as the spatial correlation of S/HIC’s classifications (i.e. adjacent 555 

windows are especially likely to receive the same classification). Briefly, the permutation 556 

algorithm begins by examining our classification results for a given population and keeping track 557 

of the length of runs of consecutive windows assigned to each class. The permutation algorithm 558 

then selects a chromosome, and begins at its first classified window (i.e. not removed by data 559 

filtering). A run length and associated class assignment is then randomly drawn without 560 

replacement. This process continues until the end of the chromosome, and then another 561 

chromosome is selected until the end of the final chromosome is reached, at which point the 562 

permutation has been completed. We then repeated this permutation procedure 10,000 times for 563 
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each population. Note that this process preserves the run length distribution of our classifications 564 

while permuting them across the set of genomic windows that had enough unmasked data to be 565 

included in our scan. 566 

After constructing our permuted data sets, we conducted one-sided enrichment tests by 567 

counting the number of base pairs in the intersection between the S/HIC class of interest and the 568 

annotation feature of interest, and comparing this number to its distribution among the permuted 569 

data sets. The fraction of permuted data sets where this intersect was greater than or equal to that 570 

observed for the real data is the p-value. Because we tested each of S/HIC’s five classes for 571 

enrichment of a fairly large number of genomic features (Table S1), we corrected for multiple 572 

testing using false discovery rate q-values following Storey (2002). When testing GO terms and 573 

KEGG pathways for enrichment, we considered only the hard and soft sweep classes, corrected 574 

for calculating q-values separately for each class. 575 

 We also asked whether the number of pairs of interacting genes both overlapping 576 

windows classified as sweeps was greater than in our permuted data sets. To ensure that our 577 

results were not inflated by the spatial clustering of interacting genes, we only counted 578 

interacting pairs overlapping sweep windows if they were separated by at least 10 Mb or on 579 

separate chromosomes. In addition, if we observed an interaction between two genes, A and B, 580 

that each overlapped sweeps, and a third sweep candidate gene, C, was found, to avoid 581 

redundancy we counted at most one interaction between A and C and B and C, even if C was 582 

found interact with both other genes. As with GO and KEGG terms, we only searched the hard 583 

and soft classes for enrichments before calculating one-sided q-values as described above. 584 

 585 
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Table 1: Number of sweeps of each type detected in each population sample. 900 
 901 
Population # of Hard Sweeps # of Soft Sweeps 
JPT 61 (5.8%) 998 (94.2%) 
CEU 66 (6.5%) 947 (93.5%) 
PEL 32 (4.7%) 655 (95.3%) 
GWD 5 (0.6%) 795 (99.4%) 
YRI 13 (1.6%) 797 (98.4%) 
LWK 3 (0.4%) 805 (99.6%) 
 902 
  903 
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Figure 1: Enrichment of various 904 
annotation features in regions 905 
classified as sweeps or linked to 906 
sweeps relative. The fold enrichment 907 
is the ratio of the number of base 908 
pairs in the intersection between 909 
windows assigned to a given class 910 
and an annotation feature divided by 911 
the mean of this intersection across 912 
the permuted data sets (Methods). 913 
This was calculated separately for 914 
each population. (A) Enrichment of 915 
elements in windows classified as 916 
hard sweeps. (B) Same as A, but for 917 
soft sweeps. (C) Enrichment of 918 
elements in windows classified as 919 
affected by linked hard sweeps. (D) 920 
Linked soft sweeps. 921 

A!

B!

C!

D!

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2016. ; https://doi.org/10.1101/090084doi: bioRxiv preprint 

https://doi.org/10.1101/090084
http://creativecommons.org/licenses/by/4.0/


922 
Figure 2: The number of windows assigned to each class by S/HIC in each population. 923 
 924 
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 926 
Figure 3: Enrichment of pairs of interacting genes each falling within a window classified 927 
as a sweep. The fold enrichment is the ratio of the number of pairs of interacting genes 928 
overlapping a window classified as a sweep of a given type divided by the mean of this number 929 
across the permuted data sets (Methods). This was calculated separately for each population. 930 
When no pairs of interacting sweep genes were observed in our true data set or a population, no 931 
bar was drawn. (A) Enrichment of pairs of genes encoding protein products that physically 932 
interact with each other (data from BioGRID) and both overlap hard sweep windows. (B) Same 933 
as A, but for soft sweeps. (C) Enrichment of pairs of genes, one of which is encodes a 934 
transcription factor that affects expression of the other (data from ORegAnno), where both 935 
overlap hard sweep windows. (D) Same as D, but for soft sweeps. (E) Enrichment of pairs of 936 
genes for which a genetic interaction has been observed (data from BioGRID) and both overlap 937 
hard sweep windows. (F) Same as E, but for soft sweeps. 938 
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940 
Figure 4: Hard selective sweep near several SPATA31 spermatogenesis-associated genes. 941 
The S/HIC classification tracks show the raw classifier output for each population (red=hard 942 
sweep, blue=soft sweep, light red=hard-linked, light blue=soft-linked, black=neutral). We also 943 
show the values of various population genetic summary and test statistics (π, Tajima’s D, Kelly’s 944 
ZnS, and the SweepFinder composite likelihood ratio, or CLR). To avoid clutter, we only show 945 
statistics from CEU. 946 
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949 
Figure 5: Soft selective sweeps near CADM1. The same tracks are shown as in Figure 4. 950 
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SUPPLEMENTARY FIGURE AND TABLE LEGENDS 953 
 954 
Figure S1: Heatmaps showing the accuracy of our six classifiers on test data, one for each 955 
population. On the y-axis, we show the location of the sweep relative to the classified window 956 
(i.e. the central sub-window), with the exception of the “Neutral” case where there is no sweep. 957 
The test data were simulated under the same demographic models used for training. On the x-958 
axis we show the class inferred by S/HIC. A perfect classifier would infer “Hard” for 100% test 959 
instance where a hard sweep is in the focal sub-window (and analogously for soft sweeps), 960 
“Hard-linked” for 100% of cases where a hard sweep occurs elsewhere (and analogously for soft 961 
sweeps not located in the central sub-window), and “Neutral” for 100% of cases with no sweep. 962 
(A) Test results for CEU. (B) GWD. (C) JPT. (D) LWK. (E) PEL. (F) YRI. 963 
 964 
Figure S2: Histograms of H12 and H2/H1 within windows classified has hard sweeps, soft 965 
sweeps, or neutral for each population. 966 
 967 
Figure S3: Soft selective sweep in GRIA2. The same tracks are shown as in Figures 4 and 5. 968 
 969 
Table S1: Enrichment of various sequence annotations in each S/HIC class. 970 
 971 
Table S2: Enrichment of annotation terms in hard and soft sweeps (only terms with q<0.05 972 
for at least one sweep type in at least one population are shown). 973 
 974 
Table S3: Example command lines used to generate training data for each population, with 975 
a soft sweep occurring in the central sub-window. 976 
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