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Abstract		

	

Seroepidemiological	 studies	 aim	 to	 understand	 population‐level	 exposure	 and	 immunity	 to	

infectious	 diseases.	 	 Results	 from	 serological	 assays	 are	 normally	 presented	 as	 binary	 outcomes	

describing	the	presence	or	absence	of	pathogen‐specific	antibody,	despite	the	fact	that	many	assays	

measure	continuous	quantities.		A	population’s	natural	distribution	of	antibody	titers	to	an	endemic	

infectious	disease	may	in	fact	include	information	on	multiple	serological	states	–	e.g.	naiveté,	recent	

infection,	non‐recent	infection	–	depending	on	the	disease	in	question	and	the	acquisition	and	waning	

patterns	of	host	immunity.	 	In	this	study,	we	investigate	a	collection	of	20,152	general‐population	

serum	samples	 from	 southern	Vietnam	collected	between	2009	and	2013	 from	which	we	 report	

antibody	 titers	 to	 the	 influenza	 virus	HA1	 protein	 using	 a	 continuous	 titer	measurement	 from	 a	

protein	microarray	assay.		We	describe	the	distributions	of	antibody	titers	to	subtypes	2009	H1N1	

and	H3N2.		Using	a	model	selection	approach	to	fit	mixture	distributions,	we	show	that	2009	H1N1	

antibody	titers	fall	into	four	titer	subgroups	and	that	H3N2	titers	fall	into	three	subgroups.		For	H1N1,	

our	 interpretation	 is	 that	 the	 two	 highest‐titer	 subgroups	 correspond	 to	 recent	 infection	 and	

historical	infection,	which	is	consistent	with	2009	pandemic	attack	rates.	 	For	H3N2,	observations	

censored	at	the	highest	titer	dilutions	make	similar	interpretations	difficult	to	validate.	
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1	 Introduction	

	

Influenza	viruses	circulate	globally	[1,2],	with	predictable	wintertime	epidemics	in	temperate	

zones	and	less	predictable	patterns	of	persistence	and	irregular	epidemics	in	tropical	areas	[3].	The	

size	or	attack	rate	of	an	epidemic	in	any	given	area	can	be	measured	with	basic	seroepidemiological	

methods,	by	taking	a	cross‐sectional	sample	after	an	epidemic	period	and	testing	for	the	presence	or	

absence	of	virus‐specific	antibody.	This	approach	is	easily	interpretable	in	a	post‐epidemic	or	post‐

pandemic	period	[4,5]	as	the	seropositive	individuals	are	those	that	were	infected	recently.	However,	

in	tropical	countries,	the	timing	of	epidemics	is	irregular	and	difficult	to	predict	[6],	and	analysis	of	

cross‐sectional	serological	data	would	need	to	 take	 into	account	 that	samples	may	not	have	been	

collected	during	a	period	that	follows	an	epidemic.	

In	 influenza	 serology,	 the	 concentration	 of	 antibody	 in	 the	 blood	 directed	 against	 the	

hemagglutinin	(HA)	surface	glycoprotein	of	the	influenza	virus	is	known	to	correlate	positively	with	

the	immune	status	of	the	body	[7–9].		The	gold	standard	serological	tests	to	detect	the	presence	of	

antibody	 against	 a	 particular	 influenza	 virus	 are	 Haemagglutination	 Inhibition	 (HI)	 and	

Microneutralization	(MN)	[8,10,11],	which	give	discrete	readouts	–	from	10	to	2560	depending	on	

the	testing	purposes.		HI	titers	of	40	are	generally	considered	protective	[12,13],	and	HI	titers	of	20	

or	40	are	viewed	to	be	indicative	of	past	infection,	but	concerns	about	errors	[14]	and	repeatability	

[13]	have	limited	the	ability	of	the	HI	assay	to	give	accurate	estimates	of	past	infection.		

A	binary	approach	to	serology	has	several	drawbacks.		The	cutoff	value	for	seropositivity	is	

typically	calibrated	 from	a	patient	set	of	confirmed	acute	cases,	by	collecting	convalescent	serum	

samples	 a	 few	 weeks	 or	 a	 few	 months	 after	 infection.	 	 This	 means	 that	 the	 more	 appropriate	

application	of	the	cut‐off	value	is	the	identification	of	recent	symptomatic	infections	rather	than	any	

past	infections.	 	Thus,	applying	the	threshold	approach	to	a	population‐wide	dataset	could	lead	to	

underestimation	 of	 the	 seroprevalence.	 	 Two	 other	 drawbacks	 of	 binary	 classification	 are	 that	 it	

reduces	the	information	available	to	accurately	describe	the	epidemiology	of	an	endemic	disease,	and	

that	it	results	in	incorrect	or	inconclusive	classifications	for	samples	with	borderline	measurements	

[14–16].		

	 Modern	serological	techniques	developed	over	the	past	decade	have	aimed	to	address	some	

of	the	shortcomings	of	HI	and	MN	assays:	(i)	the	large	amount	of	serum	required	to	test	for	presence	

of	antibodies	to	multiple	viruses,	(ii)	discrete	titer	readouts,	and	(iii)	limited	titer	reproducibility	and	

lack	of	standardization	across	laboratories.		Improvements	in	these	areas	can	be	seen	in	a	protein	

microarray	(PA)	assay	developed	by	Koopmans	et	al	[17].		The	assay	allows	simultaneous	serological	

testing	 for	 different	 influenza	 strains	with	 as	 little	 as	 ten	microliters	 of	 serum.	 	 This	 has	 helped	

increase	the	underrepresented	contribution	of	infants	and	young	children	groups	from	whom	large	

volumes	of	blood	are	not	normally	taken	[18–24].		Additional	advantages	of	the	microarray	include	

continuous	and	reproducible	titer	values	and	the	ability	to	standardize	and	correct	the	results	for	

inter‐technician	and	inter‐laboratory	variations	[17].		

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2016. ; https://doi.org/10.1101/090076doi: bioRxiv preprint 

https://doi.org/10.1101/090076
http://creativecommons.org/licenses/by-nc-nd/4.0/


Antibody	Titer	Distributions	for	Influenza 

4 
 

In	 general,	 the	 advantage	 of	 analyzing	 continuous	 serological	 measurements	 is	 that	 this	

results	 in	 better	 classification	 for	 borderline	 samples	 and	 more	 accurate	 estimation	 of	 the	

seroprevalence	 [15,25–28].	 Statistical	 approaches	 using	 mixture	 distributions	 have	 proven	

successful	in	describing	the	uncertainty	of	individuals’	past	infection	status	[26,27,29–34].		In	some	

instances,	mixture	distribution	approaches	have	 shown	 that	 the	population	 is	best	 classified	 into	

three	or	more	subgroups,	and	these	subgroups	are	normally	interpreted	as	having	a	different	status	

of	protection,	past	infection,	and/or	vaccination	[15,27,32,34–41].		Note	that	in	some	of	these	past	

studies	there	was	statistical	evidence	–	using	either	Bayesian	Information	Criterion	(BIC)	or	Akaike	

Information	Criterion	(AIC)	–	that	the	multimodal	distribution	fit	better	than	unimodal	and	bimodal	

ones,	 but	 none	 of	 these	 studies	 took	 into	 account	 the	 epidemiological	 interpretations	 of	 the	

underlying	process	or	performed	visual	inspection	when	choosing	the	best‐fit	model	(see	Rota	et	al	

[37]	or	Gay	[42]	for	a	typical	analysis).		

Recently,	 mixture	 distribution	 approaches	 have	 been	 extended	 to	 influenza	 serology	 by	

Steens	et	al	[43]	and	te	Beest	et	al	[38,39],	in	which	post‐pandemic	data	were	collected	right	after	the	

first	wave	of	the	H1N1	Pandemic	2009	in	the	Netherlands	and	analyzed	by	protein	microarray.		In	

these	studies,	mixture	analysis	was	meant	to	measure	the	proportion	of	recent	infection	of	a	novel	

virus	 in	 the	 population.	 	 In	 the	 analysis	 presented	 here,	 we	 consider	 cross‐sectional	

seroepidemiological	data	collected	from	southern	Vietnam,	using	continuous	titer	measurements	via	

the	 PA	 method.	 As	 there	 is	 very	 little	 influenza	 vaccination	 in	 Vietnam	 (lower	 than	 1%	 annual	

coverage	according	to	commercial	vaccine	sales	data),	these	results	are	intended	to	provide	general	

insights	into	long‐term	patterns	of	influenza	circulation.		

	

2	 Methods	

	

Residual	serum	samples	were	collected	from	four	hospital	laboratories	in	southern	Vietnam:	

the	 Hospital	 for	 Tropical	 Diseases	 in	 Ho	 Chi	 Minh	 City	 (urban,	 densely	 population),	 Khanh	 Hoa	

Provincial	Hospital	in	Nha	Trang	city	(small	urban,	central	coast),	Dak	Lak	Provincial	Hospital	in	Buon	

Ma	Thuot	city	(central	highlands,	rural),	and	Hue	Central	hospital	in	Hue	City	(small	urban,	central	

coast).		Samples	were	collected	from	July	2009	to	December	2013	on	a	bimonthly	basis;	200	were	

included	in	each	collection	from	all	age	groups	(neonates	to	elderly	individuals	in	their	90s).		Samples	

were	anonymized,	delinked,	and	labeled	with	age,	gender,	originating	hospital	ward	(HIV	wards	were	

excluded),	and	date	of	collection.		Samples	were	collected	from	both	inpatients	and	outpatients	and	

are	 believed	 to	 represent	 the	 hospital‐going	 population	 in	 their	 respective	 cities.	 	 The	 sample	

collection	described	here	is	part	of	a	large	ongoing	study	in	serial	seroepidemiology	[44]	aimed	at	

describing	the	dynamics	of	influenza	circulation	in	southern	Vietnam.		The	study	was	approved	by	

the	Scientific	and	Ethical	Committee	of	the	Hospital	for	Tropical	Diseases	in	Ho	Chi	Minh	city	and	the	

Oxford	Tropical	Research	Ethics	Committee	at	the	University	of	Oxford.	
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The	 samples	were	 tested	 for	presence	of	 influenza	 antibodies	using	 a	protein‐microarray	

(PA)	method	[17],	at	serial	four‐fold	dilutions	from	20	to	1280,	to	test	for	IgG	antibody	to	the	HA1	

component	of	16	different	influenza	viruses	[44].		Two‐fold	dilutions	were	used	in	some	instances;	

see	validation	of	this	approach	in	Appendix	Section	2.		A	sample	of	the	international	standard	(IS)	for	

testing	antibody	response	to	influenza	A	H1N1	Pandemic	2009	(H1‐09)	was	included	on	every	slide	

to	correct	for	inter‐laboratory,	inter‐technician,	and	inter‐slides	variations	[17]	(Appendix	Section	

1.2).	 	Assay	 repeatability	was	assessed	using	a	positive	 control	 and	 replicates	of	patient	 samples	

(Appendix	Section	3).		Titers	were	defined	as	the	dilution	at	which	samples	yield	a	median	response	

between	the	minimum	and	maximum	luminescence	values	of	3000	and	65355.		Titers	of	all	human	

samples	 on	 each	 slide	 are	 normalized	 based	 on	 the	 IS	 titers	 of	 the	 reference	 antigen	 against	 its	

geometric	mean	(Table	S2).	 	In	this	analysis,	titers	to	the	2009	H1N1	virus	(A/California/6/2009)	

and	 recently	 circulating	 H3N2	 viruses	 (geometric	 mean	 titer	 to	 A/Victoria/210/2009	 and	

A/Victoria/361/2011)	were	analyzed.	

To	describe	the	distribution	of	influenza	antibody	titers	in	the	Vietnamese	population,	titer	

values	 were	 separated	 by	 site,	 adjusted	 to	 their	 province’s	 age	 and	 gender	 distribution	 [45]	

(Appendix	Section	4),	and	plotted	as	a	simple	weighted	histogram	(Figure	1).	 	A	series	of	mixture	

models	was	used	to	fit	this	distribution,	with	the	assumption	being	that	individual	samples	have	one	

of	several	immune	statuses	which	are	represented	by	the	different	components	in	the	mixture	model.		

Our	hypothesis	was	that	the	sample	population	consists	of	different	subpopulations	with	different	

antibody	 levels	depending	on	 their	 infection	history	and	 that	each	of	 these	components	could	be	

represented	by	a	single	parametric	distribution.		

Titers	were	log‐transformed	and	assumed	to	come	from	a	C‐component	mixture	distribution	

with	the	corresponding	likelihood:		

ࣦሺ	x	|	ી	ሻ ൌ 	ෑ	෍ݓ௝ ௝݂ሺ	x௜	|	ߠ௝	ሻ																														ሺ1ሻ

஼

௝ୀଵ

௡

௜ୀଵ

	

where	f	is	the	probability	density	function	of	a	normal	distribution	with	parameters	θj	and	w	=	(w1,	

w2,	…,	wC)	is	the	vector	of	component	weights	in	the	mixture.		The	log‐likelihood	was	defined	as:		

ℓሺ	x	|	ી	ሻ ൌ 	෍ݏ௜ ∗ ݃݋݈ ቎෍ݓ௝ ௝݂ሺ	x௜	|	ߠ௝	ሻ

஼

௝ୀଵ

቏																					ሺ2ሻ

࢔

௜ୀଵ

		

in	which	the	ݏ௜	parameters	are	sampling	corrections	to	adjust	the	sample	age	and	sex	distribution	to	

the	population’s	true	demographic	distribution;	 ௝݂ሺ	x௜ 	..	,2	1,	=	j	ሻ,	௝ߠ	|	 ,	C	 	is	the	probability	density	

function	 that	 a	 given	 sample	xi	 belongs	 to	 the	 jth‐component	 in	 the	mixture.	 	C	 is	 the	number	of	

mixture	components	[46,47].		

The	microarray	assay	produces	continuous	log‐titer	results	between	1.0	(titer	of	20)	and	7.0	

(titer	of	1280).		To	account	for	these	detection	limits,	an	extra	probability	weight	w0	was	added	at	20	

to	account	for	samples	that	had	antibody	concentrations	at	or	below	the	detection	limit	of	20.		This	

can	be	considered	a	zero‐inflated	mixture	model,	where	titers	of	20	are	the	“zeroes”.		With	this	added	
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probability	mass,	the	continuous	component	distribution	must	be	discretized	into	probability	mass	

functions;	hence	the	distributions	f	formally	represents	discretized	versions	of	continuous	density	

functions	(Appendix	Section	5).	 	 	At	the	upper	detection	limit	of	7.0,	 the	mixture	distribution	was	

censored	assuming	that	individuals	with	titers	of	7.0	represented	a	class	of	seropositive	individuals	

with	a	real	titer	value	if	the	assays	had	been	continued	to	be	diluted	until	the	real	titer	was	found.		

Censoring	on	the	right	and	truncating	on	the	left	gave	the	best	fit	among	the	four	combinations.	

Thus,	the	likelihood	in	(1)	was	modified	as:		

	

ℓ௜௡௧௘௥௩௔௟ሺ	x	|	ી	ሻ ൌ 	෍ݏ௜ ∗ ݃݋݈ ቎		ݓ଴ 	൅	෍ݓ௝ ௝݂ሺ	x௜	|	ߠ௝	ሻ

஼

௝ୀଵ

቏																											ሺ3ሻ

࢔

௜ୀଵ

	

	

Maximum	likelihood	estimation	was	carried	out	using	the	Nelder‐Meade	algorithm	implemented	in	

Java	8.0	 (Apache	Commons	Math	3.3).	Global	optima	and	 convergence	were	 assessed	by	 starting	

searches	 from	different	 sets	of	 the	 initial	 conditions.	 	Weibull,	Gamma,	and	normal	distributional	

forms	were	tested	for	the	mixture	components,	and	as	there	was	little	difference	 in	the	fits	(with	

Weibull	distributions	having	slightly	worse	fits;	not	shown),	normal	distributions	were	chosen	for	

the	analysis.			

For	multi‐component	mixture	models,	the	likelihood	ratio	test	between	a	specific	model	and	

its	 immediate	 predecessor	 (e.g.	 n	 components	 versus	 n‐1	 components)	 is	 not	 a	 valid	 statistical	

comparison.	Since	interchanging	the	components’	 identity	gives	the	same	mixture	likelihood	[47],	

the	regularity	conditions	do	not	hold	for	the	 likelihood	ratio	test	 to	have	 its	usual	χ2	distribution.	

Thus,	the	most	appropriate	number	of	mixture	components	was	chosen	(1)	by	Bayesian	Information	

Criterion	to	take	into	account	the	number	of	samples,	and	(2)	by	a	qualitative	inspection	of	the	means	

and	variances	of	the	components	to	ensure	that	(a)	multiple	means	did	not	overlap	and	(b)	variances	

and	weights	were	not	too	small,	which	would	make	them	not	epidemiologically	meaningful.		
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3	 Results	

	

A	 total	 of	 20,152	 sera	 were	 collected	 and	 tested	 for	 antibody	 concentrations	 by	 protein	

microarray.	 	The	samples	represent	patients	attending	hospitals	 in	 four	cities	–	Ho	Chi	Minh	City	

(n=5788),	Nha	Trang	(n=5630),	Buon	Ma	Thuot	(n=4144),	and	Hue	(n=4590).	 	Titer	distributions	

varied	by	age,	as	expected	(Figure	1)	but	did	not	vary	by	site	(Figure	S6	and	S7).		Figure	1	shows	the	

age‐stratified	titer	distributions	to	the	HA1	component	of	the	2009	H1N1	virus	and	the	most	recently	

circulating	 H3N2	 variants.	 If	 individuals	 fall	 neatly	 into	 seropositive	 (exposed)	 and	 seronegative	

(unexposed	or	naïve)	categories,	a	mixture	model	of	two	components	would	classify	samples	into	

two	 subgroups,	which	 clearly	was	not	 the	 case	 as	 a	 broad	 range	of	 titers	was	observed	 for	both	

subtypes	 across	 all	 age	 groups.	 Thus,	 a	 mixture	 distribution	 fitting	 approach	 was	 employed	 to	

determine	the	appropriate	number	of	mixture	components	necessary	to	accurately	describe	the	titer	

data.		

To	 identify	 the	 appropriate	 number	 of	 subgroups	 in	 the	 titer	 distributions,	 the	 Bayesian	

Information	Criterion	(BIC)	was	used	to	select	the	number	of	components	in	the	mixture.		Figure	2	

shows	six	rows	of	distribution	fits	–	from	single‐component	fits	to	six‐component	fits	–	for	antibody	

titers	to	the	2009	H1N1	pandemic	virus;	data	are	shown	both	aggregated	and	by	site	(Figure	S8	for	

H3N2).	The	BIC	is	shown	in	the	upper‐right	corner	of	each	panel,	and	the	BIC	improvement	from	n	

components	to	n+1	components	varied	depending	on	the	number	of	samples	in	the	dataset;	see	Table	

1	for	2009	H1N1	and	Table	S4	for	H3N2.		For	both	subtypes,	it	is	clear	that	a	binary	classification	of	

titer	 is	not	 the	best	 interpretation	of	 the	natural	antibody	 titer	distribution,	as	 the	one‐	and	 two‐

component	 models	 (top	 two	 rows)	 did	 not	 capture	 the	 underlying	 structure	 of	 the	 dataset	

adequately.		When	stratifying	the	data	by	site	(sample	size	~4,000),	the	BIC	consistently	selected	four	

components	 as	 the	best	model	 for	 the	H1N1	data	 (five	 for	Hue,	 but	weakly:	 ΔBIC=18)	 and	 three	

components	as	the	best	model	for	H3N2.			

Interpreting	 the	 mixture	 distributions	 in	 the	 context	 of	 the	 known	 seroepidemiology	 of	

influenza	 suggests	 that	 the	 three	 component	 models	 and	 four	 component	 models	 are	 the	 best	

descriptions	of	 the	populations’	 antibody	 titer	distribution.	 	 The	 five‐	 and	 six‐component	models	

either	 overfit	 the	 data	 (according	 to	 the	 BIC)	 or	 included	 low‐variance/low‐weight	 components,	

which	would	correspond	to	an	implausible	population	subgroup	with	a	very	specific	antibody	titer	

(Figure	3).		This	was	readily	seen	in	the	aggregate	data	which	is	why	the	BIC‐selected	models	of	the	

by‐site	data	(~4000	data	points	each)	are	likely	to	be	better	explanations	of	the	structure	of	these	

titer	 distributions.	 	 For	 H1N1,	 the	 three‐	 and	 four‐component	 models	 identified	 similar	 titer	

subgroups	with	the	four	component	models	giving	better	BIC.	Going	from	three	to	four	components	

did	not	significantly	affect	the	last	two	components	(weights,	means,	and	standard	deviations).	The	

main	difference	between	these	models	was	the	presence	of	the	first	small	peak	(titer	range	19.7	to	

45.0)	 which	 helped	 improve	 the	 BIC	 and	 minimized	 the	 overlap	 between	 the	 two	 highest	 titer	

components.	 Epidemiologically,	 this	 first	 peak	 represents	 seronegative	 individuals	with	 very	 low	
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titer	values	[38,39,48].		For	H3N2,	the	results	were	clearer	as	the	BIC	selected	three	components	as	

the	best	model	for	all	sites	(Figure	S8).	

The	three‐	and	four‐component	mixtures	indicate	that	these	data	can	be	used	to	develop	a	

more	informative	serological	classification	for	 influenza.	 	Using	known	results	for	this	microarray	

assay	 [38,43],	 titers	below	100	would	be	classified	as	negative	or	 `not	previously	exposed	 to	 this	

particular	influenza	strain’.	 	For	H1N1,	this	means	that	that	the	first	component	(μ1	=	30)	and	the	

second	component	(μ2	=	75)	would	correspond	to	negative	individuals.		Similarly	for	H3N2,	negative	

individuals	 would	 be	 represented	 by	 the	 first	 component	 (μ1	 =	 80).	 	 The	 second‐highest	 titer	

component	had	mean	μ3=247.2	(95%	CI	240.0−253.7)	for	H1N1	and	μ2=213.3	(95%	CI	204.8−221.5)	

for	H3N2.	 	The	highest	 titer	 component	has	mean	μ4=671.1	 (95%	CI	484.7−818.6)	 for	H1N1	and	

μ3=455.0	 (95%	CI	401.4−536.7)	 for	H3N2.	 	 Confidence	 intervals	were	 computed	using	 likelihood	

profiles	[47].		The	natural	interpretation	of	these	high	titer	subgroups	is	that	they	represent	different	

times	since	last	infection.		As	it	is	known	that	the	influenza	antibody	decay	rate	is	fast	enough	to	be	

observed	in	the	first	six	to	twelve	months	after	an	acute	infection	[49,50],	for	H1N1	the	highest	titer	

subgroup	 may	 be	 an	 approximate	 designation	 for	 recently	 infected	 individuals,	 and	 the	 second	

highest	titer	subgroup	may	correspond	to	‘historically	infected’	individuals,	i.e.	individuals	infected	

at	some	point	in	the	non‐recent	past.			

	 For	H1N1,	these	interpretations	were	able	to	be	validated	using	post‐pandemic	sera,	and	an	

ROC	curve	was	constructed	using	the	methods	presented	in	te	Beest	et	al	[38]	(Figure	4).		Assuming	

that	the	highest‐titer	component	(w4)	of	the	mixture	distribution	corresponds	to	recently	infected	

individuals	and	the	second	highest‐titer	component	(w3)	corresponds	to	historic	infection,	one	would	

expect	to	be	able	to	use	the	weights	w3	and	w4	as	proxies	for	the	pandemic	attack	rate.		Looking	at	

samples	collected	from	January	2010	to	June	2010	–	i.e.	after	the	first	wave	of	the	2009	influenza	

pandemic	in	Vietnam	[23,51]	–	the	proportions	of	individuals	that	were	recently	infected	with	2009	

H1N1	were	highest	among	younger	individuals	(0.14,	0.23,	0.08,	and	0.16,	for	the	0.5–9,	10–19,	20–

44,	and	≥45	age	groups,	respectively),	while	the	proportions	of	historically‐infected	individuals	were	

approximately	equal	among	age	groups	(0.16,	0.22,	0.23,	and	0.20,	for	the	same	age	groups).	 	The	

estimates	of	14%	of	children	aged	0.5–9	and	23%	of	children	aged	10–19	falling	into	the	recently	

infected	category	will	be	slight	underestimates	of	pandemic	attack	rate	as	the	post‐pandemic	sample	

here	 includes	 samples	 collected	 through	 June	2010.	 	Nevertheless,	 these	 are	within	 the	expected	

ranges	of	 the	attack	rate	of	 the	 first	year	of	 the	2009	pandemic.	 	For	older	 individuals,	pandemic	

attack	rates	are	more	difficult	to	validate	but	it	is	important	to	remember	that	older	individuals	had	

measurable	antibody	titers	to	2009	H1N1	prior	to	the	arrival	of	the	new	pandemic	virus	[16].		

	 For	H3N2,	the	best‐fit	mixture	models	had	larger	variances	than	the	best‐fit	models	for	H1N1.		

The	 log‐titer	ranges	(±2σ)	 for	 the	 three	H3N2	titer	groups	were	26–240,	114–456,	and	68–3045.		

Thus,	 the	 discriminatory	 power	 between	 the	 last	 two	 components	was	 not	 as	 good	 as	 for	H1N1	

(Figure	S8).	 	One	plausible	explanation	is	the	existence	of	an	additional	 fourth	peak	for	the	H3N2	

titers	describing	individuals	with	titers	above	the	upper	limit	of	detection	(≥1280).	In	our	sample	set,	
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the	proportions	of	individuals	with	H3	titers	equal	to	1280	were	two	to	three	times	higher	than	those	

for	H1N1	in	the	same	age	category.	The	large	standard	deviations	of	the	last	component	for	H3N2	

may	have	been	the	result	of	the	high	fraction	of	right‐censored	samples	with	titers	≥1280.	

Thus,	 the	 epidemiological	 interpretation	 of	 the	 H3N2	 mixture	 components	 cannot	 be	

validated	at	present.		Using	all	samples,	the	proportions	of	individuals	in	the	highest	titer	group	(third	

component)	are	0.46	(ages	0.5–9),	0.49	(ages	10–19),	0.43	(ages	20–44),	and	0.34	(≥45).		These	are	

unlikely	 to	 represent	 recent	 attack	 rates	 of	 H3N2	 epidemics	 and	 are	 more	 likely	 to	 represent	

historical	infection,	i.e.	individuals	who	have	been	exposed	to	the	currently	circulating	H3N2	strain.		

This	is	consistent	with	our	conjecture	that	a	fourth	peak	in	the	H3	titer	distribution	may	not	be	visible	

due	to	truncation	at	a	titer	of	1280,	but	we	were	not	able	to	confirm	this	with	the	current	data	as	the	

samples	were	not	diluted	past	1:1280.	

	 For	both	subtypes,	the	individual	components	in	the	mixture	models	did	not	correspond	to	

any	 particular	 age	 groups,	 and	 stratifying	 the	 samples	 by	 age	 did	 not	 explain	 any	 particular	

component	of	the	mixture	(Figure	5	for	H1N1	and	Figure	S10	for	H3N2).	 	All	age	groups	included	

individuals	with	high,	medium,	and	low	titer	levels.			

	

4		 Discussion	

	

Using	a	large	collection	of	serum	samples	and	a	continuous	measurement	of	antibody	titer,	

we	were	able	 to	describe	 the	natural	distribution	of	antibody	 titers	 to	 the	2009	H1N1	and	H3N2	

subtypes	of	influenza	virus.		As	there	is	almost	no	influenza	vaccination	in	Vietnam	and	as	influenza	

in	Vietnam	is	characterized	by	a	combination	of	local	persistence	and	annual/binannual	outbreaks	

[52–54],	characterization	of	titer	distribution	in	this	context	is	a	useful	general	approach	for	looking	

at	 the	 immune	 status	of	 a	 population	 at	 equilibrium	with	 an	 endemic	 infectious	disease.	 	With	 a	

mixture	model	approach,	we	were	able	to	identify	the	presence	of	multiple	exposure	groups	in	the	

population	 according	 to	 their	 titers.	 	 Our	 interpretation	 of	 these	 multiple	 exposure	 groups	 –	

according	to	titers	measured	for	confirmed	cases	[48]	and	past	measurements	of	the	rate	of	antibody	

waning	[49,50]	–	is	that	they	represent	recently	infected	individuals,	historically	(i.e.	not	recently)	

infected	individuals,	and	naïve	individuals.		Note	that	for	influenza,	a	naïve	individual	is	one	who	has	

not	been	exposed	to	the	currently	circulating	strain,	which	means	that	there	will	be	naïve	individuals	

in	all	age	groups.	

	 A	mixture	distribution	approach	does	not	guarantee	that	individuals	can	be	easily	classified	

into	one	of	several	titer	subgroups.		With	substantial	overlap	in	the	mixture	components,	individuals	

typically	have	partial	membership	in	two,	sometimes	three,	titer	subgroups.		In	addition,	individual	

variation	will	have	a	large	effect	on	titer	interpretations.		A	high‐titer	sample	could	represent	a	recent	

infection,	but	individuals	can	maintain	high	titers	longer	than	the	mean	duration	observed	in	clinical	

studies.		This	would	normally,	but	not	exclusively,	be	observed	in	children.		Likewise,	lower	antibody	

titers	 (in	 the	 200–250	 range)	 could	 indicate	 historical	 past	 infection,	 a	 low	 response	 to	 a	 recent	
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infection	[55],	or	a	recent	but	mild	infection.		With	serological	data	alone,	these	scenarios	cannot	be	

distinguished.		For	subtype	H3N2	specifically,	low	titer	levels	could	indicate	cross‐reactions	between	

antibodies	generated	to	an	older	influenza	variant	and	the	recent	H3N2	HA1	proteins	spotted	on	the	

protein	microarray.		

	 An	important	new	question	generated	by	this	study	is	why	H1N1	titer	distributions	appear	

bimodal	but	H3N2	titer	distributions	appear	unimodal.		One	possibility	is	that	the	censoring	of	H3	

titers	at	1280	truncated	the	true	bimodal	appearance	of	the	H3	titer	distribution	(see	Figure	S11).		A	

second	possibility	is	that	some	feature	of	the	infection,	immunogenicity,	or	waning	process	for	H1N1	

operates	differently	on	different	segments	of	the	population.		An	important	difference	between	these	

two	subtypes	is	that	H3	infections	lead	to	higher	antibody	titers	(as	measured	in	HI	and	MN	assays)	

than	H1	infections,	and	for	this	reason	the	truncation	hypothesis	may	be	the	more	plausible	one.		A	

second	difference	lies	in	the	subtypes’	lineage	history,	which	suggests	that	separating	the	samples	

into	H1N1	lineage‐exposure	groups	(pre‐1957,	post‐1977,	post‐2009)	may	account	for	the	bimodal	

pattern	in	H1N1.		However,	separating	the	samples	by	birth	year	(0.5‐50	years‐old,	and	≥60	years‐

old) did	not	provide	any	evidence	for	this	effect	(Figure	S12	and	Table	S6).	

	 A	major	challenge	in	influenza	seroepidemiology	is	that	it	is	difficult	to	take	into	account	the	

effects	 of	 original	 antigen	 sin	 [56,57]	 or	 age‐dependent	 seroconversion	 (ADS).	 	 Age‐dependent	

seroconversion	is	distinct	from	original	antigenic	sin	in	that	ADS	assumes	that	individuals	of	different	

ages	seroconvert	to	different	titer	levels	irrespective	of	the	individual’s	infection	history.		In	principle,	

the	effect	of	ADS	should	be	detectable	for	2009	H1N1	infections	in	individuals	younger	than	50,	as	

for	these	individuals	an	exposure	to	the	2009	virus	would	have	been	a	first	exposure.		However,	the	

component	distribution	means	(μi	parameters)	and	the	component	weights	(wi)	are	not	separately	

identifiable	in	the	mixture	model.		Thus,	we	cannot	state	that	the	‘recently	infected’	titer	subgroups	

are	comparable	across	age	groups,	as	the	inferential	process	will	make	the	exact	definition	of	recency	

different	for	the	10‐19	age	group	than	for	the	20‐44	age	group.		Even	if	we	were	to	assume	that	the	

fourth	mixture	components	should	be	comparable	across	age	groups,	the	titer	means	denoted	by	μ4	

in	Figure	4	do	differ	but	are	within	one	standard	deviation	of	one	another.		Thus,	there	is	a	lack	of	

evidence	for	ADS	in	our	titer	data.		As	we	only	considered	recent	antigens	in	this	analysis,	effects	of	

original	antigenic	sin	were	not	considered.	

	 With	a	clinical	study	near	completion,	we	will	soon	be	able	to	validate	the	titer	interpretations	

obtained	from	the	mixture‐distribution	approach	presented	here.		As	has	been	found	in	other	recent	

studies	[58,59],	the	waning	rate	of	influenza‐specific	IgG	antibodies	is	crucial	to	interpreting	antibody	

titers	measured	in	serological	cross‐sections.		Depending	on	the	titer	cutoff	chosen	or	the	waning	rate	

used,	measured	seropositivity	in	a	population	cross‐section	could	represent	any	range	of	infection	

history,	from	recent	infection	to	an	older	historical	infection.		The	next	critical	step	in	this	analysis	

will	be	using	titer	data	from	follow‐up	on	confirmed	cases	to	determine	if	the	natural	distribution	of	

antibody	titers	should	conform	to	the	recent,	historical,	and	naïve	categories	as	presented	here.			
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Table	1	

	

Change	in	BIC	scores	as	the	number	of	normal	distributions	in	the	mixture	increases	from	one	to	six	

for	2009	H1N1,	for	the	aggregated	data	as	well	as	the	individual	collection	sites.	The	values	of	the	

negative	 sum	 of	 the	 log	 likelihood	were	weighted	 to	 adjust	 for	 age	 and	 gender	 according	 to	 the	

Vietnam	national	housing	census	in	2009.	The	first	row	shows	the	exact	values	of	sum	of	negative	

log‐likelihood	(SumNegLLH).	Bold	numbers	represent	the	mixtures	with	the	best	BIC.		

	

 

     ALL SITES   HUE  KHANH HOA  HCMC  DAK LAK 

     (N = 19335)  (N = 4390)  (N = 5053)  (N = 5753)  (N = 4139) 

SumNegLLH 
(C=1) 

71504.04  15812.88  18726.69  21496.01  15432.06 

Δ
B
IC
 

1 to 2  ‐826.40  ‐170.79  ‐182.44  ‐215.33  ‐208.86 

2 to 3  ‐410.07  ‐74.55  ‐79.83  ‐137.95  ‐131.34 

3 to 4  ‐318.12  ‐66.76  ‐56.37  ‐77.14  ‐32.68 

4 to 5  ‐19.87  ‐18.32  8.68  16.82  6.10 

5 to 6  ‐27.42  2.13  24.23  9.57  ‐2.59 
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Figures	Captions	

	

Figure	1:	Antibody	titer	histograms	for	n	=	20,152	individuals,	plotted	for	all	ages	(top	panels)	and	

by	age	group	 (bottom	 four	panels).	 	Titers	 shown	are	 to	 the	HA1	components	of	 the	2009	H1N1	

pandemic	influenza	virus	(left	column)	and	to	recently	circulating	H3N2	viruses	(right	column).	The	

fractions	of	individuals	with	titers	below	the	detection	limit	of	20	and	above	1280	that	were	out	of	

the	plotting	ranges	are	given	next	to	the	respective	bar.	Histograms	were	weighted	to	adjust	for	age	

and	gender	according	to	the	Vietnam	national	housing	census	in	2009	for	the	four	collection	sites.	

 

Figure	 2:	 Titer	 histograms	 for	 2009	H1N1,	 showing	 fit	 results	 for	mixture	models	with	 different	

numbers	of	normal	components	(top	to	bottom;	the	label	to	the	left	of	the	y‐axis	is	the	number	of	

mixture	components)	and	grouped	by	collection	sites.		Histograms	are	weighted	to	adjust	for	age	and	

gender	according	to	the	Vietnam	national	housing	census	in	2009	for	each	of	the	four	collection	sites.		

The	 blue	 lines	 in	 each	 panel	 are	 the	 normalized	 probability	 density	 functions	 of	 the	 component	

distributions	 with	 darker	 colors	 used	 for	 increasing	 μ.	 	 The	 black	 lines	 show	 the	 full	 mixture	

distribution	density,	 and	 the	black	dots	 are	 the	 estimated	 cumulative	distribution	of	 the	mixture	

models	at	7.0	(titer	of	1280).	The	numbers	in	the	upper	right	corner	of	each	panel	are	the	BIC	scores	

of	the	model	fits.	The	fractions	of	individuals	with	titers	below	the	detection	limit	of	20	and	above	

1280	that	were	out	of	the	plotting	ranges	were	given	next	to	their	respective	bars.		

 

Figure	 3:	 Visualization	 of	model	 selection	 process	 for	 2009	H1N1	 titer‐distribution	models	 from	

Figure	2.	The	y‐axes	show	the	 fitted	values	of	wi	 (mixture	weights),	 	μi	(means),	and	σi	 (standard	

deviations).	Components’	shades	were	ranked	from	lightest	to	darkest	in	the	order	of	increasing	μ.		

In	the	top	panel,	the	“0th	component”	represents	the	point	mass	w0	placed	at	20	for	titers	below	the	

lower	 detection	 limit	 of	 20.	 Note	 that	 in	many	 cases	 for	 five	 or	 six	 components,	 the	weights	 or	

standard	deviation	parameters	are	close	to	zero;	for	some	cases,	two	of	the	inferred	mean	parameters	

are	very	close	to	each	other.		

	

Figure	4:		ROC	curves	for	H1N1	using	four	mixture	components,	presented	as	in	te	Beest	et	al	[38].		A	

titer	cut‐off	is	determined	to	have	a	particular	sensitivity	and	specificity	based	on	how	well	it	sorts	

individuals	 into	 the	 different	 mixture	 components,	 with	 the	 fourth	 component	 representing	

positivity.		In	the	left	panel,	the	mixture	distribution	for	all	sites	is	used.		The	titers	indicated	on	the	

curve	show,	from	left	to	right,	99%	specificity,	95%	specificity,	90%	sensitivity,	95%	sensitivity,	and	

99%	sensitivity.		In	the	right	panel,	mixture	distributions	for	individual	sites	are	used.		The	indicated	

titers	show	90%	sensitivity	and	95%	sensitivity.		Abbreviations:	DL,	Dak	Lak;	HC,	Ho	Chi	Minh	City;	

KH,	Khanh	Hoa;	HU,	Hue.	
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Figure	5:	Titer	histograms	and	fit	results	for	mixture	models	with	different	numbers	of	components	

(label	 on	 the	 left	 is	 the	 number	 of	 mixture	 components)	 and	 grouped	 by	 different	 age	 groups	

recommended	by	the	CONCISE	(http://consise.tghn.org/)	for	2009	H1N1	influenza.		Histograms	are	

weighted	to	adjust	for	age	and	gender	according	to	the	Vietnam	national	housing	census	in	2009.	The	

numbers	in	the	upper	right	corner	of	each	panel	are	the	fitted	BIC	scores	of	the	respective	model.		For	

each	panel,	the	blue	lines	are	the	normalized	probability	density	of	the	component	distributions	with	

darker	colors	used	for	increasing	μ.	Black	lines	are	the	total	mixture	distribution	density;	and	the	

black	dots	are	estimated	probability	weight	of	the	mixture	model	for	titers	≥	7.0.	The	fractions	of	

individuals	with	titers	below	the	detection	limit	of	20	and	above	1280	that	were	out	of	the	plotting	

ranges	are	shown	right	next	to	their	respective	bars.	
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