
Knowledge-Guided Gene Prioritization 

 

Knowledge-Guided Prioritization of Genes Determinant of Drug Response 

Reveals New Insights into the Mechanisms of Chemoresistance 

 

Amin Emad, Ph.D., Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-

Champaign, Urbana, IL 61801. Email: emad2@illinois.edu 

 

Junmei Cairns, Ph.D., Department of Molecular Pharmacology and Experimental Therapeutics, 

Mayo Clinic, Rochester, MN 55905. Email: cairns.junmei@mayo.edu 

 

Krishna R. Kalari, Ph.D., Department of Health Sciences Research, Mayo Clinic, Rochester, MN 

55905. Email: Kalari.Krishna@mayo.edu 

 

Liewei Wang, M.D., Ph.D., Department of Molecular Pharmacology and Experimental 

Therapeutics, Mayo Clinic, Rochester, MN 55905. Email: Wang.Liewei@mayo.edu 

 

Saurabh Sinha, Ph.D., Department of Computer Science and Institute of Genomic Biology, 

University of Illinois at Urbana-Champaign, Urbana, IL 61801. Email: sinhas@illinois.edu 

 

Corresponding Authors: 

Saurabh Sinha      Liewei Wang 

2122 Siebel Center      Gonda 19, Mayo Clinic Rochester 

201 N. Goodwin Ave,      200, 1st St. SW, 

Urbana, IL 61801. USA.     Rochester, MN 55905. USA. 

Phone: 217-333-3233      Phone: 507-284-5264 

Email: sinhas@illinois.edu     Email: Wang.Liewei@mayo.edu 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/090027doi: bioRxiv preprint 

https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027
https://doi.org/10.1101/090027


Knowledge-Guided Gene Prioritization| 1 

  

ABSTRACT 

Background: Identification of genes whose basal mRNA expression predicts the sensitivity of 

tumor cells to cytotoxic treatments can play an important role in individualized cancer medicine. 

It enables detailed characterization of the mechanism of action of drugs. Furthermore, screening 

the expression of these genes in the tumor tissue may suggest the best course of 

chemotherapy or a combination of drugs to overcome drug resistance. 

Results: We developed a computational method called ProGENI to identify genes most 

associated with the variation of drug response across different individuals, based on gene 

expression data. In contrast to existing methods, ProGENI also utilizes prior knowledge of 

protein-protein and genetic interactions, using random walk techniques. Analysis of two 

relatively new and large datasets including gene expression data on hundreds of cell lines and 

their cytotoxic responses to a large compendium of drugs revealed a significant improvement in 

prediction of drug sensitivity using genes identified by ProGENI compared to other methods. 

Our siRNA knockdown experiments on ProGENI-identified genes confirmed the role of many 

new genes in sensitivity to three chemotherapy drugs: cisplatin, docetaxel and doxorubicin. 

Based on such experiments and extensive literature survey, we demonstrated that about 73% 

our top predicted genes indeed modulate drug response in selected cancer cell lines. In 

addition, global analysis of genes associated with groups of drugs uncovered pathways of 

cytotoxic response shared by each group. 

Conclusions: Our results suggest that knowledge-guided prioritization of genes using ProGENI 

reveals new insights into the mechanisms of drug resistance and identifies genes to overcome 

this phenomenon. 

 

Keywords: Chemoresistance, chemotherapy, drug sensitivity, gene interaction network, gene 

prioritization, network-based algorithm 
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BACKGROUND 

The goal of gene prioritization is to rank genes with respect to their relationship to a phenotype 

(e.g., occurrence of a disease, response to a drug, etc.), providing an experimentalist a way to 

prioritize genetic perturbation tests and leading to discovery of genes affecting the phenotype 

[1]. In the context of drug design and drug sensitivity, various gene prioritization techniques 

have been used to identify drug targets, reveal mechanisms of actions (MoAs) of drugs, and 

identify genes associated with drug response, as well as for drug repositioning [2-5]. 

It has been previously shown that gene expression is the most informative currently available 

‘omic’ feature with respect to drug sensitivity prediction [6], and it has been also successfully 

used to predict drug response in large clinical studies [7]. Basal gene expression of cancer cell 

lines (CCLs) has been used to rank genes by their role in cytotoxic drug resistance, utilizing 

correlation analysis [2, 8-11] or feature selection and regression techniques [12-16] to 

statistically associate drug response with gene expression profiles of cell lines. At the same 

time, many genes with key roles escape identification based on expression profiling alone, due 

to the complexity of drug MoA and noisy data [2], and due to the fact that current methods 

overlook known functional and biochemical relationships among genes involved in the drug 

MoA. Indeed, several studies have shown that utilizing such prior knowledge can improve gene 

prioritization based on identification of differentially expressed genes in drug-treated CCLs [3, 5, 

17-19]. We posited therefore that knowledge-guided techniques should also improve analysis of 

basal gene expression data for identifying genes involved in drug MoA and drug sensitivity.  

Although many aspects of drug MoA can be uncovered through analysis of drug-perturbed gene 

expression in CCLs [3, 5, 17-19], analysis of basal gene expression is valuable because it 

sheds light on the relationship between the cell’s resting physiological state and its drug 

sensitivity. In addition to the direct targets of a compound, genes and proteins involved in the 
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processes that precede and follow the binding of the compound to its targets also play a crucial 

role in the compound's MoA [20], and variations in their expression levels may underlie 

individual variations in drug response, even if they are not found to be differentially expressed in 

response to drug treatment. Thus, our primary goal here was not to identify biochemical targets 

of a drug or genes whose expression are affected by the drug, but rather to identify genes 

whose basal expression predicts the drug response. Over- or under-expression of specific 

genes can be experimentally shown to influence drug sensitivity [21, 22], but performing these 

experiments for all genes is infeasible and computational methods that can suggest candidates 

for such tests are necessary. Shortlisting such genes can provide complementary insight into 

the MoAs of a drug, offer a better understanding of drug resistance mechanisms, suggest novel 

targets to overcome drug resistance, and identify biomarkers of drug resistance.  

We describe here a novel knowledge-guided gene prioritization algorithm called Prioritization of 

Genes Enhanced with Network Information (ProGENI), that discovers the relationship between 

basal gene expression and drug response while incorporating prior knowledge in the form of an 

experimentally verified network of protein-protein interactions (PPI) and genetic interactions. We 

used the ProGENI gene prioritization technique to analyze two large and relatively new 

datasets, one that includes nearly 300 human lymphoblastoid cell lines (LCLs) and another that 

spans over 600 CCLs of different tissues-of-origin. We employed a systematic way to evaluate 

different methods for gene prioritization and demonstrated the advantage of the ProGENI 

method. In addition, we used siRNA knockdown experiments to confirm the role of the highly 

ranked genes in drug sensitivity for three cytotoxic treatments widely used in chemotherapy. 

The results of our analysis demonstrate ProGENI to be a powerful computational technique for 

identifying genes that play key roles in determining drug response.  
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RESULTS 

A network-based method of gene prioritization from basal expression and phenotype 

data 

In a recent study, Rees et al. [2] identified the genes most associated with drug response 

variation in a collection of cell lines based on Pearson’s correlation coefficient (PCC) between 

basal gene expression and response, one gene at a time. We call this the ‘Pearson correlation’ 

scheme (or PCC) for gene prioritization. As an alternative to this ‘single gene’ analysis, we used 

the Elastic Net algorithm [12, 15] to perform linear regression on the drug response against the 

expression levels of all genes, employing regularization to enforce sparsity of features and thus 

learn the most relevant genes. Henceforth, we call this the ‘Elastic Net’ scheme (or EN). See 

Supplemental Methods in Additional file 1 for details. 

We then developed a new method called Prioritization of Genes Enhanced with Network 

Information (ProGENI) that incorporates a network of known biological relationships among 

genes in the gene prioritization task. The method is illustrated in Fig. 1A. It is given a gene 

expression matrix with genes as columns and samples as rows, and a network with genes as 

nodes and inter-gene relationships as edges. It first performs a ‘network-based smoothing’ [23, 

24] of the expression matrix so that the transformed expression value of a gene also reflects the 

activity level of the gene’s network-neighborhood (see Methods). Next, it identifies a pre-set 

(say m) number of genes with the highest correlation (both positive and negative) between the 

transformed expression values and the given phenotype measurements on samples; these are 

called the ‘response-correlated genes’ (RCGs). Then, it performs a random walk with restarts 

(RWR) on the network, using the genes from the previous step as the restart set, to obtain an 

equilibrium probability distribution on all the nodes of the network. These probabilities are then 

normalized with respect to a global equilibrium distribution over all gene nodes that does not 

depend on the RCG set. Finally, the normalized score for each node is used as the ranking 
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criterion. This approach places the strongest RCGs at or near the top of the list, but the 

algorithm also makes use of prior knowledge encoded in the network.  

 

Figure 1: Overview of computational pipelines. (A) ProGENI: An RWR is used to obtain a vector representation of 
each gene and is used to perform a network transformation on the gene expressions. The response-correlated genes 
(RCGs) are identified as 100 genes whose transformed expressions have the highest absolute PCC with the drug 
response. An RWR is used to score each gene based on similarity to the RCG. These scores are then normalized to 
remove the network bias. (B) Robust ranking: 80% of the cell lines are selected randomly and used with a 
prioritization method to obtain a ranked list of genes. This procedure is repeated r times and the acquired ranked lists 
are aggregated to obtain a final ranked list. (C) Cross-validation scheme: a nonlinear support vector machine is 
trained on the training set using the top 500 genes to predict drug sensitivity of the test set and evaluate the accuracy 
of prediction. 
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To make the reported gene rankings more robust to the effect of noise in the data, we used a 

bootstrap sampling technique (illustrated in Fig. 1B, also see Methods), whereby prioritization is 

performed repeatedly on randomly selected subsets of samples and the resulting ranked lists 

are aggregated to produce the final ranking of genes. Henceforth, we use the name ‘Robust-

ProGENI’ whenever we refer to this bootstrapping scheme and the name ‘ProGENI’ for the 

basic method without bootstrapping.  

 

Genes prioritized by ProGENI are more predictive of cytotoxic response than alternatives 

that do not use network information 

We sought to identify the genes associated with individual variation in sensitivity to cytotoxic 

treatments. Towards this goal, we obtained gene expression and cytotoxic response data (EC50 

values for 24 treatments) on approximately 300 LCLs from [25, 26] (see Methods). We analyzed 

this LCL dataset with ProGENI, using a network obtained from the STRING database [27] 

based on protein-protein and genetic interaction data, and focusing on one treatment at a time.  

In order to evaluate the gene ranking provided by this method and other prioritization methods 

(Pearson correlation or Elastic Net), we used a support vector regression (SVR) algorithm to 

predict cytotoxic response from expression levels of the top 500 ranked genes, and assessed its 

accuracy with 5-fold cross-validation (see Methods and Fig. 1C).  We used this evaluation setup 

to make sure that influential factors such as the regression algorithm and the number of used 

features are the same for all methods and our setup only evaluates the prioritization 

performance of these methods. This cross validation scheme was repeated 50 times, resulting 

in 250 assessments. In each assessment, the performance of the SVR was summarized using 

the ‘scaled probabilistic concordance index’ (SPCI) [6]. This measure ranges between 0 (bad) 
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and 1 (good) and was specifically developed to compare drug sensitivity prediction algorithms in 

the DREAM 7 challenge (see Supplemental Methods in Additional file 1).  

 

Figure 2: The performance of drug sensitivity prediction based on ProGENI-SVR compared to the baseline methods 
(PCC-SVR, EN-SVR, EN, and Bayesian multitask-MKL) using the LCL dataset for all drugs. The y-axis shows the 
SPCI corresponding to ProGENI-SVR while the x-axis shows the SPCI corresponding to the baseline. Each point in 
the scatter plot corresponds to the average SPCI value of the test sets for a single drug. The p-values are calculated 
using one-sided Wilcoxon signed rank test. A) Performance of ProGENI-SVR vs. PCC-SVR. B) Performance of 
ProGENI-SVR vs. EN-SVR. C) Performance of ProGENI-SVR vs. EN. D) Performance of ProGENI-SVR vs. Bayesian 
multitask-MKL. 

 

To compare the overall performance of ProGENI with baseline methods, we used the average 
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SPCI values on the 250 test sets between ProGENI and the baseline methods, separately for 

each treatment, using a two-sided Wilcoxon signed rank test adjusted for multiple comparisons. 

Since samples used in different test sets are not completely distinct, the independence 

assumption of the per-treatment statistical test above may be violated. Therefore, we also 

defined a measure called Percent of Improved Folds (PIF) as the percent of test sets for which 

ProGENI outperformed the baseline for any given treatment. According to these measures, 

ProGENI-SVR predictions were significantly better (PIF > 55%, FDR < 0.05) than the PCC-SVR 

for 14 (of 24) treatments and better than EN-SVR for 20 treatments; on the other hand, six 

treatments for PCC-SVR and three for EN-SVR showed the opposite trend (PIF < 45%, FDR < 

0.05) (Table 1 and Supplemental Figs. S1 and S2 in Additional file 1). Figs. 3A and 3B show 

SPCI measures for these two prioritization schemes over all 250 test sets, for five treatments. 

In addition to these evaluations, we also compared our results with two other methods: (1) EN 

where the number of features is not limited to top 500 and the predictions are performed using 

the best linear model (as opposed to using SVR) and (2) Bayesian Multitask-MKL [6], the 

winning method of the DREAM 7 challenge (see Supplemental Methods for details). Bayesian 

Multitask-MKL is a nonlinear method that uses the expression of all the genes for drug response 

prediction, and therefore cannot be used for gene prioritization. In spite of this, it is useful to 

know how well the model trained on features selected by ProGENI performs against this 

method. As shown in Figs. 2C and 2D, ProGENI-SVR provided significantly better predictions 

compared to both EN (FDR = 7.2 E-5) and Bayesian multitask-MKL (FDR = 7.2 E-5), using the 

average SPCI values of the test sets for each drug. In addition, ProGENI-SVR outperformed 

(PIF > 55%) for 20 drugs and Bayesian multitask-MKL for 22 drugs, while two drugs showed the 

opposite trend (PIF < 45%) for either method (Additional file 2 and Supplemental Figs. S3 and 

S4 in Additional file 1). Next, we asked whether using the top 500 features identified and 

transformed by ProGENI improves the performance of Bayesian multitask-MKL. We found this  
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Figure 3: The performance of drug sensitivity prediction based on ProGENI compared to the baseline methods using 
the LCL (A, B) and GDSC (C, D) datasets for a selection of drugs. The y-axis shows the SPCI corresponding to 
ProGENI while the x-axis shows the SPCI corresponding to the baseline. Each point in the scatter plot corresponds to 
one random choice of training/test set. The color of each point represents the density of points in that region: a dark 
red color on a point means that the point is surrounded by many other points, while a blue color on a point means that 
the point is isolated. The FDR is calculated using a one-sided Wilcoxon signed rank test corrected for multiple tests. 
A) Performance of ProGENI-SVR vs. PCC-SVR for the LCL dataset. B) Performance of ProGENI-SVR vs. EN-SVR 
for the LCL dataset. C) Performance of ProGENI-SVR vs. PCC-SVR for the GDSC dataset. D) Performance of 
ProGENI-SVR vs. EN-SVR for the GDSC dataset. 
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to be the case (p-value = 8.4E-4, one-sided Wilcoxon signed rank test on the average SPCI for 

each drug); in addition, for 18 drugs ProGENI-Bayesian-multitask-MKL outperformed Bayesian 

multitask-MKL, while only for three drugs the trend was opposite (Additional file 2).  

To gain further confidence in the above observations, we proceeded to repeat the evaluation on 

a completely different dataset. We obtained drug response data in the form of IC50 values for  

Treatment ProGENI-SVR > PCC-
SVR? (FDR, PIF) 

ProGENI-SVR >  
EN-SVR? (FDR, PIF) 

Average SPCI 
(ProGENI-SVR) 

Average SPCI 
(PCC-SVR) 

Average SPCI 
(EN-SVR) 

doxorubicin Yes (3.94E-11, 71.2%) Yes (2.79E-38, 93.2%) 0.660 0.641 0.498 

MPA Yes (4.49E-24, 81.2%) Yes (2.63E-12, 71.6%) 0.732 0.714 0.701 

TCN Yes (1.30E-19, 78.8%) Yes (2.54E-5, 60.4%) 0.581 0.522 0.539 

everolimus Yes (1.99E-8, 66%) Yes (2.63E-12, 69.6%) 0.595 0.570 0.554 

docetaxel Yes (1.04E-11, 68.4%) Yes (2.84E-7, 66%) 0.608 0.585 0.579 

oxaliplatin No (1.83E-8, 32.4%) Yes (5.44E-12, 68%) 0.676 0.694 0.633 

epirubicin Yes (2.99E-8, 65.6%) Yes (1.61E-12, 66.8%) 0.646 0.628 0.571 

NAPQI Yes (1.11E-7, 66.8%) Yes (1.47E-2, 56.4%) 0.597 0.575 0.583 

radiation Yes (4.30E-8, 66%) Yes (2.38E-4, 58.8%) 0.583 0.560 0.561 

carboplatin Yes (2.66E-7, 64%) Yes (6.67E-9, 65.2%) 0.615 0.596 0.578 

MTX No (5.52E-3, 42.4%) Yes (2.15E-7, 64%) 0.583 0.588 0.548 

cladribine Yes (5.68E-7, 63.6%) Yes (2.58E-5, 62.4%) 0.622 0.602 0.597 

arac Yes (5.51E-3, 60.45) Yes (9.13E-8, 63.2%) 0.658 0.650 0.629 

paclitaxel Yes (8.94E-7, 62.8%) Yes (6.83E-5, 61.2%) 0.559 0.542 0.538 

arsenic Yes (4.47E-6, 62.4%) Yes (1.47E-2, 57.2%) 0.530 0.513 0.519 

6MP No (1.59E-4, 39.2%) Yes (2.58E-5, 62.4%) 0.627 0.638 0.597 

rapamycin Yes (3.56E-7, 61.2%) Yes (8.23E-4, 57.6%) 0.620 0.606 0.602 

6TG No (1.62E-19, 24.8%) Yes (5.33E-4, 60.8%) 0.717 0.746 0.694 

metformin Similar (0.514, 48.4%) Yes (1.87E-3, 60.4%) 0.583 0.584 0.564 

fludarabine Similar (0.655, 46.4%) Yes (7.54E-5, 59.2%) 0.539 0.540 0.512 

TMZ Similar (2.99E-2, 54%) No (4.23E-3, 41.6%) 0.482 0.471 0.496 

hypoxia Similar (0.406, 45.6%) No (4.41E-2, 42.8%) 0.588 0.590 0.600 

cddp No (2.01E-3, 44%) No (5.30E-4, 39.2%) 0.602 0.607 0.621 

gemcitabine No (1.10E-4, 37.2%) excluded 0.739 0.745 excluded 

Table 1: Performance of drug sensitivity prediction using 500 features selected by ProGENI compared to 500 
features selected using baseline schemes, for the LCL dataset. The FDR is calculated using a two-sided Wilcoxon 
signed rank test and corrected for multiple tests. The treatments are sorted based on the largest PIF of the 
improvement obtained using ProGENI compared to any of the baseline schemes. Results in the range 
45%<PIF<55% were considered similar. Gemcitabine was excluded, since for a few training sets the best model 
trained by EN only included the intercept.  
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139 cytotoxic treatments and gene expression data for more than 600 CCLs from the Genomics 

of Drug Sensitivity in Cancer (GDSC) database from 13 tissues of origin [28]. In evaluations 

similar to those above, ProGENI-SVR outperformed the PCC-SVR scheme (PIF > 55%) for 66 

(of 139) treatments and outperformed EN-SVR for 110 treatments (Figs. 3C and 3D, Additional 

file 3), while 45 and five treatments showed the opposite trend for these baseline methods, 

respectively. Using the average performance for each drug, evaluating performance on each 

drug separately, we found ProGENI-SVR to show significant improvement compared to PCC-

SVR (FDR = 9.1E-4) and EN-SVR (FDR = 4.0E-21) using one-sided Wilcoxon signed rank test. 

ProGENI-SVR also showed significantly better performance compared to EN (FDR = 4.2E-18), 

with 97 drugs having PIF > 55% and only eight drugs having PIF < 45% (Additional file 3). 

However, the improvement of ProGENI-SVR compared to Bayesian multitask-MKL was not 

significant (FDR = 0.46). We note, as above, that this comparison does not compare gene 

prioritization performance of the two methods, since the latter method does not lend itself easily 

to identification of the most important (predictive) genes. 

 

Functional validations confirm the role of ProGENI-identified genes in drug response 

We sought to verify whether genes associated with drug response variation (IC50 in the GDSC 

dataset) identified by ProGENI could be linked in vitro to significant changes in drug sensitivity. 

To this end, we selected the top 15 genes identified using Robust-ProGENI for three drugs – 

cisplatin, docetaxel, and doxorubicin – from the GDSC dataset. (These drugs belong to three 

different classes of cytotoxic drugs.) The selections included genes with high Pearson 

correlation (positive and negative) with drug response (henceforth called ‘HPC’ genes), as well 

as genes that were prioritized because their network neighbors’ activity was correlated with drug 

response. As shown in Fig. 4D, four genes for cisplatin, five genes for docetaxel, and eight 

genes for doxorubicin that were ranked among the top 15 by Robust-ProGENI, are not among 
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the top 15 HPC genes. For example, the expression of CSNK2A1, a gene known for its role in 

doxorubicin response, is not highly correlated with the response to doxorubicin; however it is 

directly connected in the network to two HPC genes (NOL3 and ATF1) and also has 23 

neighbors that are directly connected to HPC genes.  

For each identified drug-gene pair, we mined the literature for direct evidence of the gene’s role 

in response to that drug. Out of the 45 pairs examined, we found ‘direct’ literature evidence for 

23 drug-gene pairs in that the gene’s knockdown was previously shown to affect drug sensitivity 

(Table 2 and Additional file 4). For predicted drug-gene pairs that were not validated by 

literature evidence, we performed siRNA knockdown experiments in two different cell lines of 

clinical significance, the human triple negative breast cancer MDA-MB-231 and BT549 cells, 

since these drugs are first-line therapy for triple negative breast cancer. Note that these genes 

were all expressed in these cell lines (Additional file 4). The siRNA knockdowns were performed 

for 21 candidate genes predicted by ProGENI to be associated with doxorubicin (8) docetaxel 

(7), or cisplatin (6), with negative siRNA as a control. The results of these assays for the 21 

drug-gene pairs are shown in Fig. 4 and Supplemental Figs. S10 and S11 (in Additional file 1), 

revealing that 10 of the 21 pairs were validated. Therefore, overall 33 (73%) of our 45 top 

predictions for these three drugs have knockdown-based evidence in their favor. Out of the top 

15 genes identified using ProGENI for their role in cisplatin sensitivity, we found direct literature 

evidence for 9 genes (Table 2A and Additional file 4). For example, CLDN3 (Claudin-3) 

(ProGENI rank 4), a gene that is involved in tight junction-specific obliteration of the intercellular 

space, has been shown to regulate sensitivity to cisplatin by controlling expression of cisplatin 

influx transporter CTR1; in addition, knockdown of CLDN3 has been shown to increase 

resistance to cisplatin in human ovarian carcinoma cells in both in vitro culture and in vivo 

xenograft model [29]. As another example MMP2, a member of the matrix metalloproteinase 

family involved in the breakdown of the extracellular matrix, was ranked 9 using ProGENI, while 
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Figure 4: Dosage-response curves for the genes identified using Robust-ProGENI which showed significant change 
compared to control for (A) cisplatin, (B) docetaxel, and (C) doxorobicin in BT549 and MDA-MB-231 cell lines. P-
values are calculated using a two-tailed unpaired t-test. D) The interaction network of genes highly ranked using 
Robust-ProGENI (green circles), genes highly ranked using Pearson correlation analysis (HPC) (circles with red 
border), and the shared neighbors of these two groups (small grey circles with no borders). Edges correspond to 
experimentally obtained PPI and genetic interactions extracted from STRING database; only edges with high affinity 
scores (>500) are depicted. The degree of a gene that is highly ranked using ProGENI but not among the HPC genes 
(green circle with no border) shows the number of its HPC neighbors and the number of its shared neighbors with 
HPC genes. These figures are drawn using Cytoscape [89]. 
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Pearson correlation analysis did not place it among the top 15. An inhibitor of MMP2 has been 

shown to significantly increase cytotoxicity in cisplatin resistant ovarian carcinoma cell line, 

A2780cis [30]. In addition to the 9 (of 15) genes with direct literature evidence, our own 

experiments revealed that knockdown of three of the remaining 6 predicted genes, TUBB6, 

DYNC2H1, and ELK3, significantly sensitized both cell lines to cisplatin treatment (Fig. 4A). β-

tubulin, of which TUBB6 is a sub-type, plays a prominent role in cell survival allowing cancer 

cells to survive, and these cell survival pathways can also be responsible for resistance to 

chemotherapy [31]. Suppression of ELK3 induces sensitivity of MDA-MB-231 cells to 

doxorubicin treatment by inhibiting autophagy [32]. However, no previous study had linked these 

three genes to cisplatin sensitivity, making our experimental validation a novel finding. 

Among the top 15 genes identified using ProGENI for docetaxel, we found direct literature 

evidence for 8 genes (Table 2B and Additional file 4). For example, YAP1 (yes-associated 

protein 1) (ProGENI rank 2) regulates genes involved in cell proliferation and apoptosis; 

induction of this gene has been shown to induce resistance to docetaxel, and its knockdown has 

been shown to sensitize esophageal cancer cells to this drug [33]. Knockdowns of three of the 

seven remaining genes, GNG12, FSTL1, and ST5, significantly increased docetaxel sensitivity 

in both MDA-MB-231 and BT549 cells (Fig. 4B). These three genes are differentially expressed 

in some cancers. For example, GNG12 is found to be down-regulated in endometrial cancer 

[34]. FSTL1 was found to be downregulated in v-myc and v-ras oncogene-transformed cells, 

with a possible role in carcinogenesis [35], poor prognosis of glioblastoma [36], and progression 

of prostate cancer [37]. ST5 (DENND2B) activates guanosine triphosphatase Rab13 at the 

leading edge of migrating cells and promotes metastatic behavior [38]. However, none of these 

three genes were previously known to affect docetaxel sensitivity. 
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A 

Gene Symbol Rank (ProGENI) Rank (Pearson) 
Absolute value of 

Pearson 
correlation 
coefficient 

Evidence 

TUBB6 2 2 0.2759 Direct (this study) 
DYNC2H1 3 4 0.2680 Direct (this study) 

CLDN3 4 7 0.2602 Direct (literature) 
SPARC 5 8 0.2574 Direct (literature) 
GJA1 6 6 0.2623 Direct (literature) 
ITGA5 7 11 0.2466 Direct (literature) 
TPM2 8 9 0.2567 Direct (literature) 
MMP2 9 37 0.2160 Direct (literature) 
AXL 12 15 0.2373 Direct (literature) 
ENG 13 47 0.2089 Direct (literature) 
ELK3 14 13 0.2394 Direct (this study) 
TIMP1 15 29 0.2207 Direct (literature) 
FSCN1 1 1 0.2879 Not found 
FHL3 10 10 0.2477 Not found 

MMP14 11 39 0.2143 Not found 
 

B 

Gene Symbol Rank (ProGENI) Rank (Pearson) 
Absolute value of 

Pearson 
correlation 
coefficient 

Evidence 

CAV1 1 8 0.3713 Direct (literature) 
YAP1 2 1 0.4148 Direct (literature) 

WWTR1 3 4 0.4075 Direct (literature) 
AXL 6 2 0.4098 Direct (literature) 

MMP14 7 22 0.3525 Direct (literature) 
CYR61 9 6 0.3791 Direct (literature) 
CAV2 10 16 0.3566 Direct (literature) 

GNG12 11 5 0.3792 Direct (this study) 
CTSB 12 27 0.3462 Direct (literature) 
FSTL1 14 17 0.3557 Direct (this study) 

ST5 15 7 0.3782 Direct (this study) 
PDGFC 4 13 0.3659 Not found 
PTRF 5 3 0.4094 Not found 
ITGB5 8 21 0.3534 Not found 
PLAU 13 110 0.3033 Not found 

 

C 

Gene Symbol Rank (ProGENI) Rank (Pearson) 
Absolute value of 

Pearson 
correlation 
coefficient 

Evidence 

ATF1 1 1 0.2000 Direct (this study) 
MIS12 2 4 0.1887 Direct (this study) 

OSBPL2 5 6 0.1865 Direct (this study) 
CSNK2A1 7 1587 0.0752 Direct (literature) 

PSIP1 (LEDGF) 8 46 0.1537 Direct (literature) 
CAMK2A 9 6991 0.0157 Direct (literature) 
CSNK2A2 10 4870 0.0347 Direct (literature) 
GOSR1 11 6867 0.0167 Direct (this study) 
MAPK8 13 7574 0.0112 Direct (literature) 
CREB1 15 665 0.1000 Direct (literature) 
NOC3L 3 3 0.1893 Not found 
IL27RA 4 2 0.1911 Not found 
MGEA5 6 7 0.1814 Not found 
WAPAL 12 8 0.1805 Not found 

SPI1 14 6287 0.0217 Not found 
 

Table 2: Experimental evidence for top 15 genes identified using ProGENI from the GDSC dataset for (A) cisplatin, 
(B) docetaxel, and (C) doxorubicin. The first column shows the gene symbols, the second column shows the rank of 
each gene using Robust-ProGENI, the third column shows the rank of each gene using the Pearson correlation 
scheme, the forth column shows the absolute value of the PCC, and the fifth column shows the nature of the 
evidence.  
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We also found direct literature evidence for 7 genes among the top 15 genes for doxorubicin 

(Table 2C and Additional file 4). As an example, CSNK2A1 (Casein Kinase 2 Alpha 1) and its 

paralog CSNK2A2 are serine/threonine protein kinases that have regulatory roles in cell 

proliferation, differentiation and apoptosis. Both of these genes were ranked among the top 15 

for doxorubicin using ProGENI, while Pearson correlation analysis places them at ranks 1587 

and 4870, respectively. Several studies have shown the role of these genes in resistance to 

doxorubicin and the synergistic effect between their inhibition and cytotoxicity of doxorubicin 

[39-43]. As another example, Daugaard et al. have shown that the ectopic expression of PSIP1 

(LEDGF) (ProGENI rank 8) protects MFC-7 cells against several cytotoxic drugs including 

doxorubicin [44]. Through siRNA knockdown experiments, we found that three genes out of the 

eight remaining ‘top 15’ predictions for doxorubicin - ATF1, MIS12, and OSBPL2 - changed 

doxorubicin sensitivity in both MDA-MB-231 and BT549 cells (Fig. 4C and 4D). Knockdown of 

ATF1 and MIS12 significantly desensitized both cell lines to doxorubicin treatment, while 

knockdown of OSBPL2 significantly sensitized both cell lines to doxorubicin treatment. 

Additionally, knockdown of GOSR1 also increased doxorubicin sensitivity in BT549 cells, but 

had less effect on doxorubicin response in MDA-MB-231 cells. ATF1, a negative regulator of 

apoptosis, is upregulated in metastatic melanoma cells, and inactivation of ATF1 in melanoma 

cells resulted in inhibition of tumor growth and metastasis in vivo [45]. The MIS12 complex 

makes an important contribution to kinetochore assembly during cell division [46]. Defects in 

kinetochore proteins often lead to aneuploidy and cancer. However, no previous study had 

linked these genes to doxorubicin sensitivity.  

Finally, we note that though several of associations were not corroborated experimentally in 

selected CCLs, this is expected to an extent as the selection of CCLs was based on clinical 

indications for each drug and gene transcription regulation is often cell type specific. 
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Genes highly ranked for many drugs point to common pathways of cytotoxic response 

Close examination revealed that some genes are highly ranked for many treatments. Additional 

file 5 contains a list of 137 genes that were among the top 500 Robust-ProGENI-identified 

genes for at least 40 (over a quarter of 139 studied) treatments in the GDSC dataset. Functional 

enrichment analysis using DAVID [47]) (Additional file 5) revealed that these genes are involved 

in regulation of cell proliferation (43 genes, FDR = 9.19 E-18 using Fisher exact test) and 

regulation of cell death (28 genes, FDR = 1.67 E-5), which can be explained by the cytotoxic 

nature of the considered drugs. On the other hand, some of these genes encode proteins that 

are involved in different processes at the cell surface, such as plasma membrane (76 genes, 

FDR = 4.05E-08) and cell surface receptor linked signal transduction (54 genes, FDR = 2.33 E-

11). Several studies have shown the involvement of plasma membrane components in 

multidrug-resistance (MDR) [48-50], and transport through the cell membrane, particularly 

vesicular transport (exosomes), has been linked to resistance to cytotoxic drugs [50]. Other 

enrichments include cell adhesion (45 genes, FDR = 1.11 E-21) and focal adhesion (40 genes, 

FDR = 5.11 E-28) and particularly the integrin family (19 genes, FDR = 3.17 E-18), which has 

been shown to play an important role in drug resistance [51, 52].  

Seeking additional global insights about common drug-associated genes, we next formed a 

drugs x genes matrix indicating the top 500 genes identified for each drug, and used 

agglomerative clustering to identify four dense biclusters of drugs and genes that are associated 

with each other (Fig. 5A and Additional file 6). We performed pathway enrichment analysis on 

the genes in each bicluster, using DAVID (Figs. 5B-E). We noted that one of the biclusters (Fig. 

5C) includes genes enriched in the MAPK signaling pathway (FDR = 6.72 E-12). This bicluster 

includes drugs such as ABT-263, AICAR, ATRA, bicalutamide, IPA3, lenalidomide, 

methotrexate, nilotinib, PAC1, Vorinostat, and VX-702 for which either the inhibition of the  
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Figure 5: Agglomerative clustering results applied to all drugs and their Robust-ProGENI identified genes from the 
GDSC dataset. A) Clusters formed for drugs and genes. Rows of the matrix correspond to different drugs and 
columns correspond to different genes. Only columns (genes) with variance larger than 0.1 were used in the analysis 
(1177 genes). B, C, D, E) Enriched pathways identified for 4 cluster of genes using DAVID. Pathways with Benjamini-
Hochberg corrected p-value <0.1 were sorted based on the number of shared genes and top entries were kept. 
Columns correspond to genes and rows correspond to pathways, with red indicating that the gene is annotated with 
that pathway name. 
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MAPK signaling pathway affects drug-resistance, or this pathway is involved in their MoA [53-

63]. Another bicluster (Fig. 5D) includes genes enriched in the Wnt signaling pathway, and 

drugs such as QS11, doxorubicin, etoposide, OSU03012, thapsigargin, and tipifarnib, whose 

association with the Wnt signaling pathway has been confirmed in previous studies [64-69]. We 

also observed a bicluster (Fig. 5E) with a group of MEK inhibitors (AZD6244, CI-1040, PD-

0325901, RDEA119) and genes enriched in the inflammation response pathways, consistent 

with prior reports of MEK inhibition resulting in anti-inflammatory response [70]. To summarize, 

examination of a global map of drug-gene associations predicted by ProGENI reveals sub-

groups of similarly acting compounds and pathways involved in their MoA. 

 

Systematic performance analysis of ProGENI  

ProGENI utilizes an interaction network consisting of different protein-protein and genetic 

interactions from the STRING database. To test the sensitivity of this algorithm to the choice of 

network, we formed a PPI network containing genetic interactions (GI), colocalizations (CO) and 

molecular associations (MA) from three databases: BioGRID [71], DIP [72], and IntAct [73]. The 

number of edges in this network (called ‘BDI’ henceforth) is approximately one third of the 

number of edges in the STRING network. We used the cross validation evaluation (depicted in 

Fig. 1C) on the LCL dataset to test the effect of changing the network to this new network 

(called BDI henceforth). For all cases, we used SVR with Gaussian kernel as the regression 

algorithm to predict drug response using the identified genes. ProGENI-BDI outperformed the 

PCC scheme (FDR = 3.2E-2, one-sided Wilcoxon signed rank test on the average SPCI for 

each drug). Also, out of the 24 drugs, for 9 drugs the ProGENI-BDI performed better than PCC 

(PIF > 55%), while for only three drugs PCC performed better (PIF < 45%) (Fig. 6A, 

Supplemental Fig. S5, and Additional file 7). On the other hand, ProGENI-BDI had an inferior 

performance compared to ProGENI-STRING (FDR=4.6E-2), but their difference was small when 
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considering number of drugs for which one method is significantly better: ProGENI-STRING 

outperformed ProGENI-BDI for four drugs (PIF > 55%), while ProGENI-STRING performed 

better for only two drugs (PIF < 45%) (Supplemental Fig. S6 and Additional file 7). These results 

show that while the choice of network plays a role in the performance of ProGENI, even a 

network with much smaller number of edges can significantly outperform methods that do not 

use the network information.  

 

Figure 6: A) The performance of ProGENI-SVR with different networks compared to PCC-SVR using all 24 
treatments in the LCL dataset. Color blue in each bar chart represents number of drugs for which the ProGENI-SVR 
performed better than the PCC-SVR (PIF > 55%), while the color red shows the number of drugs for which the trend 
was opposite (PIF < 455). B) The Performance of predicting drug sensitivity of the test sets in the LCL dataset using 
500 features selected by PrOGENI using the LCL dataset (within-dataset) and the GDSC dataset (cross-dataset). 
The box plot shows the distribution of the SPCI values for each drug.   

 

Next, we sought to determine the role of different types of interactions on the performance of 

ProGENI. Of the three interaction types available in the BDI network, ProGENI with only 

molecular association edges had the best performance, while ProGENI with only genetic-

interaction edges had the worst performance: ProGENI-BDI-MA, ProGENI-BDI-CO, and 

ProGENI-BDI-GI performed better than PCC on 11, 7, and 6 drugs (PIF > 55%), respectively, 

while PCC performed better in 3, 5, and 9 drugs (PIF < 45%), respectively (Fig. 6A, 

Supplemental Figs. S7-S9 and Additional file 7). The poor performance of ProGENI-BDI-GI may 

B A 



Knowledge-Guided Gene Prioritization| 21 

  

be due to the small number of edges and genes in that BDI-GI network (only ~ 1.5 K edges 

among ~1.5 K genes).  

Next, we evaluated the performance of ProGENI with the STRING network to its performance 

when using random networks: using the LCL dataset and the STRING network, we randomly 

permuted the interaction network of all genes five times. In all cases, ProGENI-STRING 

outperformed ProGENI with the randomly permuted network (α = 0.05, one-sided Wilcoxon 

signed rank test on the average SPCI for each drug). ProGENI-STRING also outperformed the 

average performance of these five networks (p-value = 2.1E-3, one-sided Wilcoxon signed rank 

test on the average SPCI for each drug). 

Next, we sought to study the effect of different steps in the performance of ProGENI (using the 

LCL dataset and the STRING network). In the first step, ProGENI performs a network 

transformation on the gene expression matrix, ensuring that the value assigned to each gene 

represents its mRNA expression and the activity level of the genes surrounding it in the network. 

We compared ProGENI with another variation called ‘ProGENI-PCC’ in which the absolute 

value of the Pearson correlation coefficient of transformed gene expressions and drug response 

was used to rank the genes. While the average SPCI value over all drugs was higher for 

ProGENI, comparing the average SPCI values for each drug did not show a significant 

difference (p-value = 0.42, one-sided Wilcoxon signed rank test on average SPCI values for 

each drug). In the second step, ProGENI selects a small set of genes (the RCG set) and scores 

genes in the network based on their relevance to this set. The motivation behind this step is that 

due to the noise in the data and the large number of genes compared to samples, it may be 

more reliable to score genes based on a small but high confidence set of genes. While this step 

showed only a slight improvement overall, for some drugs this step showed to be extremely 

important. For example, ProGENI significantly outperformed ProGENI-PCC for MPA (FDR = 
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1.95 E-19, PIF = 78%) and TCN (FDR = 8.3 E-18, PIF = 75.2%) (see Additional file 7). In 

summary, we found that the use of network RWR in the first and second steps improves 

performance, if not always with statistical significance. 

We also evaluated how sensitive the performance of ProGENI is with respect to the size of the 

RCG set. We compared ProGENI (with an RCG set of size 100) to another variation (‘ProGENI-

ACG’) in which all genes were used as the RCG set, with their restart probabilities proportional 

to their absolute Pearson correlation coefficient. While the average SPCI value of ProGENI was 

higher than ProGENI-ACG, the difference was not significant (p-value = 0.41, one-sided 

Wilcoxon signed rank test on average SPCI values for each drug), showing that ProGENI is not 

very sensitive to the size of the RCG set. However, for some drugs selecting a small RCG set 

had a significant effect: for example, ProGENI outperformed ProGENI-ACG for TCN (FDR = 1.3 

E-19, PIF = 75.6%) and MPA (FDR = 2.32 E-22, PIF = 78.4%) (at least for some drugs) (see 

Additional file 7).  

In light of the above evidence in favor of network-guided gene prioritization, we next asked if 

similarly high performance can be obtained by ignoring RCGs altogether, using only the network 

information. This may be possible for instance if network hubs are good predictors of drug 

response in general. We tested this variant method (‘NHDS’), which runs an RWR on the 

network with all nodes as restart set and thus prioritizes genes with high degree or genes in 

dense sub-networks, ignoring drug response data altogether. ProGENI significantly outperforms 

NHDS with p-value = 1.1 E-2 (one-sided Wilcoxon signed rank test on average SPCI values for 

each drug) showing that a combination of network information and information about gene-

phenotype correlations is necessary to achieve the improved performance of ProGENI (see 

Additional file 7). Finally, we tested a variant (‘ProGENI-NH’) that omits the final step of 

adjusting for the global equilibrium distribution over gene nodes (Fig. 1A, Methods), thereby 



Knowledge-Guided Gene Prioritization| 23 

  

potentially advancing the ranks of network hubs. Cross validation evaluation showed ProGENI 

and ProGENI-NH to have very similar performance (p-value = 0.38, one-sided Wilcoxon signed 

rank test on average SPCI values for each drug) (see Additional file 7). However, we noted that 

omitting this step heavily biases the final ranked list towards network hubs (Table 3A), 

regardless of the phenotype being studied.   

 

ProGENI prioritizes drug-specific genes  

We noted above that a network-based prioritization method (ProGENI-NH) may show high 

accuracy in our cross-validation evaluation despite being heavily biased towards network hubs. 

If so, it is also possible that the prioritized genes are not specific to the drug being analyzed. To 

investigate this, we tested whether ProGENI provides a drug-specific ranking of genes. We 

randomly partitioned the LCL cell lines into two groups  of  approximately  equal  sizes and ran 

ProGENI for all drugs on these two sets. Additional file 8 reports the intersection of the top 500 

genes identified for any pair of drugs using ProGENI (or Pearson correlation scheme), averaged 

over 100 repeats of this procedure. An expected sign of drug-specificity is that gene lists for the 

same drug (but based on different subsets of cell lines) have a greater intersection than gene 

lists for different drugs. Indeed, we noted that for 10 of the 24 treatments the intersection 

between gene lists based on different subsets of cell lines was ranked 1 or 2 compared to their 

intersection with gene lists for different drugs (Table 3B). This analysis shows that ProGENI 

provides a drug-specific set of genes. However, the results are not as specific as provided by 

the Pearson correlation scheme (Table 3B), which is expected since the latter relies exclusively 

on response data for each drug. 
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A 

Treatment 
Intersection with 
hubs for ProGENI 

(p-value) 

Intersection with 
hubs for ProGENI-NH  

(p-value) 
6MP 5 (0.82) 186 (5.75E-269) 
6TG 0 (1) 173 (2.10E-235) 
arac 0 (1) 187 (9.61E-272) 

arsenic 4 (0.92) 195 (1.51E-295) 
carboplatin 0 (1) 173 (2.10E-235) 

cddp 4 (0.92) 141 (1.20E-165) 
cladribine 1 (0.99) 195 (1.51E-295) 
docetaxel 3 (0.97) 141 (1.20E-165) 

doxorubicin 12 (0.04) 176 (8.56E-243) 
epirubicin 4 (0.92) 167 (3.82E-221) 

everolimus 8 (0.38) 199 (<1.0E-307) 
fludarabine 0 (1) 197 (3.66E-302) 
gemcitabine 4 (0.92) 176 (8.56E-243) 

hypoxia 38 (3.98E-18) 194 (2.26E-292) 
metformin 5 (0.82) 185 (3.19E-266) 

MPA 15 (0.0038) 100 (6.28E-94) 
MTX 1 (0.99) 182 (3.54E-258) 

NAPQI 2 (0.99) 167 (3.82E-221) 
oxaliplatin 1 (0.99) 163 (5.56E-212) 
paclitaxel 21 (5.30E-06) 175 (2.61E-240) 
radiation 1 (0.99) 199 (<1.0E-307) 

rapamycin 4 (0.916) 192 (3.16E-286) 
TCN 2 (0.99) 194 (2.26E-292) 
TMZ 4 (0.92) 189 (2.08E-277) 

 

B 

Treatment Rank 
(ProGENI) 

Rank 
(Pearson 

correlation) 
6MP 3 1 
6TG 23 5 
arac 9 4 

arsenic 12 12 
carboplatin 5 2 

cddp 8 3 
cladribine 2 3 
docetaxel 1 1 

doxorubicin 2 2 
epirubicin 2 2 

everolimus 12 2 
fludarabine 11 8 
gemcitabine 2 1 

hypoxia 2 1 
metformin 3 7 

MPA 1 1 
MTX 13 18 

NAPQI 11 1 
oxaliplatin 1 1 
paclitaxel 1 1 
radiation 24 24 

rapamycin 2 2 
TCN 11 23 
TMZ 15 16 

 

Table 3: A) Presence of network hubs among the highly ranked genes provided by ProGENI and ProGENI-NH. For 
each treatment, this table shows the size of intersection between the top 500 genes obtained using Robust-ProGENI 
(or Robust-ProGENI-NH) and the set of 200 genes in the network with the highest degree. P-value for the intersection 
is calculated using a hypergeometric test. B) Table of drug-specificity of the top 500 genes identified using ProGENI 
and Pearson correlation scheme using the LCL dataset. A high rank (small entry) shows that the average size of 
intersection between genes identified using the prioritization method on the two sets of cell lines for the same drug is 
larger than the intersection when the drug is compared with other drugs. The geometric means of all ranks for 
prioritization using ProGENI and Pearson correlation are 4.5 and 3.1, respectively. 
 

 

Cross dataset evaluation of ProGENI 

We sought to determine whether drug-associated genes identified using a heterogeneous set of 

cell lines (GDSC dataset) can help predict drug response in a more homogeneous cohort of cell 

lines (LCL dataset). We identified seven drugs shared between these two datasets, applied 

Robust-ProGENI on the GDSC dataset to identify top 500 genes for each drug and evaluated 

these genes on the LCL dataset using the SVR-based cross-validation scheme (Fig. 1C). We 

also compared this cross-dataset evaluation to the ‘within-dataset’ evaluation (Fig. 6B), where 
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top genes are selected using the LCL cell lines in the training set and used to predict the drug 

sensitivity of the LCL cell lines in the testing set. As expected, the within-dataset evaluations 

yield some improvement on the performance compared to the cross-dataset evaluations, 

however this improvement was not statistically significant (p-value = 6.4E-2, one-sided Wilcoxon 

signed rank test on the average SPCI of test sets). In addition, for any given drug the average 

SPCI values for the two schemes were similar (Fig. 6B), suggesting that it is practical to utilize 

gene prioritization results from a diverse cohort such as GDSC in a more specific context such 

as LCLs.  

 

DISCUSSION 

Profiling of cell lines is a promising means to better understand the mechanisms that relate the 

genomic and transcriptomic features to many different phenotypic outcomes [74]. In this study, 

we used both cancer cell lines and LCLs obtained from healthy individuals to identify genes 

whose over/under expression influences drug response of an individual. To achieve this goal, 

we proposed ProGENI, a novel method that integrates information on gene interactions and 

relationships with data on basal mRNA expression and drug cytotoxicity in a panel of cell lines 

to prioritize genes that determine drug sensitivity. We showed that genes prioritized by ProGENI 

can together predict drug response more accurately than top genes identified by a single gene 

method (Pearson correlation [2]) as well as a multiple regression method (Elastic Net). Although 

our main goal in this study was not to develop the best drug response prediction algorithm, and 

we used prediction performance only to compare different prioritization methods, we showed 

that ProGENI-SVR outperforms several widely used prediction algorithms. Even compared to 

the Bayesian multitask-MKL algorithm (the winner of the DREAM 7 challenge), our algorithm 

provides more accurate predictions (on the LCL dataset), or performs as well (on the GDSC 
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dataset), with the added advantage that it can also prioritize most informative genes. We have 

also shown that when features selected and enhanced using ProGENI are used with the 

Bayesian multitask-MKL algorithm, the performance improves on the LCL dataset.  

Several major steps in ProGENI differentiate it from other methods, including existing methods 

that utilize network information. We showed that the network transformation it performs on the 

gene expression matrix enables it to consider the expression of each gene in the context of its 

network neighbors, and greatly improves performance. The systematic removal of network bias 

from the output of RWR in the last step of ProGENI allows it to prioritize drug-specific genes; 

without this step the top ranked genes are significantly enriched in high-degree nodes (network 

hubs), limiting our ability to obtain a complete picture of drug resistance mechanisms, and divert 

our attention to generic, phenotype-independent mechanisms. Similar effects of high-degree 

nodes on network-based analysis have been noted before in other contexts [75]. In addition to 

cross-validation performance, we also used knockdown evidence from the literature and our 

own experiments to confirm the role of many of the ProGENI-identified genes in drug resistance. 

These included genes whose expression had a low correlation with drug response, but the 

activity of their surrounding neighbors had a high correlation.  

Of the 12 genes for which siRNA knockdown did not affect drug sensitivity, eight have 

expression highly correlated with drug response. Since these genes have high phenotype 

correlation both individually and in the context of the interaction network, we speculate that the 

experimental validation failed because these genes are in a family of genes with similar 

function, and knockdown of one member is compensated by other genes in that family, or 

because the role of these genes in drug resistance can only be captured through their 

corresponding pathways, which do not become disrupted by single-gene knockdown. For 

example, both ProGENI and correlation analysis placed PTRF (Cavin-1) as an influential gene 
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for docetaxel-resistance. Cavin-1 is a member of the cavin family proteins, which along with the 

caveolin family are responsible for assembly of caveolae [76]. Although our analysis showed 

that siRNA knockdown of PTRF is not sufficient to affect sensitivity to docetaxel, several studies 

have shown the role of caveolae and the cavin and caveolin protein families on multi drug 

resistance and sensitivity to various drugs including docetaxel [77-80]. We speculate therefore 

that the role of cavin-1 in docetaxel resistance can only be captured in the context of cavin and 

caveolin families and the pathways with which it is associated.  

The modeling techniques we employed in this study can be extended and improved in several 

directions. First, in our analysis we did not consider the similarities between different treatments, 

and the identification of genes for each drug was performed independent of other drugs. 

However, we expect that many of the genes that affect drugs from the same family would be the 

same. As a result, incorporating drug similarity information based on their chemical structure, 

their known targets or known MoAs can improve prediction accuracy [81]. Another area that can 

potentially improve these results is incorporating genomic and epigenomic data in the analysis, 

as has been shown for example in [26, 82]. While gene expression data has been shown to be 

the most informative type of data in predicting drug response (e.g. [6]), inclusion of other types 

of data can provide a more comprehensive picture of genomic properties that are predictive of 

drug response. However, one should note that incorporating such data requires great caution, 

as the drastic increase in number of features necessitates a much larger number of samples to 

recover the signal and avoid over-fitting. While, an increase in the number of samples can be 

obtained by conducting comprehensive experiments and measurements on many cell lines [15], 

an alternative approach is to combine various datasets obtained in different studies. However, 

the success of this approach highly depends on consistency of the combined datasets; 

unfortunately, several studies have shown a lack of consistency between the drug response of 

large public datasets [83]. As a result, new standards and protocols may be necessary to 
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ensure reproducibility in large-scale drug screening studies [84]. In addition, as more accurate 

and comprehensive datasets become available on PPI and genetic interactions among the 

genes, we expect that new aspects of drug resistance mechanism can be uncovered using 

network-based methods. 

Another aspect that should be further explored in future studies is the clinical relevance of the 

identified genes using in vitro datasets. Our results in this study were based on in vitro cell line 

datasets, which have been previously shown to be able to predict the clinical drug response in 

vivo [7] for a few drugs. However, with the emergence of new large datasets [85, 86] which 

include drug response for a large cohort of drugs and samples, the role and predictive ability of 

genes identified in vitro can be systematically evaluated in vivo.  

 

CONCLUSIONS 

We have shown that knowledge-guided gene prioritization using ProGENI is a powerful 

computational technique in identifying genes that play a key role in determining drug response 

and provides deeper insights into mechanisms of drug resistance that cannot be achieved 

otherwise. This method can be used to identify mechanistic aspects of responses to a specific 

drug (e.g., genes, gene sets, or pathways) and find several new candidates for experimental 

validation. Using this approach, for the first time we confirmed the role of 10 novel genes in 

sensitivity of three chemotherapy drugs. The broader applicability of this new method goes 

beyond pharmacogenomics studies: it offers scientists a way to identify gene predictors of any 

phenotype of interest while incorporating prior knowledge about genes and their mutual 

relationships, in a manner that the current de facto standard methods such as correlation 

analysis or regression analysis fail to provide.  
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METHODS 

Data collection 

LCL dataset: We obtained basal gene expression and drug response (half maximal effective 

concentration or ‘EC50’) data on 284 LCLs and 24 cytotoxic treatments from [25, 26]. GDSC 

dataset: We obtained gene expression and drug response (half maximal inhibitory concentration 

or ‘IC50’) data on 624 CCLs from 13 different tissue origins and 139 cytotoxic drugs from the 

Genomics of Drug Sensitivity in Cancer (GDSC) database (release-5.0) [28].  

The gene interaction network used here was obtained form the STRING database [27], and 

consists of genetic interactions, protein associations and protein colocalizations obtained 

experimentally. It includes more than 1.48 M undirected weighted edges (relationships) among 

15,589 nodes (genes). We also obtained a network containing genetic interactions, 

colocalizations and molecular associations from three databases: BioGRID [71], DIP [72], and 

IntAct [73]. This network (called DBI) contained approximately 294 K undirected unweighted 

edges among 20,788 genes. Of these edges there were ~ 1.5 K genetic interactions among 

1,478 genes, ~ 261 K molecular associations among 20,615 genes, and  ~39 K colocalizations 

among 6,565 genes. Note that since two genes may be connected with more than one type of 

edge, we used the union of these three types of edges to find the DBI network. Additional 

details are in Supplemental Methods (in Additional file 1). 

 

Incorporating network information using random walk with restart 

Several steps in the proposed algorithm ProGENI use the random walk with restart (RWR) 

method [87] to incorporate network information in the prioritization task. RWR is a method for 

quantifying the similarity between any given node of a weighted network and a given set of the 

nodes, called the restart set. When at a node, the walker can either move to a neighboring 

node, or it can jump to one of the nodes in the restart set. The probability of each of these 
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decisions is determined by the weights of the adjacent edges and the restart probability 𝑝. The 

equilibrium probability of visiting each node in the network determines the similarity between 

that node and the restart set.  

More formally, let 𝑨 be an 𝑁! × 𝑁! symmetric adjacency matrix of the network (with 𝑁! nodes) 

such that 𝑨(𝑖, 𝑗) determines the weight of the edge between nodes 𝑖 and 𝑗. Also, let 𝑩 be the 

corresponding probability transition matrix obtained by normalizing each column of 𝑨 to sum up 

to 1. Let 𝒗 denote the equilibrium probability of all the nodes. This vector can be obtained 

iteratively using 𝒗(!!!) = (1 − 𝑝)𝑩𝒗(!) + 𝑝𝒘 , where 𝒘  is a probability vector of length 𝑁! 

determining initial probability of restart for each node. An entry in vector 𝒘 is equal to zero if the 

corresponding node is not in the restart set, and is nonzero otherwise. See Supplemental 

Methods (Additional file 1) for the details of the convergence criterion. 

 

Prioritization of genes enhanced with network information (ProGENI) 

ProGENI is a method for gene prioritization that incorporates prior information on gene-gene 

interactions with basal gene expression and drug response data obtained from a large panel of 

samples (Fig. 1A). As input, this algorithm accepts a weighted undirected network of gene-gene 

relationships, a matrix 𝑿 of gene expression data (samples x genes), and a vector 𝒅 of drug 

response values for the samples. First, a 𝑙𝑜𝑔! transformation followed by a Z-transform ensures 

that the expression of each gene across all cell lines follows a distribution with mean of zero and 

variance of one.  

Next, a network transformation is performed on the gene expression matrix 𝑿 to generate a 

‘network-smoothed’ matrix 𝑿′ as described next. Let 𝑁!  denote the number of nodes in the 

network and 𝑁! denote the number of genes shared between the gene expression dataset and 

the network. For each such gene, an 𝑁! dimensional vector representation with respect to other 
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genes in the network is obtained using a random walk with restart (RWR). This representation is 

equal to the vector of equilibrium probabilities, 𝒗!, when the restart set only consists of node 𝑖: 

𝒘(𝑖) = 1 , and 𝒘 𝑗 = 0  for 𝑗 ≠ 𝑖 . Using these vector representations, an 𝑁!×𝑁!  matrix 𝑽  is 

formed, where its 𝑖th column is obtained from 𝒗! by removing entries corresponding to network 

nodes not in the expression dataset and normalizing it to sum to 1. Finally, the network-

smoothed expression matrix is obtained according to 𝑿′ = 𝑿𝑽, followed by a Z-transformation 

on each column.  

Next, we compute for each gene 𝑖 the absolute Pearson correlation coefficient between their 

network-smoothed expression (a column of 𝑿′) and drug response (𝒅), across all samples; this 

is denoted by 𝑟!. Then, ‘response-correlated genes’ (RCGs) are identified as the set of 𝑚 genes 

with the highest values of 𝑟!. The RCG set is used as the restart set in a RWR, in which 

𝒘(𝑖) ∝ 𝑟! if gene 𝑖 is an RCG. The vector 𝒘 is scaled so that it sums to 1 and is used in a RWR 

to generate the equilibrium probability vector 𝒗!"#. In addition, a global equilibrium probability 

vector 𝒗!"#$%" is obtained by performing a RWR on the network, with the same probability of 

restart that was used to obtain 𝒗!"#, and with all the nodes as the restart set (𝒘(𝑖) = 1/𝑁! for all 

𝑖). Finally, 𝒗!"# − 𝒗!"#$%" is used as the ranking criterion for gene prioritization. In this study, we 

used a probability of restart 𝑝 = 0.5 for all RWRs, since this value provides a good balance 

between the local and global topology of the network.  

 

Robust prioritization using bootstrap sampling and Borda rank aggregation 

To obtain rankings robust to noise in the data, we used the bootstrap sampling technique (Fig. 

1B). A pre-specified number of samples (80% of the cell lines) are randomly sampled, and used 

in the prioritization method to obtain a ranked list of genes. This procedure is repeated 𝑁! times 
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(a user specified number) and the geometric mean of the 𝑁! Borda scores obtained for each 

gene is computed and is used as the final ranking criterion [88]. See Supplemental Methods 

(Additional file 1) for more details. 

 

Cross validation scheme for prediction of drug response 

We used a cross validation scheme (Fig. 1C) to evaluate the ability of different prioritization 

methods in identifying genes that determine and predict drug sensitivity. We used a 5-fold cross 

validation procedure, repeated 50 times. In each repeat, the cell lines were randomly grouped 

into 5 folds; 4 folds (80% of the cell lines) were used as the training set and the remaining cell 

lines were used as the testing set. Prioritization methods were used to analyze gene expression 

of cell lines within the training set and identify 500 genes. These genes were then used to train 

a nonlinear support vector regression (SVR) model with Gaussian kernel, using their expression 

values (smoothed expression for ProGENI and original expression for baseline methods) as 

features. (Thus, each cell line was described by a 500 dimensional feature vector.) 

Hyperparameters of the SVR were learnt using a 4-fold cross validation applied inside the 

training set. The trained model was then used with the feature vectors corresponding to the cell 

lines in the test set to predict their drug sensitivity. See Supplemental Methods (in Additional file 

1) for the details on the set of parameters used to train the SVR. Comparisons among methods 

were based on the same cross-validation partitions of cell lines. 

 

Cell culture and treatments for knockdown experiments 

Human triple negative breast cancer MDA-MB-231 and BT549 cell lines were obtained from the 

American Type Culture Collection (Manassas, VA). MDA-MB-231 cells were cultured in L-15 
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medium containing 10% FBS at 37°C without CO2. BT549 cells were cultured in RPMI 1640 

containing 10% FBS at 37°C with 5% CO2.  

Doxorubicin, docetaxel, and cisplatin were purchased from Sigma-Aldrich (St. Louis, MO).  

Drugs were dissolved in DMSO and aliquots of stock solutions were frozen at −80°C. ON-

TARGETplus SMARTpool siRNAs for the candidate genes and negative control siRNA were 

purchased from Dharmacon to prevent off-target effects caused by both the sense and 

antisense strands while maintaining high silencing potency. Reverse transfection was performed 

for MDA-MB231and BT549 cells in 96-well plates. Specifically, 3000–4000 cells were mixed 

with 0.3 µL of lipofectamine RNAi-MAX reagent (Invitrogen) and 10 nM siRNA for each 

experiment. 

Total RNA was isolated from cultured cells transfected with control or specific siRNAs with the 

Qiagen RNeasy kit (QIAGEN, Inc.), followed by qRT-PCR performed with the one-step, Brilliant 

SYBR Green qRT-PCR master mix kit (Stratagene). Specifically, primers purchased from 

QIAGEN were used to perform qRT-PCR using the Stratagene Mx3005P Real-Time PCR 

detection system (Stratagene). All experiments were performed in triplicate with beta-actin as an 

internal control. Reverse transcribed Universal Human reference RNA (Stratagene) was used to 

generate a standard curve. Control reactions lacked RNA template. 

 

MTS cytotoxicity assay 

Cell proliferation assays were performed in triplicate at each drug concentration. Cytotoxicity 

assays with the lymphoblastoid were performed in triplicate at each dose. Specifically, 90 µL of 

cells (5 × 104 cells) were plated into 96-well plates (Corning, NY) and were treated with 

increasing dose of specific drug or Radiation. After incubation for 72 hours, 20 µL of CellTiter 

96® AQueous Non-Radioactive Cell Proliferation Assay solution (Promega Corporation, 
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Madison, WI) was added to each well. Plates were read in a Safire2 plate reader (Tecan AG, 

Switzerland). 

Cytotoxicity assays with the tumor cell lines were performed with the CellTiter 96® AQueous 

Non-Radioactive Cell Proliferation Assay (Promega Corporation, Madison, WI). Specifically, 90 

µL of cells (5 × 103 cells) were plated into 96-well plates and were treated with increasing dose 

of specific drug. The escalation of concentrations is provided in Supplemental Methods 

(Additional file 1). After incubation for 72 hours, 20 µL of CellTiter 96® AQueous Non-

Radioactive Cell Proliferation Assay solution (Promega Corporation, Madison, WI) was added to 

each well. Plates were read in a Safire2 plate reader (Tecan AG, Switzerland). Cytotoxicity was 

assessed by plotting cell survival versus drug concentration (on a log scale). Significance of the 

IC50 values between negative control siRNA and gene-specific siRNA was determined by a 

two-tailed unpaired t-test on three biological replicates.  
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Additional file 5.xlsx: Contains a list of 137 genes that were among the top 500 Robust-

ProGENI-identified genes for at least 40 (over a quarter of 139 studied) treatments in the GDSC 

dataset (sheet 1). Also includes pathway and GO enrichment analysis results of this set (sheet 

2).  

Additional file 6.xlsx: List of genes and drugs in each bicluster corresponding to Fig. 4. Also 

includes pathway enrichment analysis results of each of these biclusters.  

Additional file 7.xlsx: Includes the drug sensitivity prediction obtained using ProGENI with 

different types of network and variations of ProGENI.  

Additional file 8.xlsx: Includes the intersection of the top 500 genes identified for any pair of 

drugs using ProGENI (or Pearson correlation scheme), averaged over 100 repeats of this 

procedure based on the LCL dataset. 
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