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Abstract

Brain-wide association study (BWAS) is analogous to the successful genome-wide association
study (GWAS) in the genetics field, aims to identify the voxel-wise functional connectome vari-
ations associated with complex traits. Although it has been applied to several mental disorders
such as schizophrenia [12], autism [13] and depression [14], its statistical foundations are still lack-
ing. Therefore, we herein report the development of a rigorous statistical framework for link-wise
significance testing and theoretical power analysis based on the random field theory. Peak- and
cluster-level inferences are generalized to analyze functional connectivities. A novel method to
identify phenotype associated voxels based on functional connectivity pattern is also proposed.
Our method reduces the computational complexity of permutation-based approach in controlling
the false positive rate and provides robust and reproducible findings in several real datasets, such
as the 1000 Functional Connectomes Project (1000 FCP), Autism Brain Imaging Data Exchange
(ABIDE), Center for Biomedical Research Excellence (COBRE) and others.

Keywords: brain-wide association study, random field theory, functional connectivity, statistical
power

1 Introduction

Characterizing the effect of brain structure and functional variations on complex phenotypes is a chal-
lenging goal for modern neuroscientists. In the past few years, with the development of neuroimaging
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technology and an increasing number of publicly available datasets, such as the 1000 Functional Con-
nectomes Project (FCP) and Human Connectome Project (HCP), large-scale, image-based association
studies become possible and will improve our understanding of human brain functions.

In the genetics field, the genome-wide association study (GWAS) has successfully identified many
phenotype-associated single nucleotide polymorphisms (SNPs) or genes. In the literature, most of
these studies use single-locus association tests, in which each SNP is tested individually for its asso-
ciation with complex traits. Borrowing ideas from GWAS, the brain-wide association study (BWAS)
[12, 13, 14] also uses a frequentist significance testing approach to associate each functional connec-
tivity with complex traits. However, different from most of the literatures which use prior knowledge
of brain region segmentation, BWAS uses the voxels as nodes to define the brain functional network,
which is fully unbiased and data-driven. However, to conduct a systematic, well-powered BWAS, many
methodological and technical issues should be addressed. First, compared with GWAS, many more
statistical tests are performed in BWAS, therefore, a more stringent multiple comparison threshold
should be provided. For example, a typical GWAS requires nearly 106 statistical tests. In comparison,
a link-based BWAS requires more than 109 statistical tests on 3mm resolution functional MRI data
consisting approximately 50000 voxels. Second, the statistical tests are dependent on the spatial struc-
ture of the fMRI data. Therefore, popular methods, such as Bonferroni correction or false discovery
rate (FDR) [7], are not suited to determine the significance threshold. Third, high quality GWAS
usually requires tens of thousands of samples to reach adequate statistical power, but previous BWAS
on schizophrenia, autism and depression only have sample sizes of less than one thousand [12, 13, 14].
Therefore, compared with GWAS, it is natural to ask if BWAS, which is based on such limited sample
size, can tolerate a larger number of hypothesis tests. If not, then the number of samples must be
setted. This paper will address these questions.

Most existing connectome analysis methods are designed for region-of-interest (ROI) level studies
(see [46] or [30] for comprehensive reviews). The following steps summarize these methods. First, the
whole brain is segmented into several subregions, which can be either spatially continuous by anatomical
segmentation (e.g. Automated Anatomical Labeling (AAL) templates [37]) or spatially discontinuous
by data-driven segmentation (e.g. Independent Component Analysis (ICA) templates [6]). Second,
for every subject, the correlation of blood-oxygen-level dependent (BOLD) signal between pairwise
subregions is estimated. Third, the statistical model is fitted and the significance tests performed on
each of the functional connectivities. Fourth, a multiple comparison correction is performed and a list
of significant functional connectivities obtained. The statistical model of BWAS is quite similar to
this series of steps. However, when the functional connectivities are defined on pairwise voxels, both
the multiple comparison threshold and the power analysis approaches should account for the spatial
structure of data.

The random field theory (RFT) is an important statistical tool in brain image analysis, and it
has been widely used in the analysis of task fMRI data and structure data [4]. Statistical parametric
maps (SPMs) are usually modeled as a discrete sampling of smooth Gaussian or related random fields
[36]. The random field theory can control the family-wise error rate (FWER) of multiple testing by
evaluating whether the observed test statistic, or the spatial extent of clusters exceeding a cluster-
defining threshold (CDT), is large by chance, which is known as peak-level and cluster-level inference
respectively. Since Adler’s early work on the geometry of random field [1, 2], theoretical results for
different types of random fields have been obtained, such as the Gaussian random field [24, 44], the
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t, χ2, F random field [41, 9], the multivariate random field [40], the correlation random field [10]
and the corresponding Fisher’s Z transformation [11]. However, the above results can not be directly
used in BWAS, because the SPM of BWAS is not a strict Gaussian random field [11]. We propose to
use a smoothness adjustment method to account for this problem. In this paper, a method based on
Gaussian random field theory is developed for BWAS.

Power analysis for BWAS is also challenging by the billions of statistical tests performed among
spatially correlated functional connectivities. Most existing power analysis methods are designed for
task fMRI data analysis, including, for example, the simulation based method [17], the non-central
distribution based method [33], and the method based on non-central random field theory (ncRFT)
[26]. Friston et al model the signals as a smoothed Gaussian random field with larger variance to
estimate power [24, 21, 22]. Among them, the ncRFT-based method can both take into account the
spatial structure of fMRI data and avoid time consuming simulation. Therefore, to analyze the power
of BWAS, we adopted a methodology similar to that of the ncRFT-based method [26]. The signals
at functional connectivities are modelled as a six-dimensional non-central Gaussian random field, and
the power is estimated by a modified Gaussian random field theory.

The brain-wide examination of individual functional connectivities can identify coordinated phe-
notype -associated neural activity. Additional information may be gained from learning whether a
voxel is associated with the complex traits. A voxel can be characterized by different kinds of features,
including, for example, its structure (e.g. grey or white matter volume), its temporal variability [47]
and its connectivity pattern (e.g. Measure of Association (MA) [12, 13, 14]). In BWAS, we focus on a
voxel’s connectivity pattern and its association with complex traits. This kind of analysis evaluate the
simultaneous contribution of a set of functional connectivities to complex traits. Especially, this set of
functional connectivities connect the same voxel. The connectivity pattern is a high dimensional fea-
ture, thus two types of methods can be used to test its association with complex traits. The first type
of methods is known as the summary-statistics method. This method first tests each functional connec-
tivity individually. It then determines whether the statistics of functional connectivities are enriched
for association signals [12, 13, 14]. The second type of methods directly applies multivariate statistical
tests, such as the multivariate distance matrix regression method used in connectome-wide association
study (CWAS) [38]. A common problem of existing methods is that the time-consuming permuta-
tion approach is required to access the significance of their test statistics. To address this problem, a
computationally efficient method is proposed based on principal component analysis (PCA).

As shown in figure 1, we first propose to develop a method for link-based BWAS to address the
multiple comparison problem arised in link-wise significance testing. This method is based on Gaussian
random field theory, which generalizes the peak- and cluster-level inferences to analyze functional
connectivities. To test whether the proposed theory can control the family-wise error rate, both
null simulations and large-scale permutations are performed using resting-state fMRI data from the
1000 Functional Connectomes Project (1000 FCP) [8], the Center for Biomedical Research Excellence
(COBRE) and a Taiwan dataset [32]. Second, to characterize the voxel’s functional connectivity
pattern and access its association with complex traits, a voxel-wise, PCA-based model is developed
for voxel-based BWAS. This model was demonstrated to provide robust and reproducible findings
in the Autism Brain Imaging Data Exchange (ABIDE) dataset [18]. Third, a modified Gaussian
random field theory is developed to explicitly approximate the power of peak-level inference. For
brain-wide association studies on schizophrenia, autism and depression [12, 13, 14], our theoretical
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analysis shows that hundreds of samples are sufficient to reach 90% power to detect at least one
signal under different smoothness. The software package for BWAS can be downloaded at https:
//github.com/weikanggong/BWAS.

2 Material and Methods

This section consists of three parts. In Section 2.1, we describe link-based BWAS. First, the statistical
model is introduced. Then, inference methods based on random field theory, including peak- and
cluster-level inferences, are proposed. Finally, simulation and permutation strategies are illustrated to
evaluate the proposed theory on false positive rate control. In Section 2.2, we put forward voxel-based
BWAS, including the details of the model, another three statistics to be compared, and the method
of evaluating its robustness and reproducibility. In Section 2.3, both the theoretical power analysis
method and the simulation-based power analysis method are presented.

2.1 Link-based BWAS

2.1.1 Model

In link-based BWAS, the individual functional network is constructed by calculating the Pearson
correlation coefficients between every pair of voxel time series. Let m be the number of voxels, s be
the subject, and R(s) = [r

(s)
ij ]m×m be the m × m functional network matrix for subject s. Each of

the element of R(s) is the correlation coefficient between voxel time series i and j for subject s. An

element-wise Fisher’s Z transformation is then applied as Z(s) = [z
(s)
ij ]m×m = [12 log(

1+r
(s)
ij

1−r(s)ij

)]m×m, so

that z(s)ij will approximate a normal distribution. For every functional connectivity, a general linear
model (GLM) is fitted:

Yij = XBij + εij

where, Yij = (z
(1)
ij , z

(2)
ij , . . . , z

(n)
ij ) is an n × 1 vector of functional connectivities between voxel i and j

across n subjects, X is the common n × q design matrix, Bij = (β1ij , β
2
ij , . . . , β

q
ij) is a q × 1 vector of

regression coefficients, and εij is a n×1 vector of random error, which is assumed to be an independent
and identically distributed Gaussian random variable N(0, σ2ij). The ordinary least square estimator
for Bij is B̂ij = (X ′X)−1X ′Yij , and for σ2ij is σ̂2ij = (Yij −XB̂ij)′(Yij −XB̂ij)/(n − q). A Student’s
t-statistics at functional connectivity between voxel i and j can be expressed as:

Tij =
cB̂ij

(c(X ′X)−1c′σ̂2ij)
1
2

where c is a 1× q contrast vector. In link-based BWAS, let β1ij be the primary variable of interest, and
β2ij , . . . , β

q
ij be the nuisance covariates included in the regression model. The contrast c = (1, 0, . . . , 0)

will be used to test the hypothesis β1ij = 0, and the statistics Tij will reflect the significance of the
primary variable. Other contrasts can also be used depending on the study design.

In order to use the random field theory result, the Student’s t random variable at each functional
connectivity is transformed to a Gaussian random variable. This is achieved by either transforming
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T -statistics to p-values and then to Z-statistics, or pooling the variance across the whole data [42].
The normal transformation makes the σ̂2ij fixed as σ̂20 [42, 44]. Therefore, the test statistic becomes

Zij =
cB̂ij√

c(X ′X)−1c′σ̂20

=
c(X ′X)−1X ′Yij√
c(X ′X)−1c′σ̂20

=

n∑
s=1

w(s)z
(s)
ij

where w(s) is the s-th element of row vector c(X′X)−1X′√
c(X′X)−1c′σ̂2

0

, which only depends on the subjects . It

is useful to write Zij in this form in the theoretical derivation (see the next section and Appendix for
details).

2.1.2 Peak-level inference

The aim of peak-level inference is to control the FWER of multiple tests, or equivalently, to control
the probability of finding at least one false positive signal. This is directly related to the maximum
distribution of the m(m−1)

2 test statistics. In this section, we will derive a formula to approximate it.
Let M (s)(p) = (M

(s)
1 (p), . . . ,M

(s)

v(s)
(p))′, p ∈ P ⊂ R3 and N (s)(q) = (N

(s)
1 (q), . . . , N

(s)

v(s)
(q))′, q ∈

Q ⊂ R3 be two vectors of v(s) independent and homogeneous Gaussian random fields with mean
zeros and variance one. The index s denotes subjects, and the v(s) can be treated as the number of
time points, while p, q are the coordinates of three-dimensional Euclidean space. The six-dimensional
cross-correlation random field R(s)(p, q) is defined as follows [10]:

R(s)(p, q) =
M (s)(p)′N (s)(q)√

M (s)(p)′M (s)(p)N (s)(q)′N (s)(q)

In link-based BWAS, the cross-correlation field is generated by calculating sample correlation coeffi-
cients between pairwise voxel time series. Next, the element-wise Fisher’s Z transformation transforms
this cross-correlation random field to a six-dimensional ‘Gaussianized’ random field as:

Z(s)(p, q) =
1

2
log

[
1 +R(s)(p, q)

1−R(s)(p, q)

]

It has mean zero and variance 1
v(s)−3 [28]. Our test statistic Zij(p, q) forms a weighted sum of Fisher’s

Z transformed cross-correlation random field Z(p, q) as:

Z(p, q) =

n∑
s=1

w(s)Z(s)(p, q)

The random field Z(p, q) is a ‘Gaussianized’ random field with mean zero and variance one.
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The expected Euler characteristic (EC) of the excursion set of random field is used to approximate
the maximum distribution of the random field Z(p, q) at high threshold z0 [2, 44]:

P (max Z(p, q) > z0) ≈ E(EC) =
6∑
d=0

µd(P ×Q)ρZd (z0)

=

3∑
i=0

3∑
j=0

µi(P)µj(Q)ρZi+j(z0)

(1)

where µd(·) is the d-th dimensional intrinsic volume of the random field, and ρZd (u0) is the d-th
dimensional EC-density for the Gaussian random field at threshold z0. The method for calculating
µd(·) and ρZd (z0) is illustrated in the Appendix. This formula takes into account both the number of
hypothesis tests tested and the spatial structure of the tests. Intuitively, µd(·) is a function of the
Lebesgue measure of the search region spanned by Z(p, q), which is directly related to the number of
statistical tests. The EC-density ρZd (z0) is a function of the variance-covariance matrix of the partial
derivative of Z(p, q), which measures the degree of smoothness of the random field. In link-based
BWAS, the following formula for the Gaussian random field is used to calculate ρZd (z0) [2]:

ρZd (z0) = (2π)−
d+1
2 |Λ|

d
2D e−

z20
2

b d−1
2
c∑

j=0

(−1)j
(2j)!

j!2j

(
d− 1

2j

)
zd−1−2j0 (2)

where D is the highest dimension of Z(p, q) (D = 6, in our case). The |Λ| = |Var(Ż(p, q))| is the
determinant of the variance-covariance matrix of the partial derivative of Z(p, q).

The |Λ| in formula (2) can be replaced by FWHMZ , the Full Width at Half Maximum (FWHM)
of the random field Z averaged across six dimensions, using the equation:

FWHMZ = (4 log 2)
1
2 |Λ|−

1
2D (3)

and FWHMZ is a corrected smoothness parameter, which can be calculated as:

FWHMZ =

(
n∑
s=1

(w(s))2

v(s) − 3
FWHM−2

M(s)

)− 1
4
(

n∑
s=1

(w(s))2

v(s) − 3
FWHM−2

N(s)

)− 1
4

(4)

where FWHMM(s) and FWHMN(s) are the average FWHM of the random field vectors M (s)(p) and
N (s)(q) across three dimensions.

Accordingly, formula (1) can be calculated by:

P (max Z(p, q) > z0) ≈
3∑
i=0

3∑
j=0

µi(P)µj(Q)
(2π)−

i+j+1
2 (4 log 2)

i+j
2

FWHMi+j
Z

× e−
z20
2

b i+j−1
2
c∑

k=0

(−1)k
(2k)!

k!2k

(
i+ j − 1

2k

)
zd−1−2k0

(5)
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FWHMZ , calculated by equation (4), is a function of the number of time points v(s) and the
FWHMM(s) and FWHMN(s) of the individual fMRI data. Typically, the length of scanning time and
image smoothness is the same for every subject in a study. Denoting them as v and FWHM, the
equation (4) is then reduced to:

FWHMZ =

(
n∑
s=1

(w(s))2

v − 3
FWHM−2

)− 1
4
(

n∑
s=1

(w(s))2

v − 3
FWHM−2

)− 1
4

= FWHM
√
v − 3

[(
c(X ′X)−1X ′√
c(X ′X)c′σ̂20

)(
c(X ′X)−1X ′√
c(X ′X)c′σ̂20

)′]− 1
2

= FWHM
√

(v − 3)σ20

= FWHM

where we treat the sample variance σ20 as the theoretical variance 1
v−3 . This suggests that the smooth-

ness of random field Z(p, q) equals the original image smoothness, and that the scanning time does
not influence the formula (5).

2.1.3 Cluster-level inference

Cluster-level inference is also a widely used approach in brain image analysis. Here, inference is based
on the observed cluster size exceeding certain cluster-defining threshold [24]. We are usually interested
in whether the observed cluster size is large, i.e., where the size is on the upper tail of the distribution
of maximum cluster size under the null hypothesis. We first define functional connectivity (FC) cluster,
then derive a formula to approximate the maximum cluster size distribution to control the cluster-wise
FWER.

Voxel-cluster is usually defined as a set of spatially connected voxels based on the d-connectivity
scheme, where d is usually 6, 18 or 26 in brain image analysis. For FC-cluster, Spatial pairwise
clustering (SPC) statistic is a suitable definition [46]. Suppose that there are m∗ FCs with endpoints
denoted as:

(i1, j1), (i2, j2), . . . , (im∗ , jm∗)

Thesem∗ FCs form a FC-cluster if voxels (i1, i2, . . . , im∗) form a voxel-cluster and (j1, j2, . . . , jm∗) form
a voxel-cluster. Note that (i1, i2, . . . , im∗) and (j1, j2, . . . , jm∗) can either be the same set of voxels, or
different sets of voxels. An example is shown in Figure 2, where there are five voxel-clusters A, B, C,
D, E in a two-dimensional image. The FCs between AB, BC and AD are different FC-clusters, and
FCs within voxel-cluster E also form a FC-cluster.

An algorithm for finding FC-clusters can be implemented as follows. First, the voxel-clusters formed
by the endpoints of a set of FCs are found. Second, each of the FCs is assigned to one of pairwise
voxel-clusters iteratively. After all the iterations, FCs between the same pairs of voxel-clusters form a
FC-cluster.

We utilize Gaussian random field theory to approximate the null distribution of maximum FC-
cluster size. In brief, let M be the number of FCs exceeding CDT z0, N be the number of FC-clusters,
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and S be the FC-cluster size. Suppose that separate FC-clusters are independent, then the distribution
of maximum cluster size Smax for Gaussian random field is [1, 24]:

P (Smax > s) = 1− exp [−E(N)P (S > s)]

The expected number of FC-clusters E(N) at high CDT z0 can be approximated by the expected EC
of Gaussian random field using equation (5):

E(N) ≈ E(EC) =
3∑
i=0

3∑
j=0

µi(P)µj(Q)ρZi+j(z0)

The distribution of S can be approximated by [1, 35]:

P (S > s) = exp

[
−
(

Γ(D/2 + 1)E(N)s

E(M)

)2/D
]

where D=6 in our case, and

E(M) =
m(m− 1)

2
[1− Φ(z0)]

where m is the number of voxels, and Φ(•) is the cumulative distribution function of standard normal
distribution.

The above theory is a generalization of three-dimensional result [24, 25], except that we use the
six-dimensional ‘Gaussianized’ random field result derived in the previous section to approximate the
expected number of clusters E(N). For a complete overview of the methodology, see [24] and [25] as
examples. Thus, small-sized FC-clusters are more likely to be identified as false positives and filtered
out by our method, e.g. the red links in Figure 2. Cluster-level inference provides evidence of an
experimental effect by evaluating whether there is a large number of FCs between two voxel-clusters
survives the cluster-defining threshold. Peak-level inference can reflect the effect of single FC, which
is sensitive to local intense signals, cluster-level inference can reflect the simultaneous effect of a set of
FCs, which is sensitive to spatial signals.

2.1.4 Simulation study

We generate null data with relatively small sizes (30 voxels per dimension) to evaluate whether the
proposed random field theory can actually control the FWER in both peak- and cluster-level inferences.
Previous study have shown that the random field theory tends to perform better when the search region
becomes larger [44].

The synthetic null fMRI data are generated in four steps. First, we generate two sets of 10000
three-dimensional independent Gaussian white noise images, with 30 voxels per dimension. Second,
the images are smoothed with different Gaussian kernels (FWHM = 1, 2, . . . , 6 voxels). Third, the
balls with radius r (5, 5.5, . . . , 9.5 voxels) centered at the cube are extracted. This guarantees the
uniform smoothness of the images. Fourth, every 20 images are combined to form 500 simulated four-
dimensional fMRI data. We denote the images in the first set as (A1, A2, . . . , A500) and the images in
the second set as (B1, B2, . . . , B500).
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The empirical distribution of maximum statistics Zmax and maximum cluster sizeNmax is generated
by the following steps. First, the Pearson correlation coefficients are calculated between every pair of
voxel time series of images Ai and Bi, and a Fisher’s Z transformation is performed. Second, two
groups of images from two sets are randomly selected, each group consists of 450 samples. A Z-map
is generated by fitting each functional connectivity to a general linear model to compare two groups.
Third, The second step is repeated 5000 times. Each time, for peak-level inference, the maximum Z
statistic is recorded, and for cluster-level inference, the maximum cluster size exceeding CDT (4, 4.5,
or 5 in our analysis) is recorded. This steps form the empirical distributions of the maximum statistics
Zmax and maximum cluster size Nmax separately. Fourth, the FWER threshold at α is estimated as
the upper α quantiles of the empirical distribution.

2.1.5 Real data permutation study

To evaluate whether the random field theory can actually control the FWER in real data analysis, we
perform permutation tests using resting-state fMRI data in three datasets: (1) 197 samples (normal
people) from the Cambridge dataset in 1000 FCP; (2) 120 samples (67 normal people and 53 chronic
schizophrenia patients) from the COBRE dataset; (3) 387 samples (241 normal people and 146 chronic
schizophrenia patients) from the Taiwan dataset. All data are masked by a 3mm resolution AAL
template, and 47636 voxels within 90 cerebrum regions are extracted. The subjects are then randomly
divided into two groups with equal sample sizes, and link-based BWAS is performed 500 times on each
random dataset. The maximum statistic Zmax and maximum cluster size Nmax are recorded at each
random permutation. Since the group labels are randomly permuted, the expected number of the false
positive peaks or clusters nfp should be:

nfp = 500α

where α is the FWER we want to control, say 0.05. We compare nfp with the result obtained by the
random field theory to evaluate performance.

2.2 Voxel-based BWAS

2.2.1 Model

To characterize the voxel’s functional connectivity pattern and access its association with phenotype,
a voxel-based BWAS approach is proposed and analyzed. The model is based on voxel-wise principal
component analysis and general linear model. Let Xi be an n × m functional connectivity matrix,
with n as the number of subjects and m as the number of functional connectivities connecting voxel i
across the whole brain. We assume that Xi has had nuisance covariates removed and is mean-centered
by column. Let Y be the n × 1 primary phenotype of interest. First, voxel-based BWAS performs
the principal component analysis on each Xi. Next, we select the top ki principal component based
on a typical criteria, e.g. the percent of the explained total variance, or, alternatively, we use the
distribution-based method [15]. Thus, for each voxel i, we have,

Si = XiLi

where Si is an n×ki projected data matrix in the principal component space, with each of its columns
representing a principal component, and Li is an m × ki loading matrix. Si is a low-dimensional
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representation of functional connectivity pattern of voxel i. Then, a general linear model is fitted to
each Si to test its association with phenotype as

f(Y ) = βi0 + βi1PCi1 + · · ·+ βikiPCiki + εi

where PCij is the j-th principal component of voxel i. In voxel-based BWAS, a multivariate linear
model is used if Y is a continuous variable, and a logistic regression model is used if Y is a binary
variable. Finally, a likelihood ratio test is performed to compare the full model with the constant
model (f(Y ) = βi0 + εi), and a chi-square statistics with n− ki − 1 degree of freedom is obtained.

2.2.2 Comparing voxel-based BWAS with summary-statistics method

We compare voxel-based BWAS with the following three summary statistics methods.
The first method, measure of association (MA), has been used in our previous brain-wide association

studies [12, 13, 14]. For a voxel i, MA-statistic is defined as the number of significant functional
connectivities connecting this voxel across the whole brain:

MAi = #{|Zij | > z0}

where Zij is the Z statistic of a functional connectivity between voxel i and j, and z0 is the multiple
comparison threshold to declare significance. This MA-value has two drawbacks. Its null distribution
can not be obtained easily, and it is sensitive to the choice of threshold.

The second method, sum of chi-square (SOCS), is a threshold-free statistics which has been widely
used in gene/pathway-based GWAS. For a voxel i, SOCS-statistic is defined as [31]:

SOCSi =

n∑
j=1

Z2
ij

where n is the total number of functional connectivities connecting voxel i. Under the null hypothesis,
it is subject to a weighted sum chi-square distribution with 1 degree of freedom (SOCSi ∼

∑n
j=1 λjχ

2
1),

which can only be computed numerically.
The third method, global threshold-free cluster enhancement (gTFCE), borrows ideas from [39],

which considers both the ‘height’ and ‘size’ of a voxel’s functional connectivity map. For a voxel i,
gTFCE-statistic is defined as:

gTFCEi =

∫ +∞

−∞
s(z)0.5z2dz

where z is the threshold and s(z) is the number of the supra-threshold voxels. The powers 0.5 on s(z)
and 2 on z are derived in the original paper [39]. A large number of permutations are needed to obtain
the null distribution of gTFCE.

2.2.3 Using meta-analysis to evaluate reproducibility

Meta-analysis is a widely used method to integrate results from multiple studies. Comparing results of
different meta-analysies can evaluate whether the findings are reproducible. ABIDE is a large resting-
state fMRI dataset consisting of autism patients with matched controls from multiple imaging sites.
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After unified data preprocessing and quality control, a total of 1653 samples from 25 sites were used
to evaluate the reproducibility of voxel-based BWAS.

We introduce the meta-analysis method for voxel-based BWAS. Within each site, voxel-based
BWAS is performed. Fisher’s method is used to combine the p-value SPMs of n0 sites by,

χ2
2n0

(i) = −2

n0∑
j=1

log(pij)

where pij is the p-value of voxel i at site j, and χ2
2n0

(i) is a central chi-square variable with 2n0 degree
of freedom under the null hypothesis.

The following steps are performed for evaluation. First, the voxel-based BWAS is performed sep-
arately within each of the 25 sites. The criterion for selecting a principal component is whether its
explained variance is larger than the average. Second, the SPMs of randomly selected 12 randomly
selected sites and the remaining 13 sites are combined by Fisher’s method separately. The result-
ing chi-square maps are first converted to p-value maps, and then to a positive Z maps. Third, the
proportion of overlap ρ is calculated as:

ρ =
2#{Map1 > Z0 & Map2 > Z0}

#{Map1 > Z0}+ #{Map2 > Z0}

where Map1 and Map2 are the SPMs of two meta-analysies, and Z0 is the CDT (3, 3.5, 4 in our
analysis). Step two and three are repeated 10000 times, and the empirical distributions of ρ under
three different CDTs are generated.

2.3 Statistical power analysis

2.3.1 Theoretical analysis

In this section, we derive a formula to estimate the statistical power of peak-level inference. The power
is defined as the probability of finding at least one true positive signal in a search region, with the
false positive rate α controlled at a certain level [24]. To estimate the power, four parameters should
be specified: (1) the threshold of controlling the FWER α; (2) the effect size of true signal γ; (3) the
sample size n; (4) the smoothness of statistical map FWHM.

First, under the null hypothesis H0 : β1ij = 0, suppose that the whole search region A is a Gaussian
random field with mean zero and variance one. The threshold z0 to control the FWER at α is obtained
by the random field theory (5):

α = P ( max
(p,q)∈A

Z(p, q) > z0|H0)

where (p, q) are the coordinates of the functional connectivities.
If we assume that the primary variable of interest, β1ij , is subject to a normal distribution N(µij , σ

2
ij)

under the alternative hypothesis H1, and that the sample size is n, then the test statistics Zij will
subject to N(

√
nµij/σij , 1). The γij = µij/σij is called effect size at FCij . We further assume that

the distribution of signals will be the same in region B; that is, all β1ij is subject to the same normal
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distribution N(µ, σ2). Region B is a non-central Gaussian random field Z∗(p, q) with mean
√
nγ and

variance one. The power in the search region B ⊂ A can be expressed as:

Power = P ( max
(p,q)∈B

Z∗(p, q) > z0|H1)

The non-central Gaussian random field Z∗(p, q) can be transformed to a central Gaussian random
field by the following element-wise transformation:

Z(p, q) = Z∗(p, q)−
√
nγ

which allows the power in region B to be calculated using formula (5) by

Power = P ( max
(p,q)∈B

Z(p, q) > z0 −
√
nγ|H0)

Three issues remain. The first involves selecting region B. When estimating power, we select region
B as consisting of functional connectivities between two three-dimensional balls, each of ball has radius
r equalling

√
2
2 ×FWHM of the image. Thus, the signal is located in a six-dimensional ball whose radius

equals the smoothness (FWHM) of the image (Figure 1 power analysis). The idea is similar to the
non-central random field theory framework [26]. The matched filter theorem [43] suggests that the
signal is best detected when the width of the smooth kernel matches the width of the signal.

The second issue involves the random field theory which can only approximate the right tail of
the maximum distribution. Thus, the theory may provide an inaccurate estimation when the statistic
z0 −

√
nγ is small. To address this problem, we propose to use the following modification:

Power = 1− exp

[
−P ( max

(p,q)∈B
Z(p, q) > z0 −

√
nγ|H0)

]
This formula ensures that the power is between zero and one, which shows excellent performance in
the simulation.

The last issue concerns estimating the effect size, which is typically estimated from the statistical
map of a pilot study using the same study design. Suppose that the pilot link-based BWAS study used
n? samples. Then, the estimated effect size at FCij is [27]:

γ̂ij = Zij/
√
n?

Using the above formula, the power can be estimated for each functional connectivity to form a power
map on six-dimensional space. This is similar to the power map in the three-dimensional case [27], but
it is quite difficult to visualize such maps. To report the power of a study, we estimate the effect size
of every FC to form an empirical distribution. The power curves of different sample sizes and effect
sizes under certain power (e.g. 90% power) are analyzed and reported.

2.3.2 Simulation study

The power simulation study is quite similar to the simulation procedures in peak-level inference. It
aims to generate the empirical distribution of maximum statistics under the alternative hypothesis.

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 21, 2016. ; https://doi.org/10.1101/089870doi: bioRxiv preprint 

https://doi.org/10.1101/089870


The following procedures are carried out. First, a ball whose radius r equals to
√
2
2 ×FWHM is ex-

tracted from the two sets of simulated images (A1, A2, . . . , A500) and (B1, B2, . . . , B500). In our simula-
tion, we choose to use FWHM = 1, 2, . . . , 6 voxels. Second, the Pearson correlation coefficients between
every pair of voxel time series of images Ai and Bi are calculated. A Fisher’s Z transformation is then
applied. Third, two groups of images are randomly selected, each consisting of n∗ samples. An effect
size is added to the second group of functional connectivities. Fourth, a general linear model is then
fitted to each functional connectivity to compare two groups, and a non-central statistical map is gen-
erated. Fifth, step four is repeated 10000 times. The maximum statistics Zmax = (Z1, Z2, . . . , Z10000)
are recorded and the effect size γ is estimated. The power is estimated by the empirical distribution
Zmax as:

Power(n∗, γ) =
#{ Zmax > z0}

10000

where z0 is the FWER threshold estimated by the central random field theory.

3 Results

Figure 1 shows a graphical overview of our proposed methods, including link-based BWAS, voxel-based
BWAS and theoretical power analysis. The Manhattan plot (Figure 5) shows an example of link-
based BWAS result, as visualized using 1653 samples of the ABIDE dataset. The − log10(p-values)
of functional connectivities, which are grouped by the 94 cerebrum regions of AAL2 template, are
plotted in this figure. Each functional connectivity can appear once or twice in this figure, depending
on whether it connects different parts of the same region, or it connects two different brain regions,
which is the most frequent case.

3.1 Performance of link-based BWAS

3.1.1 Simulation

The estimated FWERs of the peak-and cluster-level inference are the proportion of simulations with
any significant signals declared by the random field theory. The details of data generation and evalua-
tion methods are illustrated in the Material and Methods, Section 2.1.4. Figure 3 shows the results of
controlling the FWER at 0.05. For peak-level inference, we find that it is conserved when the smooth-
ness is low. Typically, it is more conserved than Bonferroni correction when the FWHM is smaller
than 2 voxels. For cluster-level inference, we find that it can provide reliable results if FWHM is larger
than 3 voxels and the CDT is high. When FWHM is low, the results are invalid.

3.1.2 Permutation test

We use three resting-state fMRI datasets to evaluate the performance of the random field theory. The
detailed data information, preprocessing and permutation methods are illustrated in the Material and
Methods, Section 2.1.5, and the Appendix. In brief, link-based BWAS is performed on the label-
permuted data for 500 times. The estimated FWERs of the peak- and cluster-level inference are the
proportion of permutations with any significant signals declared by the random field theory. Figure 4
shows the results of comparing the random field theory with the permutation approach at FWER 0.05.
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For peak-level inference, the estimated FWERs are between 0.04 and 0.11. For cluster-level inference,
if the CDTs are between 5 and 6, the estimated FWERs are between 0.03 and 0.12. Based on our
analysis, we conclude that our method shows excellent performance if the sample size is large (over
120), the smooth kernel is moderate or large (larger than 3 voxles), and the CDT is high (larger than
5, p ≈ 3× 10−7) empirically. To get a more precise understanding of the performance, more real data
permutations should be conducted in the future.

3.2 Performance of voxel-based BWAS

Based on 1653 autism patients with matched controls from ABIDE dataset, we evaluate the perfor-
mance of voxel-based BWAS.

We first compare the result of voxel-based BWAS with three summary-statistics methods (MA,
SOCS and gTFCE). See section 2.2.2 for their definitions. Link-based BWAS and voxel-based BWAS
are performed on each site of the ABIDE dataset separately. The three statistics and the p-value of
the first principal component of each voxel are recorded. In Figure 6, the scatter plot shows their
relationship in the ABIDE-KKI dataset. A positive correlation can be observed between voxel-based
BWAS and the MA, SOCS, and gTFCE-statistics, indicating that our method can both capture the
characteristics of functional connectivities pattern of a voxel and provide a statistics with theoretical
null distribution.

As detailed in section 2.2.3, we then use meta-analysis to show that voxel-based BWAS can provide
robust and reproducible results. Figure 7 shows the result for one of the 10000 random meta-analysies
using the threshold of CDT=3.5 (p ≈ 2.3 × 10−4). Several overlapped voxel-clusters found by the
two meta-analysies are shown to be associated with autism. They are partly located in some key
regions, such as Thalamus, Precentral and Postcentral gyrus, Supplementary motor area, Fusiform
gyrus, Frontal gyrus and Temporal gyrus. We also generate the distribution of the proportion of
overlaps of 10000 random meta-analysies using different CDTs. As shown in Figure 8, the average
proportion of overlap is larger than 45% at the threshold of CDT=3, but it becomes smaller when
we raise the threshold. Nearly half of the findings can be replicated by our method in this multi-site
analysis. At the same time, results in a multi-site dataset can be biased in several ways, including,
for example, small sample size in each site, and acquisition of samples from different scanners using
different proposals.

3.3 Theoretical power analysis

Figure 9 compares the power estimated by the modified random field theory (Section 2.3.1) and the
simulation (Section 2.3.2). Each subfigure shows the relationship between sample size and power ob-
tained by the two methods under different image smoothness (FWHM from 1 to 6 voxels). Although
the original random field theory can only approximate the upper tail of maximum distribution, re-
sults show that performance is excellent in the context of determine the sample size after a suitable
modification.

We then analyze the power of link-based BWAS studies on schizophrenia, autism and depression
[12, 13, 14]. The effect size γ distribution is estimated on the basis of previous Z maps. With the
FWER controlled at 0.05, the estimated effect sizes are around 0.2 to 0.23 (figure 10A). The power
curves of effect size and sample size to achieve 90% power at different smoothness are shown in Figure
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10B. It can be seen that about 300 samples are needed to reach 90% power at moderate smoothness
(FWHM= 3 to 4 voxels). Even at low smoothness (FWHM= 1 voxel), 700 samples are enough to
conduct such an analysis if we assume that the effect sizes are similar.

4 Discussion

In this article, we develop a rigorous statistical framework for BWAS. First, both peak- and cluster-
level inferences are introduced for the analysis of voxel-wise functional connectomes, and the random
field theory is developed to control the family-wise error rate and estimate statistical power. Second, a
novel method to identify phenotype associated voxels based on the functional connectivity pattern is
also proposed. All of them are carefully validated using several real fMRI datasets. Link-based BWAS
shows excellent performance for controlling false positive rate, and voxel-based BWAS can provide
reliable and reproducible findings, while the theoretical power analysis can estimate power accurately
and rapidly.

Various advantages shown in this paper and previous studies [12, 13, 14] indicate that BWAS
is well-suited to the identification of functional variations of human connectome. A large number of
robust and reproducible functional connectivities and brain regions have been identified, shedding light
on the fundamental mechanisms of the human brain and their relationship to psychiatric disorders.
However, we are still far from voxel-level comprehensive mappings of the human connectome. Various
studies have supported the superiority of BWAS to ROI-level analysis. For example, as shown in a
recent study [29], neurons in different parts of the basolateral amygdala are both structurally and
genetically distinct, and they are activated by stimuli that elicit different behaviors. In our paper
reporting on depression [14], we found that the functional connectivities connecting different parts
of the Orbitofrontal cortex (OFC) show significant difference between patients with depression and
normal people. These findings indicate that the neurons in the same brain regions may carry out
different functions. The averaging approach used in ROI-level analysis may provide wrong results.
With more and more data available and higher resolution images, BWAS can make full use of the
information provided by the data. It is completely unbiased and can provide evidence about the exact
location of the functional connectivity variations.

To the best our knowledge, link-based BWAS is the first method to use the random field theory to
analyze the voxel-wise functional connectome. However, the random field theory makes various strong
assumptions. As shown in a recent article [19], it may lead to inflated false positive rate in task fMRI
analysis. The non-parametric permutation method has been introduced to account for this problem
and it has found successful applications [34]. Although its computational complexity is very high, it is
particularly useful when the parametric assumptions are not met, or the null distribution of the statistic
of interest is hard to derive analytically. In this paper, we used several real datasets to compute the
empirical family-wise error rates for both peak- and cluster-level inference using permutation method.
We found that the random field theory and permutation method can provide similar thresholds. Our
analysis shows that the random field theory can provide a reliable result with large sample size (over
120), moderate or large smoothness (FWHM> 3 voxels), and high CDT (p-value< 10−7 on 3mm
resolution data).

Large-scale computational resources are needed to perform BWAS, and an efficient Matlab-based
software package, which can be downloaded from https://github.com/weikanggong/BWAS, has been
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implemented. It takes about 2.5 hours to analyze the COBRE dataset (120 samples, 3mm resolution)
and 3.5 hours to analyze the Cambridge datasets (197 samples, 3mm resolution) using a single core
on a Linux workstation with Intel Xeon E5-2660 v3(2.60GHz) CPU and 128GB memory. For the
permutation approach, 500 random permutations for the Cambridge dataset take about four days
using 20 cores on the same workstation. The permutation approach is also implemented in BWAS
software package.

The proposed framework in this paper is by no means a complete solution for the analysis of
voxel-wise human connectome. Various statistical issues should be carefully addressed in the future.
Perhaps the most important issue involves the high volume of available data. Under this circumstance,
statistical methods for combining results from multiple imaging centers are needed. In GWAS, various
meta-analysis approaches have been developed, and many novel genetic risk variations have been
discovered [20]. In BWAS, integrating results from different datasets has also been shown to greatly
reduce false positive rate and increase sensitivity [12, 13, 14]. However, the design of statistical methods
for BWAS meta-analysis is challenging, because of sample heterogeneity introduced by different sources,
such as different data acquisition pipelines, population stratification, and genetic background, etc.

A statistical testing framework based on random field theory can also be generalized to other fields,
such as three-dimensional face studies, GWAS, and image-genetics studies. For example, similar to the
human brain, the genome is also a complex three-dimensional structure, and newly developed chromo-
some conformation capture techniques make it possible to explore its three-dimensional organization
[16]. We believe that the application of the random field theory to GWAS will not only provide deeper
insights into the understanding of human genome functions, but also make GWAS more powerful in
the future.
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6 Appendix

6.1 Image acquisition and preprocessing

Resting-state fMRI data were collected from three imaging sites: (1) 197 samples (normal people) from
the Cambridge dataset in the 1000 FCP [8] (http://fcon_1000.projects.nitrc.org/fcpClassic/
FcpTable.html); (2) 120 samples (67 normal people and 53 chronic schizophrenia patients) from the
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COBRE dataset (http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html); and (3) 387
samples (241 normal people and 146 chronic schizophrenia patients) from the Taiwan dataset [32].

The detailed data acquisition methods may be found in the respective websites and papers. The
data were preprocessed using SPM12 [36] and Data Processing and Analysis for Brain Imaging (DPABI)
[45]. For each individual, the preprocessing steps included discarding the first 10 time points, slice tim-
ing correction, motion correction, coregistering to individual T1 structure image, segmenting structure
images and DARTEL registration [3], regressing out nuisance covariates including white matter, cere-
brospinal fluid and global signal using Friston 24-parameter model [23], filtering the fMRI time series
with high-pass temporal filter (0.01 Hz) and low-pass temporal filter (0.1 Hz), normalizing to standard
space of voxel size 3 × 3 × 3 mm by DARTEL, and smoothing by a Gaussian kernel. Finally, all the
images were manually checked to ensure successful preprocessing.

The ABIDE1 and ABIDE2 datasets [18] (http://fcon_1000.projects.nitrc.org/indi/abide/)
are pooled together and preprocessed using SPM12 and DPARSF. The preprocessing pipeline is
exactly the same as the dparsf pipeline used by the Preprocessed Connectomes Project (http://
preprocessed-connectomes-project.org/abide/dparsf.html) with the global signal regressed out.
The samples were discarded if 30% of their Framewise Displacement values were larger than 0.5 or
they were preprocessed by error. A total of 1653 samples from 25 sites were used in our analysis. A
summary of ABIDE demographic information is shown in Table 1.

6.2 The intrinsic volume and Gaussian EC-density

To perform peak-level and cluster-level inference, we should calculate the 0- to 3-dimensional intrinsic
volume and the 0- to 6-dimensional EC-densities for the Gaussian random field.

Let P be the number of voxels, Ex (or Ey, Ez) be number of x (or y, z)-direction edges (two adjacent
voxels), Fxy (or Fyz, Fxz) be number of xy (or yz, xz)-direction surface (four adjacent voxels), and C be
the number of cubes (eight adjacent voxels). The rx (or ry, rz) be the resel size of x (or y, z)-direction,
which is defined as the voxel size divided by FWHM. The 0 to 3 dimensional intrinsic volume of S can
be calculated as:

u0(S) = P − (Ex + Ey + Ez) + (Fyz + Fxz + Fxy)− C
u1(S) = (Ex − Fxy − Fxz + C)rx + (Ey − Fxy − Fyz + C)ry + (Ez − Fxz − Fyz + C)rz

u2(S) = (Fxy − C)rxry + (Fxz − C)rxrz + (Fyz − C)ryrz

u3(S) = Crxryrz

The above calculation has been implement in SPM package as spm_resels_vol function. Two other
methods also work well in practice. One is to replace the original space with a equal volume ball, as
implement in the fmristat package, the other is to use a linear regression model [5], which do not need
the knowledge of spatial smoothness.
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The 0- to 6-dimensional EC-densities for Gaussian random field at t are:

ρ0(t) = 1− Φ(t)

ρ1(t) = (4 ln 2)
1
2 (2π)−1e

−t2

2

ρ2(t) = (4 ln 2)(2π)−
3
2 te

−t2

2

ρ3(t) = (4 ln 2)
3
2 (2π)−2(t2 − 1)e

−t2

2

ρ4(t) = (4 ln 2)2(2π)−
5
2 (t3 − 3t)e

−t2

2

ρ5(t) = (4 ln 2)
5
2 (2π)−3(t4 − 6t2 + 3)e

−t2

2

ρ6(t) = (4 ln 2)3(2π)−
7
2 (t5 − 10t3 + 15t)e

−t2

2

where Φ(•) is the cumulative distribution function of standard normal distribution.

6.3 Proof of formula (1)

Using the property of d-dimensional intrinsic volume [40]

ud(P ×Q) =

d∑
k=0

uk(P)ud−k(Q)

When d > P , ud(P) = 0 and d > Q, ud(Q) = 0. It is easy to conclude that

P+Q∑
d=0

µd(P ×Q) =

P+Q∑
d=0

d∑
k=0

uk(P)ud−k(Q)

=
P∑
i=0

Q∑
j=0

µi(P)µj(Q)

In our case, we have P = Q = 3.

6.4 Proof of formula (4)

Let V ar(Ṁ (s)(p)) = ΛMs and V ar(Ṅ (s)(q)) = ΛNs , then according to the Lemma 4.2 in [10],

∂R(s)(p, q)

∂p

D
= (1−R(s)(p, q)2)

1
2a
− 1

2
s (ΛMs)

1
2 z

(s)
M

and
∂R(s)(p, q)

∂q

D
= (1−R(s)(p, q)2)

1
2a
− 1

2
s (ΛNs)

1
2 z

(s)
N

where as ∼ χ2
v(s)

, z(s)M , z
(s)
N ∼ N(0, I3,3) and independent of R(s)(p, q), and D

= means equal in distribu-
tion. Then, after the Fisher’s Z transformation, we have

∂Z(s)(p, q)

∂p

D
= (1−R(s)(p, q)2)−

1
2a
− 1

2
s (ΛMs)

1
2 z

(s)
M
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and
∂Z(s)(p, q)

∂q

D
= (1−R(s)(p, q)2)−

1
2a
− 1

2
s (ΛNs)

1
2 z

(s)
N

Then,
∂Z(p, q)

∂p

D
=

n∑
s=1

w(s)(1−R(s)(p, q)2)−
1
2a
− 1

2
s (ΛMs)

1
2 ziM

and
∂Z(p, q)

∂q

D
=

n∑
s=1

w(s)(1−R(s)(p, q)2)−
1
2a
− 1

2
s (ΛNs)

1
2 ziN

Since

V ar(Ż(p, q)) =

(
E[∂Z

(s)(p,q)
∂p

∂Z(s)′(p,q)
∂p ] E[∂Z

(s)(p,q)
∂p

∂Z(s)′(p,q)
∂q ]

E[∂Z
(s)(p,q)
∂q

∂Z(s)′(p,q)
∂p ] E[∂Z

(s)(p,q)
∂q

∂Z(s)′(p,q)
∂q ]

)
and

E[
∂Z(s)(p, q)

∂p

∂Z(s)′(p, q)

∂q
] = E[

∂Z(s)(p, q)

∂q

∂Z(s)′(p, q)

∂p
] = 0

and

E[
∂Z(s)(p, q)

∂p

∂Z(s)′(p, q)

∂p
] =

n∑
s=1

(w(s))2E[(1−R(s)(p, q)2)−1]E[a−1s ]ΛMs

E[
∂Z(s)(p, q)

∂q

∂Z(s)′(p, q)

∂q
] =

n∑
s=1

(w(s))2E[(1−R(s)(p, q)2)−1]E[a−1s ]ΛNs

The expectations in the above equations are

E[a−1s ] =
1

v(s) − 2

E[(1−R(s)(p, q)2)−1] =
v(s) − 2

v(s) − 3

Finally we get

V ar(Ż(p, q)) =


n∑
s=1

(w(s))2

v(s)−3 ΛMs 0

0
n∑
s=1

(w(s))2

v(s)−3 ΛNs


6×6

Substituting the variance covariance matrix of partial derivative of the random field by the FWHM
using (3), we could get (4) by:(

FWHMZ

(4 ln 2)
1
2

)−2(3+3)

=

(
n∑
s=1

(w(s))2

v(s) − 3

FWHM−2
M(s)

(4ln2)
1
2

)3( n∑
s=1

(w(s))2

v(s) − 3

FWHM−2
N(s)

(4ln2)
1
2

)3

thus

FWHMZ =

(
n∑
s=1

(w(s))2

v(s) − 3
FWHM−2

M(s)

)− 1
4
(

n∑
s=1

(w(s))2

v(s) − 3
FWHM−2

N(s)

)− 1
4
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Figure 1: A flow chart of link-based BWAS, voxel-based BWAS and the power analysis.
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Figure 2: A two-dimensional diagram of FC-cluster. Based on the definition of SPC statistic, FCs
between AB, BC and AD are FC-clusters, and FCs within voxel-cluster E also form a FC-cluster.
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Figure 3: Comparing the random field theory with simulation approach at FWER=0.05 under differ-
ent region shapes and smoothness. The estimated FWER is the proportion of simulations with any
significant signals found by the random field theory. (A) Results for peak-level inference. (B) Results
for cluster-level inference at CDT=4.5.
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Figure 4: Comparing the random field theory with permutation approach at FWER=0.05 in the
Cambridge, COBRE and Taiwan datasets under different smoothness. The estimated FWER is the
proportion of permutations with any significant signals found by the random field theory. (A) Results
for cluster-level inference at different CDTs; (B) Results for peak-level inference.
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Figure 5: Manhattan plot for link-based BWAS results of ABIDE dataset (p < 10−6 only). Each point
represents a functional connectivity grouped by the 94 cerebrum regions of AAL2 template. Note that
each functional connectivity can appear once or twice in this figure, depending on its endpoints.
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Figure 6: There is a positive relationship between the results of voxel-based BWAS using the first
principal component and three summary statistics methods, including MA, SOCS, and gTFCE, in
the ABIDE-KKI dataset. Each point represents the corresponding statistics on one voxel. The three
summary statistics are rescaled to range between zero and one. For MA value, a threshold of |z0| = 4
is used.

Dataset 1: 12 sites Dataset 2: 13 sites Overlap
Z scoreZ score

A B C

Figure 7: One of the 10000 random meta-analysies of voxel-based BWAS using the ABIDE dataset.
The whole ABIDE dataset is divided into two small datasets. One contains 12 sites, and the other
contains 13 sites. The Fisher’s method is used to integrate the results, and the p-values are converted
to positive Z scores. All significant voxel-clusters passed cluster-level inference 0.05 correction with
CDT=3.5. (A) Significant regions of dataset 1. (B) Significant regions of dataset 2. (C) Overlapped
regions.
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Figure 8: Reproducibility of voxel-based BWAS. The distributions of proportion of overlap under
three different CDTs in the ABIDE dataset. Each of the distribution is generated by 10000 random
combinations of the meta-analysies.
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Figure 9: Using the simulation (blue line) to evaluate the validity of the modified random field theory
(red line) for power analysis. The effect size is set to 0.2, and FWHM= 1 to 6 voxels.
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Figure 10: Power analysis results of our previous BWAS studies. (A) Histograms of absolute Z statistics
obtained by three previous brain-wide association studies; absolute Z-values larger than 5.5 are shown.
Red dashed line is the threshold estimated by the RFT at FWER=0.05. (B) Power curves between the
effect size γ and the sample size n at 90% power under different smoothness. Effect sizes are around
0.2 to 0.23 at RFT 0.05 threshold in previous studies.
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