
Title 1 

fMRI Correlates of Reaction Time Prolongation during intentional False 2 

Responding; an inter-individual difference study 3 

Short title (Running Head) 4 

Longer reaction times during lying 5 

Authors 6 

Morteza Pishnamazi a, Maral Yeganeh Doost a b, Habib Ganjgahi a c, Hamed Ekhtiari a, 7 

Mohammad Ali Oghabian a* 
8 

a 
Neuroimaging and Analysis Group (NIAG), Research Center for Molecular and Cellular imaging 9 

(RCMCI), Tehran University of Medical Sciences, Tehran, Iran 10 
b 

Université catholique de Louvain (UCL), CHU UCL Namur, Neurology department; UCL, Institute of 11 

Neuroscience (IoNS), Brussels, Belgium. 12 

c 
Department of Statistics, University of Warwick Coventry, Warwick, UK 13 

 14 

Correspondence to 15 

Mohammad Ali Oghabian, PhD 16 

Director of Neuroimaging and Analysis Group, Research Center for Molecular and Cellular 17 

Imaging (RCMCI), Tehran University of Medical Sciences 18 

Contact info:  19 

Imam Khomeini Hospital Complex, Keshavarz Blvd, Tehran, Iran. Postal Code: 1419733141 20 

Tel: +98 21 66907518; E-mail: oghabian@sina.tums.ac.ir   21 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2016. ; https://doi.org/10.1101/089847doi: bioRxiv preprint 

https://doi.org/10.1101/089847


ABSTRACT 22 

Reaction time (RT) is chiefly longer when people lie. However, the baseline speed in answering 23 

questions and the amount of RT prolongation during lying show considerable amount of inter-individual 24 

variability. In the current study, we exploited this fact to glean insights on the contribution of each lie-25 

related brain region to hampering of response speeds when people try to be deceitful. In an event-related 26 

fMRI session, participants were interrogated by yes-no autobiographical questions and were instructed to 27 

intentionally provide false responses to a pre-selected subset of questions. Data from twenty healthy 28 

volunteers were analyzed. Baseline speed [RTtruth] and relative appended lie RT [(RTlie − RTtruth) ⁄ RTtruth] 29 

measures were calculated for each participant and were included in the group level analysis of [lie > truth] 30 

BOLD contrasts. Lying RTs were significantly longer than truth telling RTs. Lie-related increase in 31 

activity of right ventrolateral prefrontal cortex (VLPFC) and bilateral paracingulate cortex correlated with 32 

the baseline speed of participants, while the increase in activity of Left VLPFC, left lateral occipital 33 

cortex and bilateral anterior cingulate areas directly correlated with the amount of lying reaction time 34 

cost. Activity within bilateral posterior cingulate cortex and right insular cortex inversely correlated with 35 

lying RT-cost. Bilateral supplementary motor areas, internal capsule white matter and left angular gyrus 36 

showed lie-related increase in activity but did not correlate with either of behavioral measures. 37 

Provisional implications regarding the contribution of these regions to RT prolongation and their 38 

cognitive role in deceitful behavior are discussed. 39 

Keywords: Reaction time, lying, deception, fMRI, prefrontal cortex, VLPFC  40 
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1. INTRODUCTION 41 

With the advent of functional magnetic resonance imaging (fMRI), there has been a fast growth in the 42 

neuroimaging literature of deception. Studies commonly aimed to reveal the neural correlates of 43 

deception by contrasting brain activities recorded under conditions of instructed lying versus conditions 44 

of truth telling (Ganis, Kosslyn, Stose, Thompson, & Yurgelun-Todd, 2003; Langleben et al., 2002; T. M. 45 

C. Lee et al., 2002; Spence et al., 2001). Early experiments were followed by series of studies that tried to 46 

reinforce previous findings by using life-like task designs, such as mock crime scenarios (Kozel et al., 47 

2005, 2009) and deceptive games (Sip et al., 2010, 2012). Results have been comparatively consistent, 48 

showing that areas in ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), 49 

insular cortex, inferior parietal lobule (IPL) and anterior cingulate cortex (ACC) are more active during 50 

lying and deception (Abe, 2011; Christ, Van Essen, Watson, Brubaker, & McDermott, 2009; Farah, 51 

Hutchinson, Phelps, & Wagner, 2014). However, not enough care has been put into interpreting the 52 

specific function of each region; nor has been there enough consideration of the nuisance variables that 53 

could confound the fMRI comparisons between lie and truth conditions (Sip, Roepstorff, McGregor, & 54 

Frith, 2008). 55 

Providing false responses is a complex cognitive task that involves processes additional to those used 56 

when telling the truth (Williams, Bott, Patrick, & Lewis, 2013) and demands higher mental effort (Caso, 57 

Gnisci, Vrij, & Mann, 2005; Vrij, Granhag, Mann, & Leal, 2011). To formulate a false response, one 58 

requires to first activate the truth and then modify it (Debey, De Houwer, & Verschuere, 2014). This adds 59 

the steps of response inhibition, task switching and response planning (Debey, Liefooghe, De Houwer, & 60 

Verschuere, 2014; Gombos, 2006; Walczyk, Roper, Seemann, & Humphrey, 2003). Besides, in 61 

comparison with truth telling, lying depends more heavily on working memory and maintained attention 62 

(Gombos, 2006; Vendemia, Buzan, & Simon-Dack, 2005). These higher cognitive demands is reflected in 63 

the longer reaction times (RTs) associated with deceptive responses (Verschuere, Suchotzki, & Debey, 64 

2015). Repeated studies show that RT is chiefly longer when people lie (Marston, 1920; Sheridan & 65 
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Flowers, 2010; Vendemia et al., 2005; Walczyk et al., 2003). However, the baseline speed in answering 66 

questions and the amount of RT increment imposed by the act of lying (‘RT-cost’) differ from one 67 

individual to another. In the study by Farrow and colleagues (Farrow, Hopwood, Parks, Hunter, & 68 

Spence, 2011) subjects with higher memory ability had lower absolute truth RTs but the RT difference 69 

scores (lie RT minus truth RT) were adversely affected, showing a positive correlation between memory 70 

ability and the RT-cost of lying. Visu-Petra and colleagues (Visu-Petra, Miclea, Buş, & Visu-Petra, 2014; 71 

Visu-Petra, Miclea, & Visu-Petra, 2012) studied the relation between inter-individual differences in 72 

executive functions (inhibition, shifting, working memory) and the latency of deceptive responses. 73 

Subjects with better inhibitory skills had faster absolute lie RTs but RT difference scores showed no 74 

correlation with any executive function measure. Despite the intuitive involvement of arousal and 75 

emotion mechanism in deception, behavioral experiments report mixed results about the association 76 

between deceptive RTs and measures of anxiety (Visu-Petra et al., 2012), personality (Verschuere & in ´t 77 

Hout, 2016; Visu-Petra et al., 2014) or motivation (Kleinberg & Verschuere, 2016; Varga, Visu-Petra, 78 

Miclea, & Visu-Petra, 2015). 79 

Superior executive skills seem to be linked with faster baseline speed in answering questions and 80 

lower RT-cost of lying. This association is supported by neuroimaging findings of higher activity within 81 

multiple executive function-related regions in frontal cortex during lying (Christ et al., 2009). However, 82 

the exact relationship between activity within each area and reaction times is not clear. In the current 83 

study we aspire to exploit the inter-individual variance in reaction times to glean insight on the neural 84 

mechanisms underlying prolongation of reaction times when people lie. To that end, we enrolled 25 85 

healthy volunteers in an fMRI experiment. We recorded reaction times and blood oxygenation level 86 

dependent (BOLD) brain activations while subjects were interrogated by a set of yes-no questions and 87 

intentionally provided false responses to a preselected subset of them. Based on reaction time recordings 88 

we calculated measures representing each subjects’ baseline speed and RT-cost of lying. We investigated 89 

the correlation of RT-measures with the amount of BOLD activation difference between lying and 90 
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truthful responding conditions across subjects. The critical question of interest is to specify which brain 91 

regions undertake cognitive processes exclusive to lying (e.g. response inhibition, task switching). 92 

Activity of such a region is expected to only correlate with lie RTs. On the other hand, activity in regions 93 

commonly employed by both truthful and false responding (e.g. attention, working memory) is expected 94 

to correlate with truth RTs and lie RTs similarly.  95 
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2. MATERIALS AND METHODS 96 

2.1. Participants 97 

Twenty-five healthy, right-handed male volunteers (age 21-30) were recruited and provided informed 98 

consent. All participants went through a standardized medical interview. Exclusion criteria were any 99 

history of psychiatric or neurological disorder, use of any medications during last week, and general MR 100 

safety contraindications. Five participants were excluded from data analyses (three failed to perform 101 

experimental procedures adequately; two because of technical problems in data gathering). The ethical 102 

committee of Tehran University of Medical Sciences approved all procedures. 103 

2.2. Procedure 104 

In resemblance to the lying paradigm used in the study by Nuñez and colleagues (Nuñez, Casey, 105 

Egner, Hare, & Hirsch, 2005), our task consisted of yes-no autobiographical questions (e.g. “Do you own 106 

a car?”) and required intentional false responding. First, participants provided truthful yes-no answers to 107 

20 autobiographical questions. We asked subjects to freely choose half of questions. Next, we instructed 108 

them to lie about these pre-selected questions for the rest of the experiment. Prior to main fMRI session, a 109 

5-minute training was run outside the scanner to ensure participants’ familiarity with task procedure. 110 

Total duration of main fMRI session was 16 minutes. We employed event-related task design. Each of 20 111 

questions was presented 5 times in counterbalanced random order. Each question was presented for 2 112 

seconds, followed by a jittered inter-stimulus interval ranging from 3.5 to 11.5 seconds during which a 113 

central fixation sign was displayed. Participants’ responses and reaction times were recorded. Three types 114 

of event could happen: ‘truthful’ answer to questions, intentional ‘false’ answers, and ‘mistakes’ where 115 

subjects failed to provide appropriate response based on their template. Event types were determined 116 

post-hoc based on each subjects’ original responses to questions and their pre-selected lying subset. 117 
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2.3. fMRI Data Acquisition 118 

Images were acquired using 3.0 T Siemens Magnetom Tim Trio full-body scanner with 12-channel 119 

head coil. Functional T2*-weighted images were collected using gradient echo-planar imaging (TR = 120 

3000ms, TE = 30ms, flip angle = 90°, FOV = 192 mm, matrix = 64 × 64, voxel size = 3 × 3 × 3 mm). 40 121 

contiguous axial slices provided whole-brain coverage. Three additional images were included at the start 122 

of each run to allow signal stabilization and were excluded from analysis. Prior to the functional scan, T1-123 

Weighted high-resolution structural image was acquired (TR = 1800ms, TE = 3.44ms, flip angle = 7°, 124 

FOV = 256 mm, matrix = 256 × 256, voxel size = 1 × 1 × 1 mm). This image was used for anatomical 125 

coregistration and normalization. 126 

2.4. Reaction Time Analysis 127 

Reaction times of each subject were averaged over truthful events (RTtruth) and false responding events 128 

(RTlie). Mistake events and outlier RTs (values that deviated more than 1.5 inter-quartile ranges from the 129 

upper and lower quartiles of each subject) were excluded from these calculations. We aimed to investigate 130 

the relationship between the amount of RT prolongation during lying and the amount of activity in lie-131 

related brain regions. We employed average RTtruth of each subject as the measure of baseline speed. 132 

Inter-individual variance in RTtruth values reflects differences in general dexterity of subjects in 133 

performing task requirements. Competence at cognitive skills specific to the act of deception is not 134 

expected to affect the baseline speed in answering questions. As the measure of RT-cost of lying we 135 

calculated each subjects’ ‘relative appended lie reaction time’ [(RTlie − RTtruth) ⁄ RTtruth]. Expressing lying 136 

RT-cost as a fraction of baseline speed nulls the effect of dexterity and accentuates the influence of 137 

deception-specific cognitive processes in determining RTlie of an individual. 138 

2.5. fMRI Data Analysis 139 

FMRI data processing was carried out using FEAT Version 5.98, part of FSL (FMRIB's Software 140 

Library, www.fmrib.ox.ac.uk/fsl) (Jenkinson, Bannister, Brady, & Smith, 2002). Preprocessing steps 141 

consisted of: brain extraction (Smith, 2002) , motion correction (Jenkinson et al., 2002), slice-time 142 
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correction, Gaussian spatial smoothing (FWHM= 5 mm), and high-pass temporal filtering of the time 143 

series. Voxel time series were modeled by general linear model. Regressors for each event type 144 

(‘truthful’, ‘false’, ‘mistake’) were convolved with canonical hemodynamic response function. BOLD 145 

contrast of [lie > truth] was calculated for each subject. Parameter estimates from single subjects were 146 

entered in random-effect group analysis (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). 147 

Baseline speed measures [RTtruth] and lying RT-cost measures [(RTlie − RTtruth) ⁄ RTtruth] were included in 148 

the group-level analysis as between-subject regressors. This allowed us to perform voxel-wise whole-149 

brain search for voxels where the BOLD activity difference between lie and truth events correlated with 150 

the inter-individual variability in baseline speed and RT-cost. For statistical inference, Z statistic images 151 

were thresholded at Z > 2.3; corrected cluster-significances of p < 0.05 were deemed meaningful. 152 
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3. RESULTS 153 

3.1. Behavioral results 154 

Frequency of mistakes was 10.2% on average (SD = 9.03), indicating that participants adequately 155 

adhered to their template and task instructions. RTtruth was 1.81 seconds on average (SD = 0.52) while 156 

mean RTlie was 1.94 seconds (SD = 0.61). This difference was statistically significant based on paired-157 

samples t-test [t(19) = 2.75, p = 0.013, effect size = 0.6 cohen’s d]. As expected, there was considerable 158 

amount of inter-individual variability among participants both in the baseline speed of answering 159 

truthfully (range: 1.12 – 3.18 seconds; Figure 1.a) and the difference between RTlie and RTtruth 160 

(range: -0.24 – 0.63 seconds; Figure 1.b). Relative appended lie RT [(RTlie − RTtruth) ⁄ RTtruth] ranged 161 

from -0.11 to 0.31. 162 

Correlation between RTlie and RTtruth of participants was highly significant [r = 0.941, p < 0.001]. On 163 

the other hand, the relative appended lie RT and RTtruth values were not correlated [r = 0.005, p = 0.984]; 164 

this allowed us to independently estimate their correlation with lie-related brain activations (Mumford, 165 

Poline, & Poldrack, 2015). 166 

3.2. Functional imaging results 167 

Table 1 presents the results of group-level contrast of [lie > truth] BOLD parameter estimates. We 168 

classified this set of anatomical areas into distinct subsets based on how their BOLD signal change 169 

correlated with behavioral RT-measures (Table 1, Figure 2). Activity in right inferior frontal gyrus (IFG) 170 

(corresponding to right VLPFC) and bilateral paracingulate cortex showed positive correlation with 171 

baseline speed measure [RTtruth]. Left IFG (left VLPFC), left lateral occipital cortex (LOC), and bilateral 172 

anterior cingulate cortex (ACC) exhibited positive correlation with relative appended lie RT measure 173 

[(RTlie − RTtruth) ⁄ RTtruth]. Areas showing negative correlation with this measure were bilateral posterior 174 

cingulate (PCC) and right insular cortex (Figure 2.a). A subset of areas showed higher BOLD activity 175 

during lying but the amount of their BOLD signal-change did not correlate with either of behavioral RT-176 
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measures. These areas were bilateral supplementary motor area (SMA), internal capsule white matter 177 

(ICWM), and left angular gyrus (AG; in the posterior segment of inferior parietal lobule, IPL) (Figure 178 

2.b).  179 
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4. DISCUSSION 180 

We investigated reaction times and fMRI brain activity of subjects while they provided truthful or 181 

intentional false responses to a set of autobiographical yes-no questions. In agreement with multiple 182 

previous findings of longer RTs under deceptive conditions (Mameli et al., 2010; Marchewka et al., 2012; 183 

Nuñez et al., 2005) our results show that it takes longer to provide a false response than to answer 184 

truthfully. However, the size of this effect varied considerably from one participant to another: RT-cost of 185 

lying exceeded half a second in some individuals while being absent, and even negative, in some others 186 

(Figure 1.b). Inter-individual variability was also present in the baseline speed of participants: the slowest 187 

participant required almost triple the time spent by the fastest participant to answer questions truthfully 188 

(Figure 1.a). Results of our fMRI comparison between lie and truth conditions (Table 1) resembled 189 

previous neuroimaging findings (Christ et al., 2009; Farah et al., 2014), indicating lie-related BOLD 190 

signal change in regions of lateral and medial frontal cortex, as well as cingulate, parietal, and insular 191 

cortex. We classified this set of regions according to their correlation with behavioral RT-measures for 192 

baseline speed and lying RT-cost. Whether a region’s BOLD signal-change during lying associates with 193 

RT-prolongation can hint at the probable cognitive function of that region during deception. In what 194 

follows, we will discuss general implications of current results in the light of extant literature. 195 

4.1. Correlation with RT-cost measure 196 

Our results showed that the amount of increase in BOLD activity of left VLPFC, bilateral ACC, and 197 

left LOC areas during lying directly correlates with lying RT-cost measure of each participant. Bilateral 198 

PCC and right insula showed inverse correlation with this measure. Correlation between activity of a 199 

region and RT-cost measure implies that the cognitive function undertaken by such region is critical for 200 

determining the reaction time length in events that required intentional false responding. We standardized 201 

RT-costs by expressing the lie-truth RT difference as a fraction of truthful responding speed of each 202 

participant. Therefore, if a brain region correlates with RT-cost measure but does not correlate with 203 

baseline speed measure the cognitive function of such region is probably exclusively employed for 204 
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providing intentional false responses, but not truthful answers. Overlap between RT-cost and baseline-205 

speed correlating regions was only observed at the junction of ACC and paracingulate cortex. Pinpointing 206 

neural correlates of  RT prolongation during lying in prefrontal and executive control regions corroborates 207 

the accumulating evidence indicating a predominant role for these regions in deceptive behavior (Abe, 208 

2011; Christ et al., 2009).  209 

Our observation that neural correlates of RT prolongation during lying consists of both negatively 210 

correlating and positively correlating areas offers an explanation for the inconsistency of results achieved 211 

through transcranial direct current stimulation (tDCS) studies of deception. In first of these studies, Priori 212 

et al. (2008) applied tDCS to dorsolateral prefrontal cortex in order to manipulate the excitability of brain 213 

regions involved in deception. They found amplified RT-cost of lying after anodal tDCS but no change 214 

after cathodal tDCS. In contrast, Karim et al. (2010) found facilitation in lying after cathodal stimulation 215 

of anterior prefrontal cortex, as evidenced by reduced RT-cost and lower skin conductance responses, yet 216 

no effect after application of anodal tDCS to the same region. Reduction in RT-cost of lying after tDCS is 217 

also reported by Mameli et al. (2010) even though they applied anodal tDCS to dorsolateral prefrontal 218 

cortex. Our results suggest that slight spatial shifts—in range of centimeters—in the focus of functional 219 

changes induced by tDCS can lead to disparate behavioral outcomes. For instance facilitating the 220 

excitability of ACC—a region implied in conflict monitoring (Botvinick, Cohen, & Carter, 2004)—could 221 

increase the lie RT while the same modulation applied on PCC—a region implied in internally-directed 222 

cognition and autobiographical memory retrieval (Leech & Sharp, 2014)—could contrarily decrease the 223 

lie RT: since activity within these adjoining regions correlate with RT-cost of lying in opposite directions. 224 

4.2. Correlation with baseline-RT measure 225 

In order to represent the dexterity of individuals in performing task instructions, we used average RT 226 

of participants during truthful answering as the measure of baseline speed. Participants who had faster 227 

baseline speed showed larger activity increase in right VLPFC and bilateral paracingulate cortex during 228 

lying. Correlation with baseline-RT implies involvement with cognitive functions that are shared between 229 
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truth telling and lying events, but employed to a larger extent during lying. This implication of our results 230 

conforms to previous literature suggesting general, nonspecific executive function roles for right VLPFC 231 

and paracingulate cortex. A recent meta-analysis (Levy & Wagner, 2011) found functional specialization 232 

within right VLPFC for detection of behaviorally relevant stimuli, updating of action plans, and 233 

responding to decision uncertainty: functions that are employed during a wide variety of cognitive tasks 234 

including truth telling and lying. More in line with the inter-individual difference approach of our study, 235 

Fornito et al. (2004) has shown that prominent paracingulate sulcus folding in an individual is associated 236 

with non-specific performance advantage on cognitively demanding executive function tasks. Our results 237 

suggest that paracingulate and right VLPFC functions relate to truth and lie RTs similarly and cannot 238 

impose a lie RT-cost in the same way that lie exclusive cognitive processes do. 239 

4.3. Lie-related regions not correlating with either RT measures 240 

In bilateral SMA, ICWM and left AG, lie-related BOLD increase did not correlate with either of 241 

behavioral RT measures. This implies that the function undertaken by these areas does not contribute to 242 

prolongation of reaction times. These regions might perform relatively fast cognitive processes and/or 243 

work in parallel with other processes. Alternatively, such a region might be activated subsequent to 244 

subjects’ response and play roles in retrospective evaluation of action. It is notable that both cortical areas 245 

in this subset associate with higher-level motor functions: subregions within SMA are involved with 246 

multiple stages of movement from preparation to execution (K. M. Lee, Chang, & Roh, 1999) and AG is 247 

believed to represent action awareness (Farrer et al., 2008). Our paradigm used two-alternative choice 248 

questions. It is conceivable that participants might have employed a motor task-switching strategy for 249 

providing false responses. Such strategy could justify higher activation in motor control regions in 250 

parallel and subsequent to cognitive processes culminating in execution of a deceptive behavior. 251 

4.4. Functional dichotomy in VLPFC and cingulate cortex 252 

A noteworthy finding of our study is the dichotomy between right and left VLPFC, which accordingly 253 

showed exclusive correlation with baseline-speed and lying RT-cost measures. Our findings imply that 254 
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the cognitive function of right VLPFC is shared between lie and truth events but the function of left 255 

VLPFC is more specific to lying. This is consistent with previous literature signifying the functional 256 

dissociation between contralateral VLPFCs: right VLPFC is assumed to respond to decision uncertainty 257 

and motor inhibition (Levy & Wagner, 2011), while data from left VLPFC support a role in cognitive 258 

control of memory (Badre & Wagner, 2007). Areas in medial frontal and cingulate cortex also revealed an 259 

interesting pattern of functional dissociation. From anterior to posterior, ACC correlated with lie RT-cost 260 

positively, paracingulate region correlated with baseline speed, and PCC correlated with RT-cost 261 

negatively. This finding is in line with the alleged fundamental dichotomy within cingulate cortex, 262 

with anterior executive and posterior evaluative functions (Mohanty et al., 2007; Vogt, Finch, & Olson, 263 

1992). 264 

4.5. Time-on-task effects might contaminate fMRI comparisons between lie and 265 

truth 266 

It should be noted that fMRI results we discussed so far are correlative by nature; therefore, the 267 

direction of causality in the observed correlations could not be readily inferred. So far, we strived to 268 

interpret these correlations as the neural correlates of reaction time prolongation during lying; however, 269 

we should also consider the reverse causation direction: the possibility that activity of a brain region be 270 

modulated as a consequence of longer reaction times during lying. In fMRI experiments, participants 271 

briskly employ resources to responds to an event but are free to disengage in rest periods interleaving 272 

trials. A longer reaction time, whatever be the mechanism underlying its prolongation, calls for higher 273 

amount of maintained attention and goal-directed behavior (Grinband, Wager, Lindquist, Ferrera, & 274 

Hirsch, 2008). Indeed, recent studies have found that the length of an individual’s “time-on-task” 275 

monotonically increases the BOLD amplitude within multiple frontal and parietal regions, irrespective of 276 

the nature of cognitive task at hand (Grinband et al., 2011; Yarkoni, Barch, Gray, Conturo, & Braver, 277 

2009). The extent of resemblance between brain regions affected by time-on-task duration (Yarkoni et al., 278 

2009) and regions consistently reported by fMRI studies of deception (Farah et al., 2014) is remarkable. 279 
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Bilateral medial frontal gyrus, right IFG/VLPFC, right middle frontal gyrus/DLPFC, left anterior insula, 280 

left IPL, left precuneus/intraparietal sulcus, and bilateral thalamus show up in both lists. Nevertheless, 281 

ACC, PCC, and left VLPFC are among the deception-related regions that have not been implicated in 282 

time-on-task effects. In the current study, we found a similar dichotomy by separating deception-related 283 

regions correlating with the baseline speed of participants from regions correlating with the lying RT-284 

cost. The fact that only right VLPFC is reported to show time-on-task effect bolsters the conjecture of 285 

left-lateralized involvement of VLPFC in deception that we proposed above. 286 

On a wider perspective, the supposition that time-on-task duration affects frontal activity can 287 

undermine the validity of current mapping of the neural correlates of deception. Most of our knowledge 288 

comes from fMRI studies contrasting brain activity during lying versus truthful responding, without 289 

controlling for the confounding factor of difference in reaction times under the two conditions. By 290 

reviewing the studies included in the latest meta-analysis (Farah et al., 2014) we saw that only two out of 291 

23 studies have included reaction times in their fMRI model (Browndyke et al., 2008; Nuñez et al., 2005) 292 

despite the fact that most studies did report significantly longer RTs under deception conditions (see 293 

Supplementary information 1). Due to this systematic shortcoming, set of brain regions currently 294 

associated with deceptive behavior is probably contaminated by areas that show time-on-task effects but 295 

do not necessarily play a critical part in generation of deception. Further studies should address this 296 

ambiguity by following a more controlled approach to brain mapping of deception. 297 

4.6. Limitations and future suggestions 298 

We acknowledge that the two-alternative forced choice questions used in this study does not tap on the 299 

whole spectrum of processes involved in deception. On events requiring intentional false responding, 300 

participants probably relied largely on response switching strategies: swapping the truthful response with 301 

the false alternative at the last moment. Mental processes required for fabrication of deceptive responses 302 

and cognitive planning are in all likelihood not engaged during the course of our experiment. Emotional 303 

engagement that is normally experienced during real deceptive acts was also probably absent in the 304 
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current study: our subjects were asked to blindly select half of questions and were later instructed to lie 305 

about them, while in ecologically valid situations the decision to lie will be determined by hidden 306 

personal motives and incentives. In addition to the type of questions, the verbal nature of them should be 307 

noted too. Our results implied left-lateralized specification of VLPFC for deception; however, it is unclear 308 

whether left-lateralization would be replicated in case of non-verbal forms of deception. 309 

In the current discussion we tried to propose provisional implications regarding the probable cognitive 310 

function of lie-related brain areas based on the pattern of correlation with RT measures; nevertheless, we 311 

should reiterate that our experiment was not designed to provide exact inference about cognitive 312 

functions. Further studies are called for to confirm current implications. In this study, we exploited the 313 

between-subject variability in reaction times; a future study can try to investigate the within-subject trial-314 

by-trial variability of reaction times and their correlation with activity level of lie-related brain regions. 315 

4.7. Conclusion 316 

In this study, we tried to find what neural components contribute to RT prolongation when people try 317 

to respond deceptively. Based on current results, we speculate that cognitive functions undertaken by left 318 

VLPFC and cingulate cortex—regions correlating with the RT-cost measure—determine the amount of 319 

RT prolongation during lying and therefore might be more critical for producing deception. On the other 320 

hand, the increase in activation of paracingulate and right VLPFC—areas that correlated with the baseline 321 

speed measure and implicated in the time-on-task effect by the literature—might be mere byproducts of 322 

longer reaction times and higher mental load during deception. 323 
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  477 

Figure 1. Participants showed considerable inter-individual variability both in the baseline speed and in 478 

the RT-cost of lying. (a) Average reaction time (RT) in truth trials, sorted in descending order. This value 479 

was used as the baseline speed measure of each participant in the fMRI analysis. Error bars show 480 

±2 standard error of the mean. (b) Difference between mean RT in lie and truth trials [RTlie – RTtruth]. 481 

This value was divided by the RTtruth of each participant to yield relative appended lie RT, which was 482 

used as the lying RT-cost measure of each participant in the fMRI analysis. Bars colored green denote 483 

subjects with faster RT in lie trials.  484 
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Table 1. Brain regions showing [lie > truth] BOLD effect, classified based on the correlation of their activity with baseline speed 
a
 and lying RT-

cost 
b
 measures  

  Brain region H 
Cluster size 

(voxels) 

Peak Z-

value 

Peak Coordinates 

(MNI) p value 
c

 

x y z 

Baseline speed, Positive correlation Paracingulate gyrus L & R 1072 4.07 -2 26 42 < 0.001 

Middle frontal gyrus L 547 3.7 -36 -2 56 0.008 

Inferior frontal gyrus (VLPFC) R 515 3.38 42 24 20 0.012 

Lying RT-cost, Positive correlation Inferior frontal gyrus (VLPFC) L 1520 4.4 -54 20 24 < 0.001 

lateral occipital cortex L 916 3.73 -34 -60 60 < 0.001 

Anterior cingulate cortex L & R 855 4.01 0 20 36 < 0.001 

Lying RT-cost, Negative correlation Posterior cingulate cortex L & R 858 3.55 8 -10 42 < 0.001 

Insular cortex R 768 3.87 36 4 10 0.001 

Post central gyrus R 688 3.55 54 -18 44 0.001 

Cerebellum nucleus V R 517 3.21 30 -34 -36 0.01 

Posterior middle temporal gyrus R 446 3.17 60 -48 2 0.023 

No correlation Internal capsule white matter L & R 1249 4.01 2 -6 4 < 0.001 

Supplementary motor area L & R 519 3.5 -4 4 70 0.011 

Angular gyrus (IPL) L 448 3.22 -54 -56 38 0.026 

a
 Average speed in answering questions truthfully [RTtruth] was used as representative of participants’ baseline speed. 

b
 Relative appended lie RT [(RTlie − RTtruth) & RTtruth] was used as representative of RT-cost of lying. 

c
 Z statistic images were thresholded using clusters determined by Z > 2.3 and a corrected cluster significance of p < 0.05. 

H, hemisphere; IPL, inferior parietal lobule L, left; MNI, Montreal neurological institute; R, right; RT, reaction time; VLPFC, ventrolateral prefrontal cortex. 

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 26, 2016. 

; 
https://doi.org/10.1101/089847

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/089847


  485 

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 26, 2016. 

; 
https://doi.org/10.1101/089847

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/089847


486 

Figure 2. Group-level results of [lie > truth] BOLD contrast and correlations with behavioral reaction 487 

time (RT) measures. Z statistic images were thresholded using clusters determined by Z > 2.3 and a 488 

corrected cluster significance of p < 0.05. Locations of slices are indicated by the x, y, and z coordinates 489 

as per the MNI coordinate system. (a) Brain regions where the BOLD signal difference between lying and490 

truth telling conditions correlated with at least one of the behavioral indices. Average speed in answering 491 

questions truthfully [RTtruth] was used as representative of participants’ baseline speed. Relative appended 492 

lie RT [(RTlie − RTtruth) ⁄ RTtruth] was used as representative of RT-cost of lying. This measure is an 493 

indicator of how participants’ RTs changed while lying. (b) Brain regions that showed significant BOLD 494 

signal difference between lying and truth telling conditions but did not correlate with either of behavioral 495 

RT indices. Color bar indicates Z-values. 496 

ACC, Anterior cingulate cortex; IFG, Inferior frontal gyrus; L, Left; LOC, Lateral occipital cortex; PCC, 497 

Posterior cingulate cortex; PCG, Postcentral gyrus; pMTG, Posterior middle temporal gyrus; SMA, 498 

Supplementary motor area. 499 
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