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Abstract 
 
The interaction between metabolism and the immune system plays a central role in many 

cardiometabolic diseases. We integrated blood transcriptomic, metabolomic, and genomic profiles 

from two population-based cohorts, including a subset with 7-year follow-up sampling. We identified 

topologically robust gene networks enriched for diverse immune functions including cytotoxicity, viral 

response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules 

showed complex patterns of association with 158 circulating metabolites, including lipoprotein 

subclasses, lipids, fatty acids, amino acids, and CRP. Genome-wide scans for module expression 

quantitative trait loci (mQTLs) revealed five modules with mQTLs of both cis and trans effects. The 

strongest mQTL was in ARHGEF3 (rs1354034) and affected a module enriched for platelet function. 

Mast cell/basophil and neutrophil function modules maintained their metabolite associations during 7-

year follow-up, while our strongest mQTL in ARHGEF3 also displayed clear temporal stability. This 

study provides a detailed map of natural variation at the blood immuno-metabolic interface and its 

genetic basis, and facilitates subsequent studies to explain inter-individual variation in cardiometabolic 

disease. 
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Introduction 
 
Over the last decade increasing evidence has implicated inflammation as a probable causal factor in 

metabolic and cardiovascular diseases. Consequently, research has begun to focus on the interplay 

between immunity and metabolism, or immunometabolism. While it is involved in diverse 

pathophysiologies, immunometabolism is particularly relevant to diseases of immense global health 

burden, such as type 2 diabetes (T2D) and atherosclerosis. 

 

For T2D, immune overactivation in adipose tissue has been implicated as a key driver (1,2). Studies 

have shown that macrophage infiltration and subsequent overexpression of proinflammatory cytokines, 

such as TNF-a, in adipose tissues is associated with insulin resistance (1,2). Moreover, evidence for 

metabolic inflammation has been shown in other tissues where, in blood, elevated glucose and free 

fatty acid levels potentiate IL-1β mediated destruction of pancreatic ß-cells and subsequent T2D 

progression (3–5). While circulating metabolites are known to be associated with cardiovascular 

disease (6), inflammation is an increasingly recognised factor in pathogenesis. In atherosclerosis, lipid-

induced inflammatory response mechanisms have also been implicated in progression to myocardial 

infarction (7). In atherogenic lesions, oxidized phospholipids are known to lead to a new macrophage 

phenotype (8), and cholesterol loading in macrophages promote proinflammatory cytokine secretion 

(9). 

 

Perhaps surprisingly, few large-scale studies have systematically assessed interactions between the 

human immune system and metabolites. Recent studies have investigated matched blood 

transcriptomic and metabolomic profiles to understand their interplay (10–16). However, these studies 

had modest sample sizes and thus have not had the power to focus on the diverse range of immune 

processes that interact with circulating metabolites. Furthermore, even fewer have assessed effects of 

expression quantitative trait locus (eQTL) on immune gene networks. A robust integrated map of 

immunometabolic relationships and their genetic regulation would provide a foundation for 

investigating the differential cardiometabolic disease susceptibility amongst individuals while also 

identifying key target interactions for mechanistic in vivo and in vitro follow-up. 

 

In this study, we present an integrated immunometabolic map using matched blood metabolomic and 

transcriptomic profiles from 2,168 individuals from two population-based cohorts. We perform gene 

coexpression network discovery and cross-cohort replication to identify robust gene modules which 

encode immune-related functions. Using a high-throughput quantitative NMR metabolomics platform 
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that can separate lipids and lipoprotein sub-fractions as well as quantify a panel of polar metabolites, 

we identify significant interactions between immune gene modules and circulating metabolites. 

Genome-wide scans for QTLs affecting immune gene modules identify many cis and trans loci 

affecting module expression. Finally, we test the long-term stability of gene modules, their metabolite 

interactions, and genetic control using a 7-year follow up sampling of 333 individuals. 

 

 

 

Results and Discussion 

 

Summary of cohorts and data 

 

We analysed genome-wide genotype, whole blood transcriptomic and serum metabolomics data from 

two population-based cohorts (Methods and Figure 1). In DILGOM07, 240 males and 278 females 

aged 25-74 years were recruited (total N = 518). Data was available for a subset of 333 participants 

from DILGOM07 who were followed up after seven years (DILGOM14). In YFS, relevant data was 

available for 755 males and 895 females aged 34-49 years (total N = 1,650).  

 

DILGOM and YFS genotyping was performed using Illumina Human 610 and 670 arrays, 

respectively, with subsequent genotype imputation performed using IMPUTE2 (17) and the 1000 

Genomes Phase I version 3 reference panel. For both cohorts, whole blood transcriptome profiling was 

performed using Illumina HT-12 arrays and serum metabolomics profiling was carried out using the 

same serum NMR metabolomics platform (Brainshake, Ltd) (18). Individuals on lipid-lowering 

medication and pregnant women were excluded from the metabolome analyses (Methods). Of the 158 

metabolites analysed, 148 were directly quantified and 10 derived (Table S1). After filtering, matched 

transcriptome and metabolome data was available for 440 individuals in DILGOM07 and 216 of these 

individuals (DILGOM14) who were profiled at seven-year follow-up. In YFS, 1,575 individuals were 

available with similar data (see Methods for details).  
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Robust immune gene coexpression networks from blood 

 

We first identified networks of tightly coexpressing genes in DILGOM07 and then used a permutation 

approach, NetRep (19), to statistically test replication patterns of density and connectivity for these 

networks in YFS. For module detection, we applied weighted gene coexpression network analysis 

(WGCNA) to all 35,422 probes in the DILGOM07 data, identifying a total of 40 modules of 

coexpressed genes (Methods). For each module, we used NetRep to calculate seven preservation 

statistics in the YFS, generate empirical null distributions for each of these test statistics, and calculate 

their corresponding P-values (19,20). A module was considered strongly preserved if the P was < 

0.001 for all seven preservation statistics (Bonferroni correction for 40 modules). Of the 40 

DILGOM07 modules, 20 were strongly preserved in YFS (Table S2). For each of the 20 replicated 

modules, we defined core gene probes, those which are most tightly coexpressed and thus robust to 

clustering parameters, using a permutation test of module membership (Methods and Table S3). 

 

To identify modules of putative immune function, we carried out Gene Ontology (GO) biological 

process enrichment analysis using GOrilla for the core genes of each replicated module (21). 

Significant GO terms (FDR < 0.05) were then summarised into representative terms based on semantic 

similarity using REVIGO (22) (Figure S1). A module was considered immune related if it was 

significantly enriched for GO terms “immune system processes” (GO: 0002376) and/or “regulation of 

immune system processes” (GO:0002682) in the REVIGO output. Six out of 20 modules were 

enriched for at least one of these terms (Table S4). We also identified two additional modules, which 

were not enriched for any GO terms, but have been previously linked to immune functions related to 

mast cell and basophil function (13) and platelet aggregation activity (23). The eight modules encoded 

diverse immune functions, including cytotoxic, viral response, B cell, platelet, neutrophil, mast 

cell/basophil, and general immune-related functions. Each immune module's gene content and putative 

biological function is summarized in Table 1.	

 

 

Immune module association analysis for eQTLs and metabolite levels 

 

For each gene module, we performed a genome-wide scan to identify module QTLs (mQTLs) that 

regulate expression. In DILGOM07 and YFS, the module eigengene was regressed on each SNP, then 

mQTL test statistics were combined in meta-analysis (Methods). Significant mQTLs were further 

examined at individual gene expression levels. A genome-wide significance level (P-value < 5x10-8) 
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was used to identify mQTLs and significant trans effects on individual gene expression (Figure 2 and 

Table 2). Leukocyte and platelet counts were available for YFS and were used to test the robustness of 

module associations with mQTLs and metabolites. Six modules showed statistically significant 

association with platelet or leukocyte counts (P-value < 0.05) (Table S5), however adjustment for 

leukocyte counts did not affect mQTL nor metabolite-module associations, with the exception of the 

PM and CCLM discussed below (Table S6). Since we did not have cell counts available for 

DILGOM07, all the immune-metabolite associations discussed below, unless otherwise noted, have 

not been adjusted for cell counts.  

 

 

Cytotoxic cell-like module (CCLM) 

 

CCLM was associated with 24 metabolites, mainly consisting of fatty acids, intermediate density 

lipoproteins, and CRP (Figure 3 and Table S7). The top associated metabolite was the average 

number of double bonds in a fatty acid chain (meta-P-value = 7.23 x 10-7). It is known that CRP 

augments cytotoxic responses by binding to NK cells, modulating their activity (24), enhancing 

cytotoxic responses of NK cells against tumour cells (25), and sensitizing endothelial cells to cytotoxic 

T-cell mediated destruction (26). The interaction between fatty acid double bond saturation and anti-

inflammatory response is well characterised, and unsaturated fatty acids have been shown to induce 

cytotoxicity in in vitro cancer cell lines as well as animal models of tumour incidence and growth 

(27,28). Adjustment of CCLM-metabolite associations for leukocyte counts resulted in the gain of 38 

additional associations and loss of four (creatinine, ratio of polyunsaturated fatty acids to total fatty 

acids, VLDL particle size, and CRP) existing associations (Table S6). CCLM had no significant 

mQTLs.  

 

 

Viral response module (VRM) 

 

Three genome-wide significant mQTLs were identified for the VRM (Figure 2 and Table 2). The 

strongest mQTL, rs182710579 (meta-P-value = 9.22 x 10-9), is within a known lincRNA locus (RP11-

608O21.1) (Figure S2A). Rs182710579 was a trans eQTL for 3 genes in the VRM (Table S8). The 

strongest association was seen with CCL2 (meta-P-value = 6.78 x 10-12), a pro-inflammatory 

chemokine involved in leukocyte recruitment during viral infection (29,30). The next strongest mQTL, 

rs151234502, resides within intron 4 of the relatively unstudied ZNF212, part of a zinc finger gene 
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cluster at 7q36 (Figure S2B). Rs151234502 modulated expression of 11 VRM genes in trans (Table 

S8). The strongest association was with OAS2 (meta-P-value = 8.98 x 10-10), an interferon-induced 

gene encoding an enzyme promoting RNase L-mediated cleavage of viral and cellular RNA (31). The 

third mQTL, rs147742798, was an intergenic SNP located between SHANK2 and DHCR7 at 11q13.4 

(Figure S2C). Rs147742798 was a trans eQTL for 2 genes in the VRM, BST2 and PARP9 (Table S8). 

BST2 encodes a trans membrane protein with interferon-inducible antiviral function (32).	Studies have 

previously shown induction of fatty acid biosynthesis by a range of viruses (33). VRM was associated 

with eight metabolites, including amino acids (alanine, phenylalanine), fatty acids (omega-6 fatty 

acids, polyunsaturated fatty acids, saturated fatty acids, and total fatty acids), and cholesterol esters in 

medium VLDL (Figure 4 and Table S7). Consistent with its putative role in viral response, VRM was 

strongly associated with CRP (meta P-value = 2.38 x 10-10).  

 

 

B cell activity module (BCM) 

 

The BCM was associated with 14 metabolites including CRP, histidine, lactate, apolipoprotiens, and 

mainly medium HDL subclass of lipoproteins. (Figure 3 and Table S7). The strongest association was 

seen with CRP (meta-P-value = 2.65 x 10-8). Histidine, the second most strongly associated metabolite, 

is catabolized to histamine by histidine decarboxylase. The relationship between B cells and histamine 

is a central part of the allergic reaction where IgE released by B cells blankets mast cells, causing them 

to release histamine. While no mQTLs for BCM reached genome-wide significance, there was some 

evidence in the YFS for the MHC class I locus (Figure 2 and Table 2). The top signal was located 

between HLA-B/C and MICA (rs2523489, meta-P-value = 6.27 x 10-8) (Figure S3). The HLA class I 

region is well-known to be associated with autoimmune diseases, where the role of B cells is well 

recognized Rs2523489 was a trans eQTL for CD79B (meta-P-value = 1.16 x 10-9), a subunit of the 

antigen-binding B cell receptor complex (34). 

 

 

Platelet module (PM) 

 

PM had the strongest mQTL of any gene module, an intronic SNP of the ARHGEF3 gene at 3p14.3 

(rs1354034; meta-P-value = 7.35 x 10-28, Figures 2 and S4A, Table 2). ARHGEF3 encodes a Rho 

guanine nucleotide exchange factor, a catalyst of Rho GTPase conversion from inactive GDP-bound to 

active GTP–bound form. Rs1354034 was an eQTL for the majority of genes in the PM, all of which 
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were in trans. An intergenic SNP, rs2836773 (meta-P-value = 5.4 x 10-8), at the HLA locus was also 

identified as an mQTL for PM (Figure S4B). The ARHGEF3 mQTL (rs1354034) exhibited a strong 

trans-regulatory effect and was associated with 61 PM genes (65 unique probes) (Table S8). The top 

trans eQTL was ITGB3 (meta-P-value = 5.09 x 10-42), a gene encoding the β3 subunit of the 

heterodimeric integrin receptor (integrin αIIbβ3). This integrin receptor is most highly expressed on 

activated platelets and plays a key role in mediating platelet adhesion and aggregation upon binding to 

fibrinogen and Willebrand factor (35,36). Our data are consistent with previous observations of the 

diverse trans eQTL effects of rs1354034 (23), including the putative splice-QTL effects of rs1354034 

on TPM4, a significant eGene in the PM. 

 

ARHGEF3 itself is of intense interest to platelet biology. It has previously been shown that silencing of 

ARHGEF3 in zebrafish prevents thrombocyte formation (37). To test whether ARHGEF3 expression 

had an effect on PM genes, we regressed out ARHGEF3 levels and re-ran the eQTL analysis. 

Adjusting for ARHGEF3 did not attenuate the trans-associations of rs1354034, suggesting either 

independence of downstream function for ARHGEF3 and rs1354034 or post-transcriptional 

modification of ARHGEF3. Previous GWAS studies have shown rs1354034 is associated with platelet 

count and mean platelet volume (37), however, perhaps due to power, we found no significant 

relationship between platelet counts and rs1354034 in YFS. While platelet counts were positively 

associated with the PM (β = 0.29; P-value = 8.23 x 10-30) (Table S5), the association between 

rs1354034 and the PM was still highly significant when conditioning on platelet counts (β = -0.33; P-

value = 1.40 x 10-17). 

 

PM displayed diverse metabolic interactions and was associated with 55 metabolites, largely 

comprising of lipoprotein subclasses and fatty acids, as well as CRP (Figure 3 and Table S7). 

Cholesterol esters in small HDL particles were most strongly associated with the PM (meta-P-value = 

9.45 x 10-20). HDL has been shown to exhibit antithrombotic properties by modulating platelet 

activation, aggregation and coagulation pathway (38). On the other hand, pro-atherogenic lipoproteins 

effects on platelets has been recognised as an important driver in development of atherosclerosis. For 

example, LDL has been shown to influence platelet activity either by enhancing platelet 

responsiveness to aggregating stimuli or inducing aggregation (39,40). Moreover, LDL specific 

binding sites on platelets have also been reported (41,42). As noted above, the PM was associated with 

platelet counts, and adjustment of PM-metabolite associations for platelet counts in the YFS resulted in 

attenuation of approximately half of the weakest metabolite associations, however the strongest were 
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maintained (Table S6). Association with VLDL particle size and three others were gained following 

the adjustment (Table S6).  

 

 

Neutrophil module (NM) 

 

Three loci were identified as mQTLs for NM (Figure 2 and Table 2). The top mQTL was intronic to 

LRRC8A at 9q34.11 (rs13297295; meta-P-value = 3.93 x 10-11, Figure S5A). LRRC8A encodes for a 

trans-membrane protein shown to play a role in B and T cell development and T cell function (43,44). 

Two additional intergenic mQTLs were located at the TAGAP locus at 6q25.3 (rs2485364; meta-P-

value = 3.93 x 10-9) and at 20q12 (rs140929198; meta-P-value = 1.41 x 10-9) (Figures S5B-C). 

Rs13297295 was a strong trans regulator of NM and was an eQTL for 8 NM genes (10 unique 

probes), in particular the major alpha defensins (DEFA1-DEFA4), the genes of highest centrality in the 

module (Table S8). Rs13297295 was a cis-eQTL for another core NM gene, LCN2 (permuted meta-P-

value = 1 x 10-4) (Table S8). LCN2 is expressed in neutrophils and inducible by TLR activation, acting 

as an antimicrobial agent via sequestration of bacterial siderophores to prevent iron uptake (45–47). 

LCN2's role in acute phase response appears to be related to cardiovascular diseases, such as heart 

failure (48). At the TAGAP locus, rs2485364 was a trans-eQTL for 8 NM genes (10 probes) and was 

also a strong driver of LCN2 (meta-P-value = 9.11 x 10-17) (Table S8). Consistent with our findings, 

neutrophils from LCN2 deficient mice have been shown to have impaired chemotaxis, phagocytic 

capability, and increased susceptibility to bacterial and yeast infections compared to wild type (49,50). 

This suggests a possible functional role of TAGAP variants in regulating neutrophil migration through 

LCN2.  

 

NM was associated with 121 circulating metabolites (~76% of all metabolites analysed) as well as 

CRP (Figure 3 and Table S7). The strongest is the previously reported association with inflammatory 

biomarker GlycA (meta-P-value = 2.68 x 10-25) (10), however NM's association with various 

lipoprotein subclasses, particle sizes of lipoproteins, fatty acids, cholesterol, apolipoproteins, 

glycerides and phospholipids, amino acids, and other small molecules indicates it has a potentially 

major role in linking neutrophil function to metabolism. 

 

 

Lipid-Leukocyte module (LLM) 
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Together with NM, the LLM showed extensive metabolic associations. Overall, 123 metabolites and 

CRP were associated with LLM, with the strongest being the ratio of triglycerides to 

phosphoglycerides (meta-P-value = 5.16 x 10-138, Figure 3, Table S7). With the inclusion of the YFS, 

these findings strongly replicate previous LLM-metabolite associations (14) as well as highlight 

additional metabolite associations. We also confirm the previous strong negative association between 

CRP and LLM (meta-P-value = 8.16 x 10-20). Consistent with previous studies, no mQTLs were 

detected for LLM. 

 

 

General immune modules A and B (GIMA and GIMB) 

 

No mQTLs were associated with GIMA and GIMB, however these modules were associated with 97 

and 82 metabolites, respectively (Figure 3 and Table S7). Cholesterol esters in small HDL and the 

mean diameter for VLDL particles exhibited the strongest associations with GIMA (meta-P-value = 

1.56 x 10-30) and GIMB (meta-P-value = 1.83 x 10-15), respectively. The GIMA was also associated 

with CRP (meta-P-value = 5.7 x 10-5). Other metabolite associations with these two modules include 

mainly the VLDL and HDL subclass of lipoproteins and fatty acids, however, due to their large size 

and heterogeneous composition, interpretation of metabolic relationships of GIMA and GIMB is 

limited.  

 

 

Long-term stability of interactions between metabolites, immune gene modules and mQTLs 

 

The 216 individuals in both the DILGOM 2007 and 2014 follow-up allowed investigation of the long-

term stability of immunometabolic and mQTL relationships. Across this seven-year period, the eight 

immune gene coexpression networks were strongly preserved (all preservation statistics' permutation 

P-values <0.001; Table S9). The metabolite-metabolite correlation structure was also largely 

consistent between DIGOM07 and DILGOM14 (Figure S6). 

 

Next, we examined how metabolite interactions with immune gene modules changed over the 7-year 

time period (Methods). The LLM-metabolite associations were the most consistent over time with 90 

and 79 metabolites reaching significance in DILGOM07 and DILGOM14, respectively, of which 74 

were significant at both time points (Figure 4A, Table S10). The direction and effect size of LLM-

metabolite associations were largely maintained (Figure 4B). For the neutrophil module, only the 
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pyruvate association was significantly maintained over time, however there was some evidence that 

other expected NM-metabolite associations were stable over time, including GlycA (Table S10). 

While no metabolite associations were significantly maintained for platelet module, rs1354034 was a 

temporally stable mQTL of PM (mQTL P-value = 4.87 x 10-7). No other mQTLs reached significance 

for temporal stability. 

 

 

Conclusions 

This study has utilised over 2,000 individuals to map the immuno-metabolic crosstalk operating in 

circulation. We have identified and characterised eight robust immune gene modules, their genetic 

control and interactions with diverse metabolites, including many of clinical significance (e.g. 

triglycerides, HDL, LDL, branched-chain amino acids). Furthermore, our findings are consistent with 

and build upon those of previous studies. In addition to five newly identified gene modules, their 

mQTLs and metabolite interactions, we have replicated the previously characterised LL module and 

confirm its association with lipoprotein subclasses, lipids, fatty acids, and amino acids (13,14). 

Associations between the core genes in the LL module and isoleucine, leucine, and various lipids were 

also identified independently in the KORA cohort (12). Importantly, we have shown the long-term 

stability of LL and neutrophil module coexpression and metabolite interactions, and we have greatly 

expanded the number of known biomarkers associated with the NM from one (GlycA) to 123 (10). 

Our study has also expanded the widespread trans eQTL effects at the ARHGEF3 locus (23), shows 

them to be strongly maintained within individuals over time, and further identifies extensive 

lipoprotein and fatty acid metabolite interactions that may be a consequence of these trans effects.  

 

Taken together, our analyses illustrate the rapidly growing body of evidence intimately linking the 

immunoinflammatory response to the blood metabolome. With finer-resolution maps of these 

interactions, new biomarkers of chronic and acute inflammatory states are likely to emerge. With in 

vivo and interventional studies, modulation of these metabolite-immune interactions through existing 

lipid-lowering medications, gut microbe effects or dietary changes may provide new ways the immune 

system itself can be utilised to lessen the burden of cardiometabolic disease. 
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Methods  

Study Populations  

 

This study used data from two population-based cohorts, the Dietary, Lifestyle, and Genetic 

determinant of Obesity and Metabolic syndrome (DILGOM; N=518) and the Cardiovascular Risk in 

Young Finns Study, (YFS; N=1,650), which have been described in detail elsewhere (13,51). All 

subjects enrolled in these studies gave written informed consent.  

 

The DILGOM study is a subsample of the FINRISK 2007 cross-sectional population-based survey, 

which recruited a random sample of 10,000 individuals between 25–74 years of age, stratified by sex 

and 10-year age groups, from five study areas in Finland. All 6258 individuals who participated in the 

FINRISK 2007 baseline health examination were invited to attend the DILGOM study (N=5,024), 630 

of whom underwent at least one of the genotyping, transcriptomics or metabolomics profiling 

considered here. Ethics approval was given by the Coordinating Ethical Committee of the Helsinki and 

Uusimaa Hospital District. In 2014, a follow-up study was conducted, for which 3,735 individuals 

from the original study re-participated. Samples collected in 2007 and 2014 are referred to as 

DILGOM07 and DILGOM14, respectively. 

 

The DILGOM study is a cross-sectional population-based survey conducted in 2007, which randomly 

recruited 5,325 unrelated individuals aged between 25–74 years of age from the Helsinki region of 

Finland, 630 of whom underwent at least one of the genotyping, transcriptomics or metabolomics 

profiling considered here. Ethics approval was given by the Coordinating Ethical Committee of the 

Helsinki and Uusimaa Hospital District. In 2014, a follow-up study was conducted, for which 1,273 

individuals from the original study re-participated. Samples collected in 2007 and 2014 are referred to 

as DILGOM07 and DILGOM14, respectively. 

 

The YFS is a longitudinal prospective cohort study that started in 1980, with follow-up studies carried 

out every three years, to monitor cardiovascular disease risk factors in children and adolescents from 

five major regions of Finland (Helsinki, Kuopio, Turku, Oulu, and Tampere). In the baseline study a 

total of 3,596 children and adolescents in age groups 3, 6, 9, 12, 15, and 18 years participated, who 

were randomly selected from the national public register, details of which are described in (51). In this 

current study, data collected from the 2011 follow-up study (participants aged 34, 37, 40, 43, 46, and 
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49 years) were analysed. Ethics approval for the study research protocols was given by the Joint 

Commission on Ethics of Turku University and Turku University Central Hospital. 

 

 

Sample Collection 

 

Venous blood was collected following an overnight fast in all three studies. Samples were centrifuged, 

the resulting plasma and serum samples were aliquoted into separate tubes and stored at −70°C for 

analyses. Protocols for the blood sampling, physiological measurements, and clinical survey questions 

were similar across the YFS and DILGOM studies, and are described extensively in (13,52).  

 

 

Genotyping and Imputation  

 

Whole blood genomic DNA obtained from both cohorts was genotyped using the Illumina 610-Quad 

SNP array for DILGOM07 (N=555) (13) and a custom generated 670K Illumina BeadChip array for 

YFS (N=2,443) (53). The 670K array shares 562,643 SNPs with the 610-quad array. The 670K array 

removes poorly performing SNPs from the 610-quad array and improves copy number variation 

coverage (53). Genotype calling was performed with the Illuminus clustering algorithm (54). Quality 

control was as previously described in (13) and (53) for DILGOM and YFS, respectively. Genotypes 

were imputed to the 1000 Genomes Phase 1 version 3 reference panel using IMPUTE2 in both 

DILGOM and YFS (17). Poorly imputed SNPs based on low call-rate (< 0.90 for DILGOM, < 0.95 for 

YFS), low-information score (< 0.4), minor allele frequency < 1%, and deviation from Hardy-

Weinberg equilibrium (P < 5 x 10-6) were then removed. A total of 7,263,701 SNPs in DILGOM and 

6,721,082 in YFS passed quality control, with 6,485,973 common between the two. A total of N=518 

samples in DILGOM and N=2,443 samples in YFS individuals passed quality control filters.  

 

 

Metabolomics profiling 

 

Metabolite concentrations for DILGOM07 (N=4,816), DILGOM14 (N=1,273), and YFS (N=2,046) 

were quantified from serum samples utilizing a high-throughput NMR metabolomics platform 

(Brainshake Ltd, Helsinki, Finland) (18,55). Details of the experimental protocol including sample 

preparation, NMR spectroscopy and metabolite identification has been previously described in (13,18). 
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A total of 158 metabolite measures were assessed, of which 148 were directly measured and 10 were 

derived (Table S1). The 148 measures include the constituents of 14 lipoprotein subclasses (98 

measurements total), sizes of 3 lipoprotein particles, 2 apolipoproteins, 8 fatty acids, 8 glycerides and 

phospholipids, 9 cholesterols, 9 amino acids, 1 inflammatory marker, and 10 small molecules 

(involved in glycolysis, citric acid cycle and urea cycle). The lipoprotein subclasses are classified 

according to size as follows: chylomicrons and extremely large VLDL particles (average particle 

diameter at least 75 nm); five VLDL subclasses: very large VLDL (average particle diameter of 64.0 

nm), large VLDL (53.6 nm), medium VLDL (44.5 nm), small VLDL (36.8 nm), and very small VLDL 

(31.3 nm); intermediate-density lipoprotein (IDL) (28.6 nm); three LDL subclasses: large LDL (25.5 

nm), medium LDL (23.0 nm), and small LDL (18.7 nm); and four HDL subclasses: very large HDL 

(14.3 nm), large HDL (12.1 nm), medium HDL (10.9 nm), and small HDL (8.7 nm). Measurements 

with very low concentration, set as zero by the NMR pipeline, were set to the minimum value of that 

particular metabolite. Measurements rejected by automatic quality control or with detected 

irregularities were treated as missing. Undefined derived ratios arising from measurements with very 

low concentration (i.e. zero) were also treated as missing. Measurements were log2 transformed to 

approximate a normal distribution. 

  

C-reactive protein (CRP), an inflammatory marker, was quantified from serum using a high sensitivity 

latex turbidimetric immunoassay kit (CRP-UL assay, Wako Chemicals, Neuss, Germany) and an 

automated analyser (Olympus AU400) in DILGOM07 (N=5000), DILGOM14 (N=1308), and YFS 

(N=2046). CRP levels were log2 transformed.  

 
 

Gene expression, processing and normalization  

 

Transcriptome-wide gene expression levels were quantified by microarrays from peripheral whole 

blood using similar protocols in all three cohorts, and have been previously described for DILGOM07 

(13) and YFS (56). Stabilised total RNA was obtained from whole blood using a PAXgene Blood 

RNA System and the protocols recommended by the manufacturer. In DILGOM07, RNA integrity and 

quantity was evaluated using an Agilent 2100 Bioanalyzer. In YFS, RNA integrity and quantity were 

evaluated spectrophotometrically using an Eppendorf BioPhotomer and the RNA isolation process was 

validated using an Agilent RNA 6000 Nano Chip Kit. RNA was hybridized to Illumina HT-12 version 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2016. ; https://doi.org/10.1101/089839doi: bioRxiv preprint 

https://doi.org/10.1101/089839
http://creativecommons.org/licenses/by/4.0/


	 15 

3 BeadChip arrays in DILGOM07 and to Illumina HT-12 version 4 BeadChip arrays in DILGOM14 

and YFS.	

 

For DILGOM07, data was preprocessed as described in Inouye et al. (13). Briefly, for each array the 

background corrected probes were subjected to quantile normalization at the strip-level. Technical 

replicates were combined by bead count weighted average and replicates with Pearson correlation 

coefficient < 0.94 or Spearman’s rank correlation coefficient < 0.60 were removed. Expression values 

for each probe were then log2 transformed. For YFS, background corrected probes were subjected to 

quantile normalization followed by log2 transformation. For DILGOM14, probes matching to the 

erythrocyte globin components (N=4) and those that hybridized to multiple locations spanning more 

than 10Kb (N=507) were removed. Probes with average bead intensity of 0 were treated as missing. 

The average bead intensity was then log2 transformed and quantile normalized. A total of 35,425 (for 

DILGOM07), 36,640 (for DILGOM14) and 37,115 (for YFS) probes passed quality control. 

 

 

Gene co-expression network analysis and replication  

 

Gene co-expression network modules were identified in DILGOM07 (N=518 individuals with gene 

expression data) as previously described (10) using WGCNA version 1.47 (57,58) on all probes 

passing quality control. Briefly, probe co-expression was calculated as the Spearman correlation 

coefficient between each pair of probes, adjusted for age and sex. The weighted interaction network 

was calculated as the element-wise absolute co-expression exponentiated to the power 5. This power 

was selected through the scale-free topology criterion (57), which acts as a penalization procedure to 

enhance differentiation of signal from noise. Probes were subsequently clustered hierarchically 

(average linkage method) by topological overlap dissimilarity (57) and modules were detected through 

dynamic tree cut of the resulting dendrogram with default parameters and a minimum module size of 

10 probes (59). Similar modules were merged together in an iterative process in which modules whose 

eigengenes clustered together below a height of 0.2 were joined. Module eigengenes, representative 

summary expression profiles, were calculated as the first eigenvector from a principal components 

analysis of each module’s expression data. 

 

Module reproducibility and longitudinal stability were assessed in YFS (N=1,650 with gene expression 

data) and DILGOM14 (N=333 with gene expression data) respectively using the NetRep R package 

version 0.30.1 (19). Briefly, a permutation test (20,000 permutations) of seven module preservation 
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statistics was performed for each module in YFS and DILGOM14 separately. These statistics test the 

distinguishability and similarity of network features (density and connectivity) for each module in a 

second dataset (20). Modules were considered reproducible where permutation P-values for all seven 

statistics were < 0.001 (Bonferroni correcting for 40 modules) in YFS, and modules were considered 

longitudinally stable where P-values were < 0.001 for all seven statistics in DILGOM14. Probe co-

expression in YFS was calculated as the Spearman correlation coefficient between age and sex 

adjusted expression levels and the weighted interaction network was calculated as the element-wise 

absolute co-expression exponentiated to the power 4 as previously described (10). Probe co-expression 

in DILGOM14 was calculated as the Spearman correlation coefficient between each pair of probes, 

and the weighted interaction network defined as the element-wise absolute co-expression 

exponentiated to the power 5. 

 

To filter out genes spuriously clustered into each module by WGCNA we performed a two-sided 

permutation test on module membership (Pearson correlation between probe expression and the 

module eigengene) for each reproducible module in DILGOM07 and YFS. Here, the null hypothesis 

was, for each module, that its probes did not truly coexpress with the module. The null distribution of 

module membership for each module was empirically generated by calculating the membership 

between all non-module genes and the module’s eigengene. P-values for each probe were then 

calculated using the following permutation test P-value estimator (60): 

𝑝 =
𝑏 + 1
v+ 1 − 𝐹 𝑏; v, 𝑣! 𝑑𝑣!

!.!
!!!!

!
 

Where b is taken as the number of non-module genes with a membership smaller or greater than the 

test gene’s module membership, whichever number is smaller. v, the number of permutations 

calculated, and vt, the total number of possible permutations, are both the number of non-module 

genes. The resulting P-value was multiplied by 2 because the test was two-sided. To adjust for 

multiple testing, false discovery rate (FDR) correction was applied to the P-values separately for each 

module using the Benjamini and Hochberg method (61). We rejected the null hypothesis at FDR 

adjusted P-value < 0.05 in both DILGOM07 and YFS, deriving a subset of core probes for each 

module. 

 

 

Functional annotation of immune modules  
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Immune modules were identified through over-representation analysis of Gene Ontology (GO) terms 

in the core gene set for each of the 20 reproducible modules using the web based tool GOrilla (21) 

with default parameters (performed March 2016). GOrilla was run on two unranked gene lists where 

core module genes were given as the target list and the background list was given as the 25,233 human 

RefSeq genes corresponding to any probe(s) passing quality control in both DILGOM07 and YFS. A 

hypergeometric test was calculated to test whether each module was significantly enriched for genes 

annotated for each GO term in the “Biological Process” ontology. A GO term was considered 

significantly over-represented in a module where its FDR corrected P-value was < 0.05. FDR 

correction was applied in each module separately. Significant GO terms for each module were further 

summarised into a subset of representative GO terms with REVIGO (22) using the RELSIM semantic 

similarity measure and a similarity cut-off value C = 0.5 on genes from Homo sapiens. A module was 

considered to be immune-linked where the representative GO term list contained the parent GO term 

GO:0002376 (immune system process) and/or GO:0002682 (regulation of immune system processes). 

 

 

Statistical Analyses  

 

Reproducible module–metabolite associations were identified through linear regression of each 

immune module eigengene on each of the 159 metabolites in both DILGOM07 and YFS. Prior to 

analysis, metabolite data was first subsetted to individuals with matching gene expression profiles, 

followed by removal of subjects on cholesterol lowering drugs, for YFS (N=62) and DILGOM07 

(N=74). Pregnant women in YFS (N=10) and DILGOM (N=2) were further removed from the 

analysis. A total of 440 individuals in DILGOM07 and 1,575 individuals in YFS had matched gene 

expression and metabolite data, excluding pregnant women and those individuals taking lipid-lowering 

medication. Models were adjusted for age, sex, and use of combined oral contraceptive pills. Module 

eigengenes and metabolite levels were scaled to standard deviation units. To maximize statistical 

power, a meta-analysis was performed on the DILGOM07 and YFS associations using the fixed-

effects inverse variance method implemented in the “meta” R package (https://cran.r-

project.org/web/packages/meta/index.html). The meta-P-values for the 159 metabolite associations 

within each module were FDR corrected. An association was considered significant at FDR adjusted 

P-value < 6.25 x 10-3 (0.05/8 modules). This Bonferroni adjusted threshold was chosen to further 

adjust for the multiple modules being tested. To assess the potential confounding effects of blood cell 

type abundance on metabolite-module association, the model was rerun in YFS adjusting for leukocyte 

(for CCLM, VRM, BCM, NM, LLM, GIMA, GIMB) and platelet (for PM) counts available for this 
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cohort. The beta values and P-values generated with and without adjusting for cell count were then 

compared. Additionally, to assess the possible effect of cell counts on expression profiles, cell counts 

were associated with module eigengenes. 

 

Module–metabolite associations were tested for longitudinal stability in DILGOM14 using a linear 

regression model of each immune module eigengene on each of the 159 metabolites. A total of, 216 

individuals in DILGOM had matched gene expression and metabolite data in both 2007 and 2014, 

after removing pregnant women and individuals on lipid lowering medication at either time point 

(N=70). Models were adjusted for age and sex. Information on use of oral contraceptives was not 

available for this cohort. It is worth noting that > 60% of women were more than 50 years old, hence 

we would expect that rates of contraceptive use would be low and therefore not be a significant 

confounder. Module eigengenes and metabolite levels were scaled to standard deviation units. An 

association was considered longitudinally stable where the association was significant (FDR adjusted 

P-value < 6.25 x 10-3) in both DILGOM14 and DILGOM07. For sensitivity analysis, the model in 

DILGOM07 was run without adjusting for oral contraceptive use and this did not affect the significant 

immune-metabolite associations maintained over the two time-points.  

 

Module quantitative trait loci (mQTLs) were identified through genome-wide association scans with 

each immune module eigengene using the PLINK2 version 1.90 software (https://www.cog-

genomics.org/plink2) (62) in DILGOM07 and YFS. A total of 518 individuals had matched gene 

expression and genotype data in DILGOM07 and 1400 individuals had matched gene expression and 

genotype data in YFS. Associations were tested using a linear regression model of each eigengene on 

the minor allele dosage (additive model) of each SNP. Models were adjusted for age, sex, and the first 

10 genetic principal components (PCs). Genetic PCs were generated from a linkage-disequilibrium 

(LD) pruned set of approximately 200,000 SNPs using flashpca (63). P-values for each association in 

DILGOM07 and YFS were combined in a meta-analysis using the METAL software (64), which 

implements a sample size weighted Z-score method. A SNP was considered an mQTL if meta-analysis 

P-value (meta-P-value) was < 5 x 10-8. Blood cell count data available for YFS was utilized to test the 

robustness of module associations with mQTLs, where the same model was run with and without 

adjusting for leukocyte and platelet cell counts. 

 

Significant mQTLs were subsequently tested as expression quantitative trait loci (eQTLs) for genes 

within their respective modules using Matrix eQTL in both DILGOM07 and YFS (65). Both cis 

(mQTL within 1Mb of a given probe) and trans (mQTL greater than 5Mb from a given probe or on a 
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different chromosome) associations were tested. Associations were tested using a linear regression 

model of probe expression on minor allele dosage (additive model) of the mQTL. Models were 

adjusted for age, sex, and the first 10 genetic PCs. For trans-eQTL associations P-values in 

DILGOM07 and YFS were combined in a meta-analysis using the weighted Z-score method and 

considered significant where the meta-P-value < 5x10-8. For cis-eQTL associations, permutation tests 

were performed in which gene expression sample labels were shuffled 10,000 times to compute an 

empirical P-value. The permuted model P-values and nominal P-value were combined across 

DILGOM and YFS07 in meta-analyses using the weighted Z-score method when computing the 

permutation test P-value. An mQTL was considered a cis-eQTL where the permutation test P-value < 

0.05.  
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Figure legends 
 
Figure 1: Schematic of the study design. 

 
Figure 2: Module and expression QTL analysis.  

(A) Manhattan plot of meta-analysed P-values from the DILGOM/YFS module QTL analysis. The lead 

SNP and its closest genes are noted. Each significant mQTL locus is coloured by module. The horizontal 

dashed line represents genome-wide (meta P-value < 5 x10-8) significance. (B) Circular plot summarising the 

individual gene associations (meta-P-value < 5 x10-8) for the lead module QTLs in the VRM, PM and NM 

modules. Lead SNPs and cis genes are labeled outside the ring. PM (platelet module), VRM (viral 

response module), CCLM (cytotoxic cell-like module), NM (neutrophil module), BCM (B cell activity 

module), and GIMA (General immune module A). 

 

Figure 3: Metabolite associations with immune gene modules.  
Circular heatmap of associations between individual metabolites and the module eigengene of each 

module (coloured by FDR-adjusted P-values). Concentric circles represent modules, with numbers in 

parentheses denoting total number of metabolites associated with that module at FDR-adjusted P-value 

< 6.25 x 10-3. NM (neutrophil module), LLM (lipid leukocyte module), GIMA, and GIMB (General 

immune modules A and B), PM (platelet module), CCLM (cytotoxic cell-like module), BCM (B cell 

activity module), and VRM (viral response module). See Table S1 for full metabolite descriptions.  

 
 

Figure 4: Temporally stable metabolite associations with the LLM  

(A) Circular heatmap for association between individual metabolites and the LLM. (B) Comparison of 

the effect size estimates of metabolite association with LLM in DILGOM07 and DILGOM14 shows 

that the overall association patterns are consistent across the two time-points. Colours denote 

metabolites that are significantly associated with the LLM in DILGOM07 only (orange), DILGOM14 

only (blue), and across both time-points (green). The grey dashed line is the x=y line.  
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Figures  
 
Figure 1: Overview of the study design. 
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Figure 2: Module and expression QTL analysis.  
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Figure 3: Metabolite associations with immune-linked modules, DILGOM07 and YFS meta-

analysis.  
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Figure 4: Temporally stable metabolite associations with the Lipid Leukocyte Module (LLM). 
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Table 1: Immune module gene content and putative biological function based on GO terms (top three shown) and literature 
Module	 Size	 GO	terms	 Literature-based	immune	related	function	of	genes		

Cytotoxic	cell-like	
module	(CCLM)	

130	
(115)	

Immune	system	process	
Defense	response	
Immune	response	

Cytotoxic	effectors	(GZMA,	GZMB,	GZMM,	CTSW,	PRF1	(66));	surface	receptors	(IL2RB,	SLAMF6,	CD8A,	
CD8B,	 CD2,	 CD247,	 KLRD1,	KLRG1	 (66–68));	 T	 and	 NK	 cell	 differentiation	 (ID2	 and	 EOMES	 (69,70)),	
activation	(ZAP70	and	CBLB	(71,72)),	and	recruitment	(CX3CR1,	CCL5,	CCL4L2	(73)).		

Viral	response	
module	(VRM	

95	
(88)	

Response	to	virus	
Type	I	interferon	signaling	pathway	
Response	to	biotic	stimulus	

Type	 I	 interferon-induced	 antiviral	 activity	 (IFITM1,	 IFIT1,	 IFIT2,	 IFIT3,	 IFIT5,	 IFI44,	 IFI44L,	 IFI6,	MX1,	
ISG15,	 ISG20,	HERC5	 (74,75));	 viral	RNA	degradation	 (OAS1,	OAS2,	OAS3,	OASL,	DDX60	 (31));	 type	1	
interferon-signalling	pathway	(IRF9,	STAT1,	STAT2	(76,77)).	

B	cell	activity	module	
(BCM)	

54	
(49)	

Immune	system	process	
Immune	response	
B	cell	activation	

B	 cell	 surface	 markers	 (CD79A,	 CD79B,	 CD22	 (34,78));	 B	 cell	 activation	 (BANK1,	 BTLA,	 CD40,	
TNFRSF13B,	 TNFRSF13C	 (79)),	 development	 (POU2AF1,	 BCL11A,	 RASGRP3	 (80)),	 migration	 (CXCR5,	
CCR6	 (80,81)),	and	their	 regulation	 (CD83,	FCER2,	FCRL5	 (82));	antigen	presentation	 (HLA-DOA,	HLA-
DOB	(83)).	

*Platelet	module	
(PM)	

114	
(106)	

Coagulation	
Blood	coagulation	
Cell	activation	

Platelet	receptor	signalling,	activation,	and	coagulation	(GP6,	GP9,	ITGA2B,	ITGB3,	ITGB5,	MGLL,	MPL,	
MMRN1,	PTK2,	VCL,	THBS1,	F13A1,	VWF,	(84));	regulating	platelet	activity	(SEPT5,	TSPAN9	(85,86)).	

*Neutrophil	module	
(NM)	

26	
(26)	

Killing	of	cells	of	other	organism	
Cell	killing	
Response	to	fungus	

Anti	 -microbial,	 -fungal,	 and	 -viral	 activity	 (DEFA1,	 DEFA1B,	 DEFA3,	 DEFA4,	 ELANE,	 BPI,	 RNASE2,	
RNASE3	 (87–90));	 neutrophil	 mediated	 activity	 (AZU1,	 LCN2,	 MPO,	 CEACAM6,	 CEACAM8,	 OLFM4	
(90,91))	and	its	regulation	(LCN2,	CAMP,	OLR1	(50,92,93))	

*Lipid-leukocyte	
module	(LLM)	

13	
(13)	

**Mast	cell	and	basophil	function	
	

Mast	 cell	 and	 basophil	 related	 immune	 response	 and	 allergic	 inflammation	 (FCER1A,	 HDC,	 GATA2,	
SLC45A3,	CPA3,	MS4A3	(13,94,95))	

General	immune	
module	A	(GIMA)	

509	
(482)	

Immune	system	process	
Defense	response	
Regulation	of	response	to	stimulus	

	
These	modules	 contain	 genes	 involved	 in	 a	 broad	 range	 of	 immune	 processes	 and	 their	 regulation	
such	as	signalling;	cell	death;	defense	response	to	stress,	inflammation,	and	external	stimuli;	leukocyte	
activation,	migration,	and	adhesion.		General	immune	

module	B	(GIMB)	
74	
(69)	

Immune	response-activating	signal	
transduction	
Positive	regulation	of	immune	
response	
Activation	of	immune	response	

* Modules previously reported to have immune related function. ** LLM module was not significantly enriched for any GO term. Size refers to the number of 
core genes in each module and the subset of these core genes with GO term annotations are listed in parenthesis. Functions were assigned to each of these 
modules based on GO enrichments and literature-based searches for genes in the modules 
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Table 2: QTLs for immune gene modules. Modules: VRM (viral response module), BCM (B cell activity module), PM (platelet module), NM 
(neutrophil module), GIMA (General immune module A). 

	
Module	 Top	SNP	 CHR	 Hg19	Pos.	

(Mb)	
Allele	
(minor/m
ajor)	

MAF	
(Avg)	

P-value	
DILGOM07	
(effect	size)	

P-value		
YFS	
(effect	size)	

Meta	
P-value	

	
VRM	

rs182710579	

rs151234502	

rs147742798	

4	

7	

11	

19768086	

148950168	

70947761	

G/T	

T/C	

T/C	

0.012	

0.012	

0.016	

2.01	x	10-4	(0.05)	

2.59	x	10-1	(0.01)	

1.51	x	10-3	(0.04)	

8.10	x	10-6	(0.02)	

5.31	x	10-9	(0.03)	

1.66	x	10-6	(0.02)	

9.23	x	10-9	

2.46	x10-8	

9.43	x10-9	

BCM	 rs2523489	 6	 31348878	 T/C	 0.186	 1.42	x	10-1	(0.005)	 5.29	x	10-8	(0.006)	 6.27	x	10-8	

PM	
	

rs1354034	

rs28367734	

3	

6	

56849749	

3128657	

T/C	

A/G	

0.284	

0.108	

7.11	x	10-14	(-0.02)	

5.40	x	10-4	(0.02)	

1.51	x	10-16	(-0.008)	

2.02	x	10-5	(0.006)	
7.35	x	10-28	

5.44	x	10-8	

	
NM	

rs2485364	

rs13297295	

rs140929198	

rs2185366	

6	

9	

20	

22	

159512260	

131659724	

38555870	

32317905	

C/T	

C/T	

A/G		

G/A	

0.466	

0.085	

0.031	

0.414	

1.78	x	10-3	(0.009)	

4.26	x10-2	(0.009)	

2.98	x	10-2	(0.03)	

8.06	x	10-3	(-0.007)	

6.05	x	10-7	(0.004)	

8.39	x	10-11	(0.01)	

8.47	x	10-9	(0.01)	

5.16	x	10-6	(-0.004)	

3.93	x	10-9	

3.93	x	10-11	

1.41	x	10-9	

1.36	x	10-7	

GIMA		 rs2185366	 8	 131342722	 T/C	 0.421	 2.0	x	10-2	(0.007)	 1.52	x	10-6	(0.004)	 1.05	x	10-7	
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