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March 19, 2017

0 Abstract

Species interactions are a key component of ecosystems but we generally have an incomplete
picture of who-eats-who in a given community. Different techniques have been devised to predict
species interactions using theoretical models or abundances. Here, we explore the K nearest
neighbour approach, with a special emphasis on recommendation, along with other machine
learning techniques. Recommenders are algorithms developed for companies like Netflix to
predict if a customer would like a product given the preferences of similar customers. These
machine learning techniques are well-suited to study binary ecological interactions since they
focus on positive-only data. We also explore how the K nearest neighbour approach can be
used with both positive and negative information, in which case the goal of the algorithm is
to fill missing entries from a matrix (imputation). By removing a prey from a predator, we
find that recommenders can guess the missing prey around 50% of the times on the first try,
with up to 881 possibilities. Traits do not improve significantly the results for the K nearest
neighbour, although a simple test with a supervised learning approach (random forests) show
we can predict interactions with high accuracy using only three traits per species. This result
shows that binary interactions can be predicted without regard to the ecological community given
only three variables: body mass and two variables for the species’ phylogeny. These techniques
are complementary, as recommenders can predict interactions in the absence of traits, using
only information about other species’ interactions, while supervised learning algorithms such as
random forests base their predictions on traits only but do not exploit other species’ interactions.
Further work should focus on developing custom similarity measures specialized to ecology to
improve the KNN algorithms and using richer data to capture indirect relationships between
species.

1 Introduction

Species form complex networks of interactions and understanding these interactions is a major
goal of ecology [26]. The problem of predicting whether two species will interact has been
approached from various perspectives [3, 22]. Williams and Martinez [32] for instance built a
simple theoretical model capable of generating binary food webs sharing important features with
real food webs [15], while others have worked to predict interactions from species abundance
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Method Input Prediction

Recommender (Tanimoto KNN) Set of traits & preys for each species Recommend new preys
Imputation (Euclidean KNN) Interaction matrix with missing entries Fill missing entries (0s and 1s)
Supervised learning (Random forests) Traits (binary and real-valued) Interaction (1) or non-interaction (0)

Table 1: Summary of the three methods used. The first two use the K nearest neighbour
algorithm, with the Tanimoto distance measure in the positive-only case (recommendation), and
the Euclidean distance with positive and negative values (matrix imputation). The Tanimoto
KNN makes a recommendation, while the Euclidean KNN and random forests predict either
an interaction or a non-interaction. The context for the Euclidean KNN and random forests
are different: the former fills missing entries from a binary interaction matrix while the latter
makes a prediction based only on the traits of the predator and its prey.

data [1, 7]. Being able to predict with high enough accuracy whether two species will interact
given simply two sets of attributes, or the preferences of similar species, would be of value to
conservation and invasion biology, allowing us to build food webs with partial information about
interactions and help us understand cascading effects caused by perturbations. However, the
problem is made difficult by the small number of interactions relative to non-interactions and
relationships that involve more than two species [14].

In 2006, Netflix offered a prize to anyone who would improve their recommender system by
more than 10%. It took three years before a team could claim the prize, and the efforts greatly
helped advancing machine learning methods for recommenders [24]. Recommender systems
try to predict the rating a user would give to an item, recommending them items they would
like based on what similar users like [2]. Ecological interactions can also be described this
way: we want to know how much a species would “like” a prey. Interactions are treated as
binary variables, two species interact or they do not, but the same methods could be applied to
interaction matrices with preferences. There are two different ways to see the problem of species
interactions. In the positive-only case, a species has a set of preys, and we want to predict what
other preys they might be interested in. This approach has the benefit of relying only on our
most reliable information: positive (preferably observed) interactions. The other approach is to
see binary interactions as a matrix filled with interactions (1s) and non-interactions (0s). Here,
we want to predict the value of a specific missing entry (is species xi consuming species xj?).

Statistical machine learning algorithms [24] have proven to be reliable to build effective
predictive models for complex data (the “unreasonable effectiveness of data” [17]). We will use
a simple technique called the K nearest neighbour (KNN) algorithm both for recommendation
(finding good preys to a species with positive-only information) and matrix imputation (filling
a specific entry in a matrix with positive and negative interactions). The technique is simple:
for a given species, we find the K most similar species according to some distance measure, and
use these K species to base a prediction. For this study, we use a data-set from Digel et al. [11],
which contains 909 species, of which 881 are involved in predator-prey relationships and 871
have at least one prey. The data comes from soil food webs and includes invertebrates, plants,
bacteria, and fungi. In total, the data-set has 34 193 interactions. The data was complemented
with information on 25 binary attributes (traits) for each species, plus their body mass and
information on their phylogeny. We also briefly discuss a supervised learning method, random
forests, which is used to predict interactions with only the species’ traits.

A summary of the three methods used can be found in table 1. The approaches are not
directly comparable. For example, the positive-only KNN recommends preys to a species. If
we remove a prey from a species, ask the algorithm to recommend a prey, and check whether
the prey will come up as the recommendation, there are up to 881 possibilities. On the other
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hand, the KNN algorithm with positive and negative values (matrix imputation) has to decide
whether an entry is an interaction or a non-interaction, a 50% chance of success by random.
These approaches have different uses. Positive-only algorithms are interesting because we are
rarely certain that two species do not interact. Also, the KNN approach uses information on
what similar species do, while random forests only rely on traits.

We show the KNN is particularly effective at retrieving missing interactions in the positive-
only case, succeeding 50% of the times at recommending the right species among 881 possibilities.
However, the KNN algorithm is significantly less accurate than random forests to predict an
interaction with positive and negative data. With few traits, the random forests can achieve
high accuracy (≈ 98% for both interactions and non-interactions) without any information about
other species in the community. Random forests require only three traits to be effective: body
mass and two traits based on the species’ phylogeny. Our results show that, with either three
traits per species or partial knowledge of the interactions, it is possible to reconstruct a food
web accurately.

2 Method

2.1 Data

The first data-set was obtained from the study of Digel et al. [11], who documented the presence
and absence of interactions among 882 species from 48 forest soil food webs, details of which
are provided in the original publication. 34 193 unique interactions were observed across the 48
food webs, and a total of 215 418 absence of interactions. For matrix imputation, we assume
all entries in the 881 by 881 matrix which are not observed interactions are non-interactions.
In order to improve representation of interactions involving low trophic levels species that were
not identified at the species level in the first data-set, we compiled a second data-set from a
review of the literature. We selected all articles involving interactions of terrestrial invertebrate
species for a total of 126 studies, across these, a total of 1 439 interactions were recorded between
648 species. Only 88 absences of interactions were found. We selected traits based on to their
potential role in consumption interactions (table 2). For each species or taxa, these traits were
documented based on a literature review or from visual assessment of pictures. In addition to
these traits, we included two proxies for hard-to-measure traits: feeding guild and taxonomy.

2.2 K-nearest neighbour

Both our recommendation and matrix imputation approaches use the K-nearest neighbour
(KNN) algorithm [24]. The KNN algorithm is an instance-based method, it does not build
a general internal model of the data, but instead tries to fill missing entries by a majority vote
based on the K nearest (i.e. most similar) entries given some distance metrics. In the case of
recommendation, there is no concept of “missing entry”, each species is described by a set of
traits and a set of preys, and the algorithm will recommend new preys to the species based on
the preys of its K nearest neighbours. For example, if K = 3, we take the set of preys of the
three most similar species to decide which prey to recommend. If species A is found twice and
B once in the set of preys of the most similar species, we will recommend A first (assuming,
of course, that the species does not already have this prey). See table 3 for a complete ex-
ample of recommendation. In the “Netflix” problem, this is equivalent to recommend new TV
series/movies to a user by searching for the users with the most similar taste and using what
they liked as recommendation. It is also possible to tackle the reverse problem: Amazon uses
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Features Abbr. Description n

AboveGroud AG Whether the species live above the ground. 538
Annelida An For species of the annelida phylum. 34
Arthropoda Ar For species of the arthropoda phylum. 813
Bacteria Bc For species of the bacteria domain. 1
BelowGround BG For species living below the ground. 464
Carnivore Ca For species eating other animals. 481
Crawls Cr Whether the species crawls. 184
Cyanobacteria Cy Member of the cyanobacteria phylum. 1
Detritivore De For species eating detribus. 355
Detritus Ds Whether the species can be classifying as a detritus. 2
Fungivore Fg For species eating fungi. 111
Fungi Fu Member of the fungi kingdom. 2
HasShell HS Whether the species has a shell. 274
Herbivore He For species eating plants. 130
Immobile Im For immobile species. 85
IsHard IH Whether the species has a though exterior (but not a shell). 418
Jumps Ju Whether the species can jump. 30
LongLegs LL For species with long legs. 59
Mollusca Mo Member of the mollusca phylum. 45
Nematoda Ne Member of the nematoda phylum. 5
Plantae Pl Member of the plant kinggom. 3
Protozoa Pr Member of the protozoa kingdom. 3
ShortLegs SL For species with short legs. 538
UsePoison UP Whether the species uses poison. 177
WebBuilder WB Whether the species builds webs. 89
Body mass M Natural logarithm of the body mass in grams 881
Ph0 Ph0 Coordinate on the first axis of a PCA of phylogenetic distances 881
Ph1 Ph1 Coordinate on the second axis of a PCA of phylogenetic distances 881

Table 2: The traits used. All traits are binary except for body mass, Ph0, and Ph1. We use
taxonomy as a proxy of latent traits following [23]. To do so, we used the R package ape to
obtain taxonomic distances between the species, perform classical multidimensional scaling (or
principal coordinates analysis) [9] on taxonomic distances, and use the scores of each species on
the first two axes (Ph0 and Ph1) as taxonomy-based traits. These three real-valued variables
are scaled to be in the [0, 1) range. For the Tanimoto similarity index, these three continuous
variables have to be converted to binary features. For each, we create four binary features
(n = 881/4).
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item-based recommendations, in which case we are looking for similar items instead of similar
users to base our recommendations [2].

For matrix imputation, if we want to know if a species preys on A, we look at how many of
the K most similar species prey on A (a ratio that can be interpreted as a probability). In this
case, the problem is seen as a matrix with missing entries, so the question is not to recommend
new preys to a predator, but whether a specific relationship exists (see figure 1 for a complete
example). It is often suggested to avoid picking K that are multiple of the number of classes to
avoid ties [29]. Here there are two classes: interaction and non-interactions, so we will only use
odd Ks.

Different distance measures can be used. Here, we will use the Tanimoto coefficient for
recommendations and the Euclidean distance for matrix imputation. Choosing the right value
for K is tricky. Low values give high importance to the most similar entries, while high values
provide a larger set of examples. Fortunately, the most computationally intensive task is to
compute the distances between all pairs, a step that is independent of K. As a consequence,
once the distances are computed, we can quickly run the algorithm with different values of K.

2.3 Recommendation

The Tanimoto (or Jaccard) similarity measure is defined as the size of the intersection of two
sets divided by their union, or:

tanimoto(x,y) =
|x ∩ y|
|x ∪ y|

, (1)

Since it is a similarity measure in the [0, 1] range, we can transform it into a distance function
with 1 − tanimoto(x,y). The distance function will use two types of information: the set of
traits of the species (see table 2) and their set of preys. We define the distance function with
traits as:

tanimotod(x,y, wt) = wt(1− tanimoto(xt,yt)) + (1− wt)(1− tanimoto(xi,yi)), (2)

where wt is the weight given to traits, xt and yt are the sets of traits for species x and y,
and xi, yi are their sets of preys. Thus, when wt = 0, only interactions are used to compute the
distance, and when wt = 1, only traits are used. See table 3 for an example.

The data is the set of preys and binary traits for each species (Table 2). To test the approach,
we randomly remove an interaction for each species and ask the algorithm to recommend up
to 10 preys for the species with the missing interaction. We count how many recommendations
are required to retrieve the missing interactions and compute the top1, top5, and top10 success
rates, which are defined as the probabilities to retrieve the missing interaction with 1, 5, or 10
recommendations. We repeat this process 10 times for each species with at least 2 preys (7200
attempts). We test all odd values of K from 1 to 19, and wt = {0, 0.2, 0.4, 0.6, 0.8, 1}. We also
divided species in groups according to the number of preys they have to see if it is easier to find
the missing interaction for species with fewer preys.

2.4 Matrix imputation

The KNN algorithm with Euclidean distance works with both positive and negative entries. In
this case, an interaction is represented with a value of 1, while a non-interaction is a represented
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Species ID Traits Preys Most similar Recommendations

0 {Ar,Ca} {6, 42, 47} {6, 28, 70} [812, 70, 72]
6 {Ar,Ca} {42, 47, 70, 72}
28 {Ar,Ca} {42, 47, 70, 812}
70 {Ca} {42, 47, 812}
. . . . . . . . .

Table 3: Fictional example to illustrate recommendations with K nearest neighbour using the
Tanimoto distance measure modified to include species traits. We are trying to recommend a
prey to species 0 given that the three most similar species are species 6, 28, and 70. For example,
the distance to species 70 would be wt0.5 + (1 − wt)1/3. To find recommendations, the set of
preys found in the K = 3 most similar entries is computed, in this case {812 = 2, 70 = 2, 72 = 1},
leading to the list of recommendations [812, 70, 72]. Because they are found most often in the K
most similar species, candidates 812 and 70 will be suggested before 72. To test this approach,
we remove a prey from a species and check whether the algorithm recommend the missing prey.
Especially with low K, it’s possible that no recommendations can be found, for example if the
most similar species has the exact same preys.

with 0, in a n× n matrix (n = 881). The goal is to predict the value of a missing entry (Figure
1). The Euclidean distance is defined as

euclidean(x,y) =

√∑
i

(xi − yi)2. (3)

However, we want to give different weights to different aspects of the species, so we compute
the distance between two species as:

∆m(x,y) = (wmmassx − wmmassy)2, (4)

∆p(x,y) = (wpp0,x − wmp0,y)2 + (wpp1,x − wmp1,y)2, (5)

∆t(x,y) =
∑
t

(wttx − wtty)2, (6)

∆i(x,y) =
∑
i

(wiix − wiiy)2, (7)

euclidean(x,y) =
√

∆m(x,y) + ∆i(x,y) + ∆j(x,y) + ∆j(x,y). (8)

Where wm, wp, wt, wi are the weight given to body mass, the two coordinates of a classical
multidimensional scaling, binary traits, and interactions, respectively. For simplicity we require
that wm + wp + wt + wi = 1.

The data is an 881×881 interaction matrix. To test the KNN algorithm with the Euclidean
distance, we randomly remove a single interaction from the matrix, ask the algorithm to fill
the entry, and count how many times the correct value is retrieved. For each set of parameters
tested, we repeat this process 50 000 times, and count the number of true positives (tp), true
negatives (tn), false positives (fp) and false negatives (fn). The score for predicting interactions
(Scorey), non-interactions (Score¬y) and the accuracy are defined as
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Figure 1: A: The initial matrix with missing entries, green squares are used for interactions,
red for non-interactions, and white for missing values. Rows represent entries and columns
features. In our case, we have a square matrix where rows are species and the columns represent
their preys. We want to find the value denoted by X. B: The K-nearest neighbours algorithms
look at the entries that are the most similar to the entry with the missing value, pick the 3
closest (K = 3), and use the values at the columns with the missing entry. C: In this case,
for the column with the missing entry, the 3 nearest neighbours have 2 non-interactions and 1
interaction, so the algorithm fills the entry with a non-interaction.

Scorey =
tp

tp+ fp
, (9)

Score¬y =
tn

tn+ fn
, (10)

Accuracy =
Scorey34193 + Score¬y741968

8812
, (11)

with 34193 and 741968 being the number of observed interactions and non-interactions in
the 881 by 881 matrix. We also use the True Skill Statistics (TSS), defined as

TSS =
(tp× tn)− (fp× fn)

(tp+ fn)(fp+ tn)
. (12)

The TSS ranges from -1 to 1.

2.5 Supervised learning

We also do a simple test with random forests to see if it is possible to predict interactions in this
data-set using only the traits [6]. In this case, the random forests perform supervised learning:
we are trying to predict y (interaction) from the vector of traits x by first learning a model on
the training set, and testing the learned model on a testing set. We keep 5% of the data for
testing. We perform grid search to find the optimal parameters for the random forests.

2.6 Code and Data

Since several machine learning algorithms depends on computing distances (or similarities) for
all pairs, many data structures have been designed to compute them efficiently from kd-trees
discovered more than thirty years ago [12] to ball trees, metric skip lists, navigating nets [20],
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and cover trees [5, 20]. We use an exact but naive approach that works well with small data-
sets. Since distance(x, y) = 0 if x = y and distance(x, y) = distance(y, x), our C++ im-
plementation stores the distances in a lower triangular matrix without the diagonal, yielding
n(n− 1)/2 distances to compute. We used Scikit for random forests [25]. The C++11 code for
the KNN algorithm, Python scripts for random forests, and all data-sets used are available at
https://github.com/PhDP/EcoInter [10].

3 Results

3.1 Recommendation

While matrix imputation has a 50% change of success by random, the Tanimoto KNN needs to
pick the right prey among up to 881 possibilities. Yet, it succeeds on its first recommendation
around 50% of the times. When the first recommendation fails, the next 9 recommendations
only retrieve the right species around 15% of the times so the top5 and top10 success rates are
fairly close to the top1 success rate (see figure 2). The Tanimoto measure is particularly effective
for species with fewer preys, achieving more than 80% success rate for species with 10 or fewer
preys (Figure 3).

The highest first-try success rates (the probability to pick the missing interaction on the first
recommendation) are found with K = 7 and no weights to traits, and with K = 17 and a small
weight of 0.2 to traits (Table 4). Overall, the value of K had little effect on predictive ability.

3.2 Matrix imputation

We show our results with K Nearest neighbours algorithm in table 5. The best result is achieved
with K = 1 but has a TSS of only 0.66 (Table 5). More than 99% of non-interactions are
predicted correctly, but only 2/3 of the interactions are predicted correctly (Table 5).

As for the weights wm (body mass), wp (coordinates from a classical multidimensional scaling
of the phylogeny), wt (binary traits), wi (interactions), the optimal values for wm and wi lie
between 1/3 and 1/4 and vary a bit with different values of K. wt has a small but consistent
effect: changing the weight from 0 to 1/3 improves the result by roughly 1%, but higher values
will start to decrease predictive ability. Positive values of wp always have a negative effect on
predictive abilities. With minor variations with K, the optimal weights are thus wm ≈ 1/3,
wp = 0, wt = 1/3, wi ≈ 1/3. The optimal weight to wi increases with K.

3.3 Supervised learning

Random forests predict correctly 99.55% of the non-interactions and 96.81% of the interactions,
for a TSS of 0.96. Much of this accuracy is due to the three real-valued traits (body mass, Ph0,
Ph1). Without them, too many entries have the same feature vector x, making it impossible
for the algorithm to classify them correctly. Removing the binary traits has little effect on the
model. With only body mass, Ph0, Ph1, the TSS of the random forests is 0.94.

4 Discussion

We applied different machine learning techniques to the problem of predicting binary species
interactions. Recommendation is arguably a better fit for binary species interactions, since it
is essentially the same problem commercial recommenders such as Netflix face: given that a
user like item i, what is the best way to select other items the user would like? In this case,
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Figure 2: After removing a prey from a predator, we ask the KNN algorithms with Tanimoto
measure to make 10 recommendations (from best to worst). The figure shows how many rec-
ommendations are required to retrieve the missing interaction. Most retrieved interactions are
found with the first attempt. This data was generated with K = 7 and wt = 0.
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Figure 3: Success on first guess with Tanimoto similarity as a function of the number of prey.
The KNN algorithm with Tanimoto similarity is more effective at predicting missing preys when
the number of preys is small. This is probably in good part because there are more information
available to the algorithm, since 473 species have 10 or fewer preys, 295 have between 10 and
100, 103 species have more than 100 preys.
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48.8 48.8 49.2 48.5 48.3 32.6

54 52.7 52.5 51.1 50.4 39.3

55.5 55.4 53.4 52 50.8 40.3

54.8 54.8 53.8 55.4 51.4 40.3

54.9 54.2 54.3 54.9 50.1 40.2

53.1 53.7 54.6 53.7 50.6 40.1

53.8 56.2 56.4 53.5 50 40.5

53.8 56.5 55.1 53.4 49.9 40.8

53.2 55.7 55.5 54.5 49.8 41.3
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0.0 0.2 0.4 0.6 1.00.8

w
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1
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19

K

Table 4: Top1 success rates for the KNN/Tanimoto algorithm with various K and weights to
traits. When wt = 0.0, the algorithm will only use interactions to compute similarity between
species. When wt = 1, the algorithm will only consider the species’ traits (see table 2). The
value is the probability to retrieve the correct missing interaction with the first recommendation.
For each entry, n = 871 (the number of species minus 10, the number of species with no preys).
The best result is achieved with K = 17 and w = 0.2, although the results for most values of
K and w = [0.0, 0.2] are all fairly close. The success rate increases with K when only traits are
considered (w = 1).

K Scorey Score¬y Accuracy TSS

1 0.6726 0.9939 0.9804 0.6664
3 0.6277 0.9962 0.9807 0.6239
5 0.5671 0.9975 0.9794 0.5645
7 0.5232 0.9978 0.9780 0.5210
9 0.4754 0.9984 0.9765 0.4739

Table 5: Matrix imputation with Euclidean distance. This tables uses the weights wm =
1/3, wp = 0, wt = 1/3, wi = 1/3.
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users are species, and the items are their preys, but the problem is the same. In both cases,
we can have solid positive evidence (observed or implied interactions), but rarely have proofs of
non-interactions. The approach yields strong results, with a top1 success rate above 50% in a
food web with up to 881 possibilities. The approach could be used, for example, to reconstruct
entire food webs using global database of interactions [27]. The method’s effectiveness rely on
nestedness: how much species cluster around the same set of preys in a food web [16]. Thus, it
should be less effective in food webs with more unique predators.

The KNN algorithm falls into the realm of unsupervised learning, where the goal is to find
patterns in data [24]. The other class of machine learning algorithms, supervised learning,
have the clearer goal of predicting a value y from a vector of features x. For example, in
supervised learning, we would try to predict an interaction y from the vector of traits x, while
our unsupervised approach allow us to fill entries from an incomplete matrix regardless of what
the entry is (interaction or trait). For matrix imputation, the KNN yields less than impressive
results, but our random forests test on the same data-set achieves a TSS of 0.96 using the
binary traits, body mass, and the coordinates of the multidimensional scaling. A random forest
can build effective predictive models by creating complex rules based on the traits, while the
KNN algorithm relies on a simplistic distance metrics. However, the KNN approach has some
advantages over supervised learning, namely the capacity to fill any entries from an interaction
matrix and use the information from other species’ interactions. The solution is likely to learn
distance metrics [4] instead of using a fixed formula. This would allow complex rules while
maintaining the KNN’s ability to fill arbitrary matrices.

Learning distance metrics is a promising avenue to improve our results. Much efforts on the
Netflix prize focused on improving similarity measures [30, 19], and custom similarity metrics
can be used to improve unsupervised classification algorithms [4]. Learning distance metrics
from data is a common way to improve methods based on a nearest neighbour search [34, 4],
allowing the measure itself to be optimized. We only used the K nearest neighbour algorithm for
unsupervised learning, but several other algorithms can be used to solve the “Netflix problem”.
For example: techniques based on linear programming, such as recent exact methods for matrix
completion based on convex optimization [8] or low-rank matrix factorization. The latter method
reduces a matrix to a multiplication between two smaller matrices, which can be used both to
predict missing entries and to compress large matrices into small, more manageable matrices
[31]. Given enough data, deep learning methods such as deep Boltzmann machines could also be
used [35]. Deep learning revolutionized machine learning with neural networks made of layers
capable of learning increasingly detailed representations of complex data [18]. Many of the
most spectacular successes of machine learning use deep learning [21]. However, learning several
neural layers to form a deep networks would require larger data-sets.

The low sensibility to K in recommendations compared to imputation is interesting. This is
cause by the fact that, as K grows, the set of species includes more and more unrelated species
with widely different set of preys. For imputation, adding more species with different preys
means it is likely to misclassify an interactions as a non-interaction. However, if we increase K
from k to k+ δ for a recommendation, the species in δ range are not only less similar, but they
are less likely to share preys among themselves. Since recommendations are based on how many
times a prey is found in the K nearest species, the species in the δ range are unlikely to have
as much weight as the first k species.

Our results have two limitations. It is possible that our food web was exceptionally simple,
and that a food web with distinct structural properties would behave differently, especially if
it has lower nestedness. The success of the KNN algorithms depends on local structure: how
much can we learn from similar species. If each species has a unique set of preys, the KNN will
struggle more. Also, a deeper issue is that real food webs are not binary structures. Species,
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populations, and individuals have different densities, prey more strongly on some resources than
others, and have preferences. In a binary matrix, we can predict if two species will interaction
while completely ignoring the rest of the network, but real food webs involve complex indirect
relationships [33]. It is unclear how much we can learn about ecosystems and species interactions
from binary matrices, and our results show that binary interactions are mostly independent of
the community, since we are able to effectively predict if two species interactions given only three
traits. Species interactions are better represented with a weighted hypergraph [13], which are
well-suited to model relations with an arbitrary number of participants, where the hyperedge
would allow for complex indirect relationships to be included. Understanding these hypergraphs
is outside the scope of the KNN algorithm but could be understood with modern techniques
such as Markov logic [28].

Recommendation (KNN algorithm with Tanimoto distance) and supervised learning (ran-
dom forests) are complementary techniques. Supervised learning is more useful when we have
traits and no information about interactions, but it is useless without the traits. On the other
hand, the recommender performs well without traits but requires at least partial information
about interactions, although it might be possible to use the interactions from different food webs.
Matrix imputation might provide the best of the both worlds, allowing us to use both traits
and species interactions, but the distance metrics we used performed poorly and we suggest
more research could be done on developing better distance metrics for ecological interactions,
or learning these metrics from data.
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