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ABSTRACT 1	

It is generally agreed that tumors are composed of multiple cell clones defined by 2	

different somatic mutations. Characterizing the evolutionary mechanisms driving 3	

this intratumor genetic heterogeneity (ITH) is crucial to improve both cancer 4	

diagnosis and therapeutic strategies. For that purpose, recent ITH studies have 5	

focused on qualitative comparisons of mutational profiles derived from bulk 6	

sequencing of multiple tumor samples extracted from the same patient. Here, we 7	

show some examples where the naive use of bulk data in multiregional studies 8	

may lead to erroneous inferences of the evolutionary trajectories that underlie 9	

tumor progression, including biased timing of somatic mutations, spurious parallel 10	

mutation events, and/or incorrect chronological ordering of metastatic events. In 11	

addition, we analyze three real datasets to highlight how the use of bulk 12	

mutational profiles instead of inferred clones can lead to different conclusions 13	

about mutational recurrence and population structure. 14	
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INTRODUCTION 35	

Over the past decade, global sequencing efforts of cancer genomes have 36	

revealed that genetic intratumor heterogeneity (ITH) represents a common 37	

feature of many cancer types1, arising from the progressive accumulation of 38	

somatic mutations within malignant cells during cancer evolution2. As a result, 39	

single tumors typically comprise multiple genetically distinct subpopulations of 40	

cells (i.e., clones), which may vary with regards to growth, metastatic potential, 41	

and therapeutic resistance2,3. With the increasingly obvious clinical implications 42	

of ITH4, a great deal of attention is currently being directed towards exploring the 43	

complex patterns of clonal heterogeneity under an evolutionary framework, in 44	

order to resolve the genetic history underlying cancer progression5–7 and gain a 45	

wider understanding of the evolutionary mechanisms driving tumor 46	

diversification8–11. Indeed, following the pioneer work by Gerlinger et al.12, 47	

reporting a high degree of variation in the genetic composition of primary tumors 48	

and metastases as a consequence of divergent clonal evolution, a number of 49	

studies have focused on the spatial and temporal dynamics of tumorigenesis, 50	

taking advantage of next-generation sequencing (NGS) data obtained from bulk 51	

tissue samples extracted from multiple tumor regions within a single patient10,13–52	
16.  53	

 54	

However, although a variety of statistical algorithms exist to infer the clonal 55	

composition of tumors from bulk NGS data (see Beerenwinkel et al.17 for an 56	

exhaustive review), most multiregional sequencing studies still analyze the 57	

spatial patterns of clonal diversity by directly comparing mutational profiles 58	

(absence/presence of mutations) across samples. For example, making use of 59	

whole-exome bulk sequencing data initially derived from 23 evenly distributed 60	

samples in a cross-section of a hepatocellular carcinoma, Ling et al.18 identified 61	

a set of 35 somatic single-nucleotide variants (SNVs) that were subsequently 62	

used to genotype approximately 300 samples of the same tumor. Ancestral 63	

relationships among the sampled regions were inferred from their mutational 64	

profiles, and used to delineate clonal boundaries and reconstruct clonal 65	

genealogies. Consistent with previous findings10, the authors observed extensive 66	

genetic diversity between all regional samples, pointing to a limited role of 67	

selection, with patterns of genetic diversity suggesting the appearance of new 68	
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subclones on the peripheries of tumors which tend to radiate outwards. Similarly, 69	

Zhao et al.19 applied a series of phylogenetic methods to whole-exome 70	

sequencing data derived from 40 cancer patients to address the origin of 71	

metastases. By analyzing the mutational profiles of primary tumors and 72	

associated metastases, the authors concluded that metastatic lineages often 73	

evolved non-linearly from the primary tissue, suggesting that metastases may 74	

originate stochastically from distinct clonal lineages within the primary tumor of a 75	

given patient. In order to trace the timing of such metastatic events, the authors 76	

further transformed the inferred regional trees into patient-specific chronograms, 77	

calibrated a molecular clock based on different clinical parameters, and 78	

suggested that most metastatic lineages appeared to differentiate at very early 79	

stages of cancer progression, usually prior to clinical detection.  80	

 81	

Importantly, at the heart of these studies is the implicit assumption that tumor 82	

clones present in a tissue sample can be meaningfully summarised as the 83	

collection of mutations observed in that sample (i.e., the mutational profile) –or 84	

that only a single or dominant clone exists per sample that carries all mutations–85	

, and that reliable evolutionary relationships can be inferred from such 86	

information. However, given the high levels of ITH expected in most tumors, this 87	

assumption is not justified and can lead to biased inferences regarding the 88	

evolutionary history of a tumor. 89	

 90	

 91	

IMPLICATIONS OF MUTATIONAL PROFILES FOR EVOLUTIONARY 92	

INFERENCE 93	

 94	

Mutational histories 95	

Since most tumors consist of a genetically heterogeneous population of cells, 96	

mutational profiles of bulk tumor samples essentially reflect the set of somatic 97	

mutations present in a detectable fraction of the cells sampled, but not 98	

immediately the collection of clones present. The fundamental reason for this is 99	

that, in the absence of single-cell information, the precise combination of 100	

mutations that occur in any given clone is unknown, and a set of n mutations can 101	

represent 1, 2 or even n clones. In the presence of ITH, multiple clones are 102	
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expected per bulk sample, hence the observed mutational profile might easily 103	

correspond to a “composite clone” that never existed. Consequently, the use of 104	

mutational profiles as units for evolutionary analysis can have important 105	

implications.   106	

 107	

To illustrate this idea, consider the cancer patient shown in Fig. 1A, whose 108	

primary tumor harbors three genetically distinct cell clones A-C resulting from the 109	

accumulation of five somatic mutations. The three clones share some mutations 110	

(“true clonal sequences”) that reflect their common history from a common 111	

ancestor (“true clonal phylogenetic tree”). For simplicity, we assume that the 112	

tumor does not contain healthy cells (i.e., no contamination). Fig. 1B depicts a 113	

hypothetical multiregional sequencing study, where three spatially separated 114	

regions from the primary tumor have been sampled and sequenced. While the 115	

sampling scheme shows that all three clones have been captured, the proportion 116	

of each cell clone per sample varies, with sample I consisting entirely of cells 117	

belonging to clone A, sample II being composed of cells from clones B (80%) and 118	

C (20%), and sample III carrying cells from clones A (30%) and C (70%). 119	

Accordingly, only the mutational profile for sample I corresponds to a true clonal 120	

sequence (clone A), while the profiles obtained for the other two samples 121	

represent a composite of clones BC and AC, respectively. If we now build a 122	

maximum parsimony (MP) tree using these composite clones (see Gerlinger et 123	

al.12; Gerlinger et al.14; Hao et al.16; Ling et al.18), we would wrongly infer that 124	

mutations 1, 2 and 3 occurred in the most recent common ancestor (MRCA) of 125	

these samples, and that mutation 5 occurred before mutation 4. Importantly, 126	

these problems can be avoided if one realizes that the history of the samples is 127	

often not the same as the history of the clones. Indeed, in recent years multiple 128	

algorithms have been developed for the identification of clones from bulk tumor 129	

samples17, usually by clustering mutations with similar variant allele frequency 130	

(VAF) into single clones. In this example, the clustering algorithm implemented 131	

in Clomial20 perfectly identifies the true clones. A MP tree of these clonal 132	

sequences accurately recovers the true clonal history and the right order of 133	

mutations (Fig. 1C, Supplementary Note). 134	

 135	
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Fig. 2 illustrates another example involving the same hypothetical cancer patient 136	

(Fig. 2A), but for which a distinct set of regional samples was obtained (Fig. 2B). 137	

In this case, the use of mutational profiles results in a phylogenetic tree in which 138	

mutation 5 spuriously appears to have occurred twice, independently in sample 139	

II and III. Again, the use of a clustering algorithm for clonal identification avoids 140	

this type of bias, leading to the inference of the true tree and the true mutational 141	

history (Fig. 2C).  142	

 143	

Furthermore, the fact that different sets of samples obtained from the same 144	

primary tumor can generate two distinct, and incorrect, evolutionary histories 145	

(Fig. 1B and Fig. 2B) suggests that phylogenetic analysis of mutational profiles 146	

from bulk tumor tissues can be less straightforward than previously thought. 147	

 148	

Relative timing of metastasis 149	

Another potential issue associated with the use of composite clones is 150	

determining the evolutionary relationships between the primary tumor and distant 151	

metastases. Following a similar approach to Zhao et al.19, consider now a patient 152	

for which four distinct samples have been sequenced: a primary tumor sample 153	

and three metastases (Fig. 3A). For simplicity, we assume that (i) there is no 154	

contamination from healthy cells, (ii) only the primary tumor hosts several clones, 155	

and (iii) somatic mutations accumulate linearly with time (i.e., following a 156	

molecular clock). In this example, there are four true clones (A-D). Clone A 157	

represents the ancestral lineage from which the other clones derived. Clone B, 158	

which was never sampled/existed in the primary tumor, represents the first 159	

metastasis (metastasis I), followed by migration of clone C (metastasis II) and 160	

later of clone D (metastasis III) into three distinct anatomical regions (Fig. 3B, 161	

right-panel).    162	

 163	

By assuming that a single clone occurs (or dominates) in each sample, as in Zhao 164	

et al.19, the primary tumor would be represented by a composite clone that never 165	

existed (Fig. 3C, left-panel). In consequence, if we reconstruct a MP tree from 166	

these data we will wrongly infer that metastasis II occurred before metastasis I –167	

because in this case the lineage leading to metastasis II diverges before the 168	

lineage leading to metastasis I – and that mutations 4 and 5 evolved in parallel in 169	
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the primary tumor and in metastasis II (Fig. 3C, right-panel). Moreover, because 170	

the composite clone for the primary tumor carries all mutations it is tempting to 171	

conclude that it represents the youngest clone (perhaps resulting from a recent 172	

selective sweep) when in fact is the oldest lineage. Conversely, if we use the 173	

observed VAFs to deconvolute the clones present in each sample, despite clone 174	

A not being identified by the clustering algorithm (Fig. 3D, left-panel), we will infer 175	

a phylogenetic tree that accurately represents the evolutionary history of this 176	

cancer (Fig. 3D, right-panel).  177	

 178	

 179	

Analysis of real data 180	

Since the examples above represent speculative scenarios, we reanalysed three 181	

multiregional datasets in order to understand whether the use of mutational 182	

profiles versus the use of inferred clones can also lead to different conclusions in 183	

real scenarios. In the first study, Hao et al.16 investigated the spatial distribution 184	

of ITH in esophageal squamous cell carcinoma. Using mutational profiles, the 185	

authors reconstructed sample trees for several patients and found multiple cases 186	

where mutations were “incompatible” with the inferred tree. Interestingly, these 187	

are precisely those (parallel) mutations that appear more than once 188	

(Supplementary Fig.2A). Conversely, when we inferred the clones present in 189	

the samples and reconstructed their history, all parallel changes disappeared 190	

(Supplementary Fig.2B). We argue that in fact the latter scenario seems much 191	

more plausible. 192	

 193	

In another study, Ling et al.18 relied on mutational profiles of 23 regional samples 194	

to investigate the evolutionary dynamics of a hepatocellular carcinoma. Unlike 195	

the original study, in which the spatial diversity patterns suggested seven major 196	

mutational lineages with well-defined spatial boundaries (Supplementary 197	

Fig.3A), a clonal analysis points instead to the presence of four clonal lineages 198	

segregating at different frequencies across the regional samples with substantial 199	

spatial overlap (Supplementary Fig.3B). 200	

 201	

Finally, Gerlinger et al.14 explored the clonal architecture of clear cell renal 202	

carcinoma by analysing the patterns of spatial ITH in multiple patients. Although 203	
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VAFs were in this case used to predict the clonal composition of each regional 204	

sample, the identification of regional subclones was limited to those samples 205	

showing strong visual evidence of multiple clonal populations (i.e., displaying 206	

clusters of mutations with clearly distinct allele frequency patterns). As a 207	

consequence, the full clonal architecture was not completely resolved, which in 208	

turn may have compromised the derived evolutionary inferences. In case EV007, 209	

for instance, clear signals of intraregional heterogeneity were only observed for 210	

two samples (R3 and R9) and the inferred MP tree suggested five instances of 211	

parallel evolution at the FAM110B, TSKU, TPRG1, NOP2 and BAP1 genes, the 212	

latter being a tumor suppressor gene identified as a putative driver 213	

(Supplementary Fig.4A). In contrast, a joint formal analysis of the VAFs of all 214	

regional samples suggests an alternative evolutionary scenario, with three clonal 215	

lineages showing an uneven distribution across the different subsections of the 216	

tumor (Supplementary Fig.4B). Notably, the clonal tree implies a single parallel 217	

mutation at the FAM110B gene.  218	

 219	

DISCUSSION 220	

We have shown that the use of absence/presence mutational profiles obtained 221	

from bulk sequencing of tissue samples can compromise the study of tumor 222	

evolution. Given the pervasiveness of ITH, the types of biases we have 223	

demonstrated here - including wrong clonal histories, spurious parallel changes, 224	

reversed timings of metastases and/or incorrect phylogeographic patterns - might 225	

be commonplace suggesting that the interpretation of previous studies might 226	

need to be reevaluated. Furthermore, as already demonstrated by Kostadinov et 227	

al.21, the use of mutational profiles may also result in inaccurate branch length 228	

estimates, leading to an overestimation of substitution rate heterogeneity among 229	

samples that can be confounded with positive selection. Consequently, bulk 230	

mutational profiles need to be interpreted with caution, as without complete 231	

information of the clonal composition of each tumor different evolutionary 232	

scenarios might fit the observed ITH patterns. 233	

 234	

Fortunately, powerful statistical inferential methods are currently being developed 235	

to characterize the clonal composition of bulk tumor samples, which generally 236	

rely on sequencing-depth information and estimates of allele frequencies20,22–24. 237	
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While the relative performance of these methods has not been yet thoroughly 238	

benchmarked, it seems clear from our examples that they could be very helpful 239	

in reducing the level of uncertainty of the evolutionary inference from tumor bulk 240	

samples. In fact, not all multiregional tumor sequencing studies to date have 241	

relied on bulk mutational profiles. A few have already based their evolutionary 242	

inferences on clonal sequences estimated from the data (e.g., Gundem et al.7; 243	

Yates et al.15; Ding et al.25). Alternatively, single-cell sequencing data might soon 244	

become the preferred type of data for the evolutionary analysis of tumors, 245	

provided the technical limitations and the inherent sample bias arising from a 246	

limited number of cells are solved26–28. 247	

 248	

Nevertheless, it is clear from our analyses that in multiregional tumor studies it is 249	

important to distinguish “sample trees”, which depict the resemblance among 250	

different regions of the tumor (or among temporal samples), from “clone trees”, 251	

which depict the history of the genetic lineages inhabiting the tumor. In 252	

evolutionary biology, these type of trees are analogous to “population/species 253	

trees” and “gene trees”, respectively (e.g., Tajima29, Pamilo & Nei30; Page & 254	

Charleston31 for a review). Gene trees are embedded inside population trees in 255	

the same way as clonal lineages evolve along different tumor regions, although 256	

tumor samples should be much more admixed than organismal population 257	

samples. 258	

 259	

Outside cancer genomics, potential biases resulting from the evolutionary 260	

analysis of pooled individuals (“pool-sequencing”) have been already identified 261	

and several corrections have been proposed for the estimation of allele 262	

frequencies, diversity indices, SNP calling, population structure, tests of 263	

neutrality or association tests from pool-seq data32.  Some of these corrections 264	

might be applicable in the cancer scenario. 265	

 266	

In the future, complementary strategies combining clonal estimates derived from 267	

bulk-sequencing data with single-cell information should provide a more precise 268	

view of the clonal architecture of tumors, which could ultimately be used to 269	

improve cancer prognosis and therapy. 270	

 271	
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 371	
Figure 1. Phylogenetic analysis of bulk tumor samples (I). A) Left-panel: clonal composition of a 372	
hypothetical primary tumor. Colored circles represent the three clones present (A-C). Mid-panel: true clonal 373	
sequences for five different genomic sites, where the dashed square indicates a somatic mutation. Right-374	
panel: true clonal history with red dots depicting the chronological order of mutations. Tumor most recent 375	
common ancestor (MRCA) highlighted as an internal node. B) Left-panel: bulk regional samples (I-III), with 376	
intermixed clones at different proportions. Mid-panel: composite sequences (presence/absence) inferred, 377	
dashed square indicates presence of mutation. Right-panel: inferred sample history using maximum 378	
parsimony. Red dots depict the inferred chronological order of mutations. C) Left-panel: bulk regional 379	
samples (I-III), with intermixed clones at different proportions. Mid-panel: variant allele frequency estimates 380	
for mutation at each sample, and inferred clonal sequences using the Clomial algorithm (see supplementary 381	
note for details). Right-panel: inferred clonal history using maximum parsimony.  Red dots depict the inferred 382	
chronological order of mutations. 383	
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Figure 2. Phylogenetic analysis of bulk tumor samples (II). A) Left-panel: clonal composition of a 385	
hypothetical primary tumor. Colored circles represent the three clones present (A-C). Mid-panel: true clonal 386	
sequences for five different genomic sites, where the dashed square indicates a somatic mutation. Right-387	
panel: true clonal history with red dots depicting the chronological order of mutations. Tumor most recent 388	
common ancestor (MRCA) highlighted as an internal node. B) Left-panel: bulk regional samples (I-III), with 389	
intermixed clones at different proportions. Mid-panel: composite sequences (presence/absence) inferred, 390	
dashed square indicates presence of mutation. Right-panel: inferred sample history using maximum 391	
parsimony. Red dots depicting the chronological order of mutations. C) Left-panel: bulk regional samples (I-392	
III), with intermixed clones at different proportions. Mid-panel: variant allele frequency estimates for mutation 393	
at each sample, and inferred clonal sequences using the Clomial algorithm (but see supplementary note). 394	
Right-panel: inferred clonal history using maximum parsimony. Red dots depicting the chronological order 395	
of mutations. 396	
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Figure 3. Incorrect chronological ordering of metastatic events using composite 398	
sequences. A) Sampling scheme of geographically distinct tumor samples: one primary tumor 399	
and three metastatic sites. Colored circles represent the four cellular clones present (i.e., A, B, C 400	
and D). B) Left-panel: Clonal sequences based on genotype information from 8 somatic mutations 401	
- dashed square indicates presence of mutation. Right-panel: True clonal phylogenetic tree and 402	
geographical location of each clone. Chronological order of metastatic events depicted in the 403	
orange bar below the tree. C) Left-panel: Derived regional genotype sequences using 404	
presence/absence states. Right-panel: Inferred sample tree using maximum likelihood or 405	
maximum parsimony for the composite sequences. Inferred chronological order of metastatic 406	
events depicted in the orange bar below the regional tree. D)  Left-panel: Allele frequency 407	
estimates of each mutation per regional sample, and inferred clonal sequences using Clomial 408	
algorithm (but see supplementary note). Right-panel: Phylogenetic tree drawn from the inferred 409	
clones (ICs) and inferred geographical location of each clone. Inferred chronological order of 410	
metastatic events depicted in the orange bar below the clonal tree. 411	
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