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Abstract

As a person reads, the brain performs complex operations to create higher order semantic representations from
individual words. While these steps are effortless for competent readers, we are only beginning to understand how
the brain performs these actions. Here, we explore semantic composition using magnetoencephalography (MEG)
recordings of people reading adjective-noun phrases presented one word at a time. We track the neural representation
of semantic information over time, through different brain regions. Our results reveal several novel findings: 1) the
neural representation of adjective semantics observed during adjective reading is reactivated after phrase reading,
with remarkable consistency, 2) a neural representation of the adjective is also present during noun presentation, but
this neural representation is the reverse of that observed during adjective presentation 3) the neural representation
of adjective semantics are oscillatory and entrained to alpha band frequencies. We also introduce a new method for
analyzing brain image time series called Time Generalized Averaging. Taken together, these results paint a picture of
information flow in the brain as phrases are read and understood.

Keywords: Language comprehension, Semantic representations, Semantic composition, Magnetoencephalography,

Oscillatory brain dynamics

1. Introduction

Semantic composition, the process of combining small linguistic units to build more complex meaning, is fun-
damental to language comprehension. It is a skill that children acquire with amazing speed, and that adults perform
with little effort. Still, we are just beginning to understand the neural processes involved in semantic composition,
and the neural representation of composed meaning. Multiple studies have identified cortical regions exhibiting in-
creased activity during increased semantic composition load ([1} 2,13} 4} 5], to name only a few). Here we considered
a different question: Where and how are semantic representations stored in preparation for, and used during semantic

composition?
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Semantic composition in the brain has been studied using semantically anomalous sentences [1} 2} 6], as well as
in simple phrases [4! 5]], typically by comparing the magnitude of brain activity between conditions (e.g. composing
words into phrases vs. reading word lists). Several such studies have implicated right and left anterior temporal
lobes (RATL and LATL) as well as ventro-medial prefrontal cortex (vmPFC) and left inferior frontal gyrus (IFG) in
compositional processing [4} [7, [3]. Magnetoencephalography (MEG) studies have shown effects in these areas as
early as 180ms post stimulus onset, until around 480 ms post stimulus onset [4} [7], which aligns well with the N400
effect observed in electroencephalography [1]. Semantic composition effects have also been seen around 600ms post
stimulus onset (P600)[8]]. Though the P600 is more commonly associated with syntactic violations, it can be evoked by
syntactically sound stimuli that violate a semantic constraint. In particular, semantic constraints related to the violation
of animacy constraints have been shown to elicit a P600 (E.g. “Every morning at breakfast the eggs would eat toast.” is
a syntactically sound sentence, but “egg” violates the semantic constraint imposed by “eat”, which requires an animate
subject) [2].

The computational (rather than neuroscientific) study of language semantics has been greatly influenced by the
idea that word meaning can be inferred by the context surrounding a given word, averaged over many examples of
the word’s usage [9} [10, [11} [12} [13]. For example, we might see the word ball with verbs like kick, throw, catch,
with adjectives like bouncy or with nouns like save and goal. Context cues suggest meaning, so we can use large
collections of text to compile statistics about word usage (e.g. the frequency of pairs of words), which form models
of word meaning. These statistics are typically compressed using dimensionality reduction algorithms like singular
value decomposition (SVD), as in latent semantic analysis (LSA) [[14]. LSA and similar models represent each word
with a vector. Together, the vectors of many words form a Vector Space Model (VSM).

The brain’s semantic representations can be studied by quantifying the information present in neural activity at
particular cortical locations and times. For example, one can train machine learning algorithms to predict which word a
person is reading based on their neural activity, by training the algorithm to predict the vector associated with that word
in a particular VSM [[15|16]. Such algorithms do not require large differences in brain activity between conditions, but
rather leverage differences in the spatio-temporal patterns of neural activity, which may involve differences in signal
in both the positive and negative direction in different areas of the brain at different times. Such techniques have been
used in a variety of settings to predict words from brain activity [15 16} 17,18} (19].

To our knowledge, the study presented here represents the first effort to study semantic representations of adjective-
noun phrases using the fine time resolution offered by Magnetoencephalography (MEG). To study adjective-noun
phrases in the brain, we traced the flow of information through time and brain space. The ability of these algorithms
to predict the stimuli from MEG recordings is indicative of the information present in the underlying brain activity,
and thus is indicative of the brain’s neural representation of that stimuli. Note that the implication flows only one way,
we cannot say that poor prediction accuracy at a particular time/space point is proof that semantic information is not

represented there. Poor prediction accuracy could be due to multiple factors, including noise and the limitations of
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brain imaging technology, and is not necessarily due to a property of the brain. In addition, the neural representation
of a stimulus property could actually be the representation of some correlated property. Even with these caveats,
prediction accuracy is a useful measure for exploring the time-space trajectories of information processing in the
brain.

The following section outlines the methods used to collect and process MEG data, and to measure predictive
accuracy. Section [3|outlines the results of our experiments, and Section 4] reflects on the results to build a hypothesis

of how adjective-noun phrases are read and composed in the human brain.

2. Materials and Methods

To examine the neural representations of adjective and noun semantics, we presented phrases consisting of an
(adjective or determiner) and a noun. To maximize our probability of detecting the individual words of the phrase,
we chose 8 nouns that have been shown to be easily predicted from MEG recordings [[16]. Six adjectives were then
chosen to modulate the most predictable semantic qualities of the words (e.g. edibility, manipulability, size). We also
paired nouns with “the” to isolate noun meaning. In total, there are 30 word pairs (phrases). For a full list, see the
Appendix. Though some of the phrases start with a determiner (the), for simplicity, throughout this paper we will refer
to all phrases as adjective-noun phrases. MEG data was recorded for 9 subjects (4 female), all neurologically healthy,
right-handed, native English speakers with normal or corrected to normal vision.

Phrases are shown in rapid serial visual presentation (RSVP) format (See Figure . During each trial, the first
word of the phrase appears in text on the display at 0 seconds, and is removed from the display at 500 ms. The noun
appears at 800 ms and is removed at 1300 ms. To ensure subjects were engaged during the experiment, 10% of the
stimuli were adjective-adjective pairs (oddballs), for which the subjects were instructed to press a button with their left
hand. Neither the adjective-adjective trials, nor the adjective-noun trial immediately following the oddball were used
for analysis. Excluding these omitted trials, each phrase was presented 20 times, and analysis was performed on the
mean MEG time series over all 20 trials. The experiment was carried out in 7 blocks of approximately equal length,
with the opportunity to rest between blocks.

Because of the experimental setup, there is a strong correlation between the adjectives and nouns in our data. For
example, the word “rotten” only appears with food words “tomato” and “carrot”. For this reason, we were careful to
avoid analyses in which we seek to predict a property of the adjective, but might instead predict a correlated property

of the noun (and vice versa). This is explained further in Section

2.1. Data Acquisition and Preprocessing

All 9 subjects gave their written informed consent approved by the University of Pittsburgh (protocol PRO09030355)
and Carnegie Mellon (protocol HS09-343) Institutional Review Boards. MEG data were recorded using an Elekta Neu-

romag device (Elekta Oy). As much as possible, we adhered to the best practices of MEG data collection[20]. The
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Figure 1: Stimulus presentation protocol. Adjective-noun phrases were presented one word at a time with a fixation cross both between words and
between phrases. The first word of the phrase appears at 0 ms, and disappears at 500ms, the second word is visible 800 ms — 1300 ms. The first

words in successive phrases are 3000 ms apart.

data were acquired at 1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered at 330 Hz. Eye movements (horizontal
and vertical eye movements as well as blinks) were monitored by recording the differential activity of muscles above,
below, and beside the eyes. At the beginning of each session, the position of the subject’s head was recorded with four
head position indicator (HPI) coils placed on the subject’s scalp. The HPI coils, along with three cardinal points (na-
sion, left and right pre-auricular), were digitized into the system to allow for head translation to register data collected
in different blocks.

The data was preprocessed using the temporal extension of SSS (tSSS) [21] to remove artifacts and noise unrelated
to brain activity. In addition, we used tSSS to realign the head position measured at the beginning of each block to a
common location. The MEG signal was then low-pass filtered to 50 Hz to remove the contributions of line noise and
down-sampled to 200 Hz. The Signal Space Projection method (SSP) [22] was used to remove signal contamination
by eye blinks or movements, as well as MEG sensor malfunctions or other artifacts. The MEG data was parsed into
trials, one for each phrase presentation. Each trial begins at the onset of the first word of the phrase, and ends 3000
ms later, for a total of 600 time points of data per sample (See Figure [[). MEG sensor amplitudes are known to
drift with time, so we corrected each trial by subtracting from every sensor the mean signal amplitude during the
200ms before stimulus onset. During behavioral tests it was found that phrases containing the noun “thing” were
inconsistently judged by human subjects, and so the 8 phrases containing the noun “thing” were omitted from further
analysis, leaving a total of 30 phrases for analysis.

After processing, the MEG data for each subject consisted of 20 repetitions for each of the 30 phrases. Each
repetition has a 600 dimensional time series for each of the 306 sensors. For each subject, we averaged all 20 repetitions
of a given phrase to create one data instance per phrase, 30 instances in all. The dimensions of the final data matrix

for each subject were 30 x 306 x 600.

2.2. Source Localization

In order to transform MEG sensor recordings into estimates of neural activity localized to areas of the brain, we
used a multi-step process. First, Freesurfer (http://surfer.nmr.mgh.harvard.edu) was used to construct
a 3D model of each subject’s brain, based on a structural MRI. Freesurfer was used to segment the brain into ROIs

based on the Desikan-Killiany Atlas. Then the Minimum Norm Estimate method [23] was used to generate estimates
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of sources on the cortical sheet, spaced Smm apart. The noise covariance matrix was estimated using approximately 2
minutes of MEG recordings collected without a subject in the room (empty room recordings) either directly before or
after the subject’s session. Source localization resulted in approximately 12000 sources per subject derived from the

306 MEG sensor signals.

2.3. Prediction Tasks

We used two prediction tasks to track the words representations while reading adjective-noun phrases. In each
case, the task is to predict the stimulus from the MEG recording. Differences in the time course of prediction accuracy
for each task will show us how the brain processes information during adjective-noun phrase comprehension. The

tasks are:

1. Predicting Adjective Semantics: Predict the identity of the first word in the phrase (any of the 6 adjectives or
the word “the”)

2. Predicting Noun Semantics: Predict the identity of the noun (one of 8).

For both tasks, we trained models to predict the dimensions of a VSM vector for a given word. We then predict
word identity based on the similarity of the predicted vectors to the corresponding true VSM vectors. A more detailed
description follows in Section For each of the words in our study, we used word vectors that are based on the
sentence dependency relationships for each word of interest, averaged over a very large number of sentences [24]].
We use the first m = 500 SVD dimensions to summarize the dependency statistics, which represents a reasonable

trade-off between computation time and accuracy [24].

2.4. Prediction Framework

To study adjective-noun composition in the brain we devised a simple prediction framework. Cross-validation was
performed independently for each subject, wherein 2 of the 30 phrases are withheld during training, and subsequently
used to test the framework’s predictions. This hold out and test procedure was repeated multiple times. For each of
the prediction tasks described in Section every stimulus phrase is represented by two vectors from a VSM, which
represent the semantics of either the adjective/determiner or the noun. The elements of this vector are the targets in
the prediction framework (s(*) in Equation|1) .

We created a data matrix X € RV*¥ where N is the total number of phrases, and P = s x t, for s = 306
sensors and ¢ time points. Each element of the data matrix, x; ;, represents the value for training instance ¢ at a point
7 in MEG sensor/time space. To predict each of the dimensions of the semantic vector, we trained an Lo regularized

(ridge) regression model, B:

N P P
B) = argmin Z(Sgk) - Zﬁjxi,j)Q + /\ZBJQ
B i=1 j=1 J=t
= axgmin {5V — X8I} + | M
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where 55“

is the kth element of the VSM word vector for training instance ¢, and A is a regularization parameter
that controls overfitting in 3. We append a column of 1s to X to incorporate a bias term. Notice that each semantic
dimension k£ has its own BE’“). Initially, A was tuned to maximize accuracy for each semantic dimension using leave-
one-out cross-validation (LOOCV) over the training data, but it was found to be very stable, so a set value of A = 10—
was used to save computation time. Training data was normalized during cross-validation so that each time-sensor

feature has mean O and standard deviation 1, and the same correction was applied to test data. Time windows used to

train each regression model are 100ms wide and overlap by 80ms with adjacent windows.

2.5. The 2 vs. 2 Test

For each stimulus word w in this study, we have an m-dimensional VSM vector sy, = {51 ... Sy, }, created from
corpus data. We refer to each feature s; in this vector as one of the semantic features of the stimulus word w. Note the
semantic vector may correspond to the adjective or the noun, depending on the analysis being performed.

Using Equation [1} we trained m independent functions f()(x) — 1), ..., f0™(x) — 50, where 5() rep-
resents the predicted value of the ith semantic feature, and f*)(x) = (8*)x) using 8% from Equation I, We
combined the output of f(1) ... f("™) to create the final predicted semantic vector § = {5() ... 3™}, We used a
distance function to quantify the dissimilarity between two semantic vectors. Many distance metrics could be used,
we chose cosine distance due to its popularity for VSM-related tasks in computational linguistics.

To test performance we used the forced choice 2 vs. 2 test [[15]. For each test we withheld the MEG recording
for two of the 30 available adjective-noun phrases, and trained B on the remaining 28. We then used the MEG data
of the held out phrases (x) to predict the semantic vectors for both of the held out phrases (S). The task is to choose
the correct assignment of predicted vectors §; and 8; to the true VSM semantic vectors s; and s; . We will make this

choice by comparing the sum of distances for the two assignments:
?
d(si; 8;) + d(sj,8;) < d(si,8;) + d(sj, 81) 2

If the left hand side of the above equation is indeed smaller than the left, we mark the 2 vs. 2 test correct. 2 vs.
2 accuracy is the percentage of correct 2 vs. 2 tests. The 2 vs. 2 test is advantageous because it allows us to use
two predictions per test, resulting in a higher signal-to-noise ratio; two weak predictions can still result in a correct
assignment of true to predicted phrase vectors. Under the null hypothesis that MEG data and semantics are unrelated,

the expected chance accuracy for the 2 vs. 2 test is 50%.

2.6. Correlations between the words of phrases

There is a correlation between the adjectives and nouns in our experimental paradigm. For example, the word
“rotten” is always followed by a food word. The word “carrot” never appears with the adjective “gentle”. If we were
to not correct for this correlation, we could build a model that was actually detecting the correlated semantics of the

noun, when we had intended to build a model that leverages only the semantics of the adjective. To avoid reporting
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results that rely on this confound, we only consider predicting the adjective or noun when the other word (noun or
adjective, respectively) is shared in the 2 vs. 2 pair. That is, when we encounter a 2 vs. 2 pair that contrasts adjectives
“rotten” and “big”, we will include it in our analysis only when the noun is the same for both phrases (e.g. “rotten
tomato” and “big tomato”). Thus, if our prediction framework leveraged the correlated semantics of the noun to predict
the adjective, it would be of no use for differentiating between these test phrases. The same is true for the noun; when
we encounter a 2 vs. 2 pair that contrasts nouns “dog” and “bear”, we include it only when the adjective is the same
for both phrases (e.g. “gentle dog” and “gentle bear”). Thus we can be sure that we are not relying on any correlations
between adjectives and nouns for our analyses. There are (30 choose 2) = 435 distinct 2 vs. 2 tests. Amongst those
435 tests, 51 share the same adjective and 60 share the same noun. These 111 pairs are the only ones included in our

analyses.

2.7. Significance Testing

We used permutation tests to determine the probability of obtaining our prediction results by chance. Permutation
tests require shuffling the data labels (words) and running the identical prediction framework (cross validation, training
3, predicting §, computing 2 vs. 2 accuracy) on the permuted data. When we do this many times, we approximate
the null distribution under which the data and labels have no relationship. From this null distribution we calculate
a p-value for the performance we observe when training on the correct (un-permuted) assignment of words to MEG
data. In the experiments that follow, we will train and test multiple predictors on multiple time windows. To account
for the multiple comparisons performed over the time windows, we used the Benjamini-Hochberg-Yekutieli (BHY)

procedure, with correction for arbitrary correlation amongst the tests [25]].

2.8. Time Generalization Matrices

To test the consistency of the neural code in time, we use Temporal Generalization Matrices (TGMs) [26]. TGMs
mix train and test data from different time windows to test the stability of the neural representation over time. For our
TGMs, we used the prediction framework described in Section @], but mix train and test data selected from different
time windows for each of the 2 vs. 2 tests. The entry at (4, j) of a TGM (T; ;) contains the 2 vs. 2 accuracy when we
train using MEG data from a time window centered at time ¢, and test using MEG data from a time window centered
at time j. Thus, depending on the value of ¢ and j we may be mixing train and test data from different time periods,
possibly comparing times when the subject is viewing a different word type, or no visual stimuli at all. If the neural
representation of a concept is stable, then models can be trained and tested with data from different time windows with
little or no impact on accuracy. TGM analysis has been performed in the past, and has shown that information from
previous stimuli can be detected during a memory task, even after stimulus presentation[27} 28]].

Examples of hypothetical TGMs appear in Figure[2] Along the y axis is the time used to train a model, and along
the x axis is the time used to test the model (generalization time), and the color corresponds to the accuracy level. The

diagonal of the TGMs (i.e. T;; for all ¢) corresponds to training and testing with the same time window (diagonal
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Figure 2: Hypothetical TGMs based on different neural activation patterns. Depending on the generators and resulting neural activity, the pattern

of the TGMs differs. From King and Dehane [26].

decoding in Figure ). Comparing the TGM to the diagonal decoding in Figure [2] shows that TGMs can pick up
on patterns in data that might otherwise go undetected. All of the examples in Figure [2] (except ramping) assume a
constant neural representation within a generator block. Figure[3]A shows an example where the generator (A) doesn’t
produce a constant neural pattern, but rather a pattern that evolves over time, enters a negated phase (A~!), and then
repeats itself. Thus, instead of the block patterns we see in Figure[2] we see diagonal lines.

We extended the TGM concept to create a new type of analysis: Time Generalization Averaging (TGA). TGA
is based on TGMs, but combines results from many columns of a TGM to maximize statistical power. To combine,
we first align the columns of the TGM so that the coordinates corresponding to training and testing on the same time
window are aligned. This requires shifting the second column of the TGM down by one row, the third column down
by two, and so on. A hypothetical TGM appears in Figure[3]A, and the column-shifted version of the example appears
in Figure [3B. After this shifting, the strong diagonal lines in Figure BJA become horizontal lines (Figure 3B). After
column-shifting the matrix, the x axis still corresponds to the test time, but now the y-axis represents the difference
between the midpoints of the training window and testing windows. We select a subset of the columns of the column-
shifted matrix, average them, and this becomes the final TGA (Figure Ep). Note that, for any given row of the column-
shifted matrix, a subset of the columns may not have an entry (e.g. the top row has only one entry in column one, row
two has entries in columns 1 and 2, etc.). TGA allows us to test the significance of any diagonally-aligned oscillations
in accuracy, and wether the pattern for a generator is indeed negating and repeating itself. We will use a permutation

test and the same TGA analysis to ensure that our results are not due to features of the data unrelated to the stimuli.

3. Results

We will begin with a typical time and space analysis of the neural representation of adjective an nouns, and then

explore TGM and TGA analyses of our data.
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Figure 3: Time Generalized Averaging (TGA). (A) A hypothetical TGM that shows oscillations in accuracy aligned with the diagonal. This TGM is
caused by a generator that emits a pattern that repeats, and is not constant within a time block. Note that the “Generators” and “Diagonal Decoding”
are like that of “Reactivated” in Figurem but the TGM is very different. (B) We shift the columns of the TGM in (A) so that rows that corresponds
to training and testing on the same time window are aligned for each column. Now the y axis corresponds to the difference between the train and test
windows, and the x axis is still testing time. (C) When we average over the aligned time columns in (B), the result is a Time Generalized Average

(TGA). A TGA allows us to condense the information in a TGM into a simple 1D plot.

3.1. Predicting Adjective and Noun Semantics

2 vs. 2 accuracy for predicting the adjective and noun from whole brain MEG sensor data observed within a
sliding 100 millisecond interval appears in Figure[d Here we can see that the adjective remains detectable until well
after the onset of the noun, dipping below statistical significance for the first time at about 1500 ms after the onset
of the adjective (700 ms after the onset of the noun). Adjective prediction accuracy again rises above the statistical
significance threshold at several subsequent time points, and is significantly above chance for the last time around 2000
ms after the onset of the adjective. Thus, our model can predict the adjective during adjective and noun presentation,
and also for a prolonged period after the noun stimuli has disappeared. This implies that there is a neural representation
associated with the adjective that persists during the entire phrase presentation, as well as after the phrase has been
presented (we call this the phrase wrap-up period). From these results we cannot tell if the neural representation of
the adjective changes over time, we can only infer that there exists a reliable representation during each significantly
above-chance time window.

Figure [ also shows noun prediction accuracy as a function of time. After its initial peak around 950 ms, the
accuracy for predicting noun semantics dips below the significance threshold for the first time at ~ 1700 ms. Though
prediction accuracy is sustained after the offset of the noun, there is no resurgence later in time. The accuracy plot
for the noun is more peaked than the adjective, and it is significant for less time than the adjective. There are also
two above chance points very early in time (windows centered at 770 and790 ms, corresponding to time windows

720-820 ms and 740-840 ms respectively). Though these windows do overlap with the first few milliseconds of noun
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presentation, they may be too early to be a true effect. We will see that these points are no longer significant when we

employ the more powerful TGA analysis in Section[3.3]

2 vs 2 Accuracy, Predict Adjective or Noun
I I T

T I
0.9 ——Adj Accuracy
O Adj. above chance
——Noun Accuracy
0.8+ O Noun above chancel-
>
3
5 0.7+
Q
3
~ 06
>
«
0.5
0.4 —
Adjective | _ | | |
0 0.5 1 15 2 25

Time (s)

Figure 4: 2 vs. 2 accuracy as a function of time for predicting the words of the phrase, averaged over 9 subjects. Time windows for the presentation
of the adjective and noun are indicated with grey rectangles. Vertical axis indicates the prediction accuracy for the adjective or noun, based on
predicting its semantic feature vector from a 100 millisecond interval of MEG data in sensor space. Significantly above chance accuracies are

highlighted with circular markers. Here a separate prediction model was trained for each time point on the horizontal time axis.

3.2. Localizing Adjective and Noun Semantics

Where in the brain do the neural representations for the adjective and noun lie? To answer this question, we
recreated the plot in Figure 4] but used only a subset of the source-localized ROIs to build and test our models. Here,
each subject’s source localized MEG data was parcellated based on the Desikan-Killiany Atlas [29]. We analyzed
groups of ROIs that reside in temporal, occipital, IFG and parietal areas. For the sub-ROlIs included in each of the
groups, see the Appendix.

Figure[5a]shows the 2 vs 2 accuracy for predicting the adjective, averaged over each ROI group in each hemisphere,
as a function of time. For completeness we include right hemisphere (RH) temporal and IFG, though previous research
has associated most compositional processing with these areas in the left hemisphere (LH) [4} 30} 3]]. In general, the 2
vs. 2 accuracy of RH ROIs is dominated by LH ROIs, but the difference is not large. This reinforces previous studies
which found that semantic representations are highly distributed [16} 31]]. Accuracy in left IFG and parietal resurges
about 400ms after the onset of the noun (1200ms after the onset of the adjective). In general, accuracy in occipital and
parietal ROIs exceeds that of the temporal and IFG ROI groups, until about 1400ms. Based on these plots, it is not
clear which area drives the resurgence of the adjective representation at 2 seconds.

Figure [5b] shows the accuracy of predicting the noun, averaged over each ROI group. As with the whole brain

analysis, these plots are much more peaked at the onset of the noun, and there is less sustained accuracy when compared
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(b) 2 vs. 2 accuracy for predicting the semantics of the noun.

Figure 5: 2 vs. 2 accuracy for predicting (a) the adjective or (b) the noun, as a function of time, averaged over several ROI groups. Within each

subfigure, top: left hemisphere, bottom: right hemisphere. Stimuli timing appears in grey rectangles.
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to the adjective plots. During the peak, the ordering of the accuracy for the ROIs is the same as for the adjective (highest
to lowest: lateral occipital, parietal, temporal, IFG). Interestingly, though the whole brain analysis (Figure [4)) showed
nearly equal peak prediction accuracy for both adjective and noun, the ROI analysis shows that the noun is slightly

better predicted by the individual ROIs than the adjective.

3.3. Consistency of the Neural Code in Time

How consistent in time is the neural code of the adjective? That is, does the neural code for the adjective during
adjective presentation resemble the neural code used for the adjective during noun presentation, or during the phrase
wrap-up period? To test this, we created Temporal Generalization Matrices (Figure [6)), as described in Section [2.8]
using whole brain MEG sensor data. Recall that each point along the diagonal of the TGMs corresponds to training
and testing the prediction model using MEG data taken from the same time window, and so represents exactly the
results plotted in Figure ] In contrast, the off-diagonal elements correspond to training the model using MEG data
from one time interval, but testing its prediction accuracy on data taken from a second time interval, allowing us to
test whether the neural representation of this predicted information varies over time.

The TGMs in Figure [6] show two key features. Firstly, there are off-diagonal patches that correspond to both high
and low prediction accuracies. Only the adjective TGM shows off-diagonal accuracy patches above 60% (Figure [6a),
and they are strongest when training on a time point after 2 s, and testing on a period during the presentation of the
adjective. Low accuracy (below the chance accuracy of 50%) patches appear for both the adjective and noun, and
are strongest when training on a window just after the offset of that word and testing during the time when a word is
visible. Secondly, the TGMs show a highly oscillatory pattern, which manifests as many diagonal lines parallel to the
main diagonal. This pattern implies that the neural representation of the adjective is repeating itself periodically. We
found this time constant to be very close to 100ms for most subjects, meaning that the pattern is entrained to alpha
band frequencies (10 Hz).

In order to test the significance of the oscillations and above/below chance accuracy patches, we perform Time
Generalization Averaging (TGA) as described in Section Each of the columns of the TGM represents a time
series of prediction accuracy for models tested on a particular time period (See Figure [7]A). Recall that the first step
of TGA is shifting the columns of the TGM so that the coordinates corresponding to training and testing on the same
time window are aligned (See Figure [7B). We average across a subset of the aligned columns to create the time series
in Figure[7C.

To study the representation of the adjective, we selected the columns corresponding to peak predictive accuracy for
the adjective in Figure |4/ (windows centered at 190 - 450 ms), and the rows for which 50% of columns have an entry
after shifting. We average this selection of the aligned data to create our TGA graph (Figure[7C). This allowed us to
test if the above and below chance regions in Figure [6]are significant. Note that, in TGAs, each point on the plot is an

average over several models trained on several time windows. To account for this, the stimuli window annotations in
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(a) TGM for predicting the semantics of the adjective. (b) TGM for predicting the semantics of the noun.

Figure 6: 2 vs. 2 accuracy for predicting the words of the phrase, presented in TGMs . ] Within each TGM, the color at point ¢, j indicates the
prediction accuracy when the model is trained using data from an interval centered at time point ¢, then tested by its ability to predict the noun or
verb based on MEG data centered at time point j. Time windows are 100ms wide and overlap by 80ms with adjacent windows. Time O is the onset

of the adjective, 0.8 is onset of the noun, as annotated with grey rectangles.

Figure [7C represent the times during which any of the models’ training data overlaps with the stimulus presentation
period (thus the windows are wider).

Figure shows several points that are significantly above/below chance. The permutation test is wonderfully
flexible; we can perform a TGA analysis on permuted data and compare to the distribution of those results, knowing
that our statistical test remains sound, even though our analysis has become more complex. After the onset of the
noun, several of the peaks (8/10) aligned with the 10 Hz oscillations we noted in Figure [f] (for convenience we have
annotated all above and below chance peaks outside of the adjective presentation). Our TGA analysis shows that the
long above/below chance time periods are indeed significant. The timing of the below chance segment of the TGA
analysis coincides with windows we would expect to contain N400 and P600 effects, and so could be a byproduct of
the processing required for composition.

We performed a TGA analysis for predicting the noun (Figure [8), and found that there are no above chance points
outside of the noun stimuli presentation window, but there are below chance points after the offset of the noun. Thus,
for both words of the phrase, a TGA analysis shows that the regions of low 2 vs. 2 accuracy just after the offset of the
word are statistically significant.

We performed a TGA analysis on the ROIs from Figure[5]to determine the origin of the oscillations and above/below
chance patterns for the adjective’s representation. TGA analysis increased our statistical power, and showed that the
significantly above-chance accuracy we saw after 2s in Figure[J]is likely originating from the left occipital and parietal
cortices. Interestingly, the significantly below chance accuracy around 800 ms appears to come from right parietal and

temporal cortex. We performed the same TGA analysis for the noun (not shown), but the accuracy lines were very flat.
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Figure 7: Time Generalized Averaging (TGA). A) Each of the columns of a Time Generalization Matrix (TGM) is a time series. B) We shift the time

series from A to align the windows corresponding to training and testing on the same time. Now the x axis corresponds to the difference between

the train and test windows. C) We average over aligned time series to create a grand average. This graph shows the TGA analysis for the semantics

of the adjective, averaged over test times [0.19 - 0.45s]. White rectangles denote windows during which at least one of the trained models used data

overlapping with word stimuli presentation. Our TGA analysis shows that there are points both above and below the significance threshold, even

after the adjective stimuli has left the screen.
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and below the significance threshold, and the significantly below chance points occur after the presentation of the noun stimulus.
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Figure 9: TGA analysis for predicting the adjective using several ROI groups. Top: left hemisphere, bottom: right hemisphere. The white rectangle

denotes windows during which at least one of the trained models used data overlapping with word stimulus presentation.

3.4. Results Summary

To summarize, the main findings from our data analyses are: 1) we can predict the adjective well after noun stimuli
presentation (as late as 2s after adjective presentation), 2) the neural representation of adjective semantics observed
during adjective reading is reactivated after the entire phrase is read, with remarkable consistency, 3) there is a period
of below chance prediction performance just after the presentation of each word, and 4) the neural representation of

adjective semantics are oscillatory and entrained to alpha band frequencies.

4. Discussion

Here we compare and contrast the results from Section[3]to build a hypothesis of how the brain represents and pro-
cesses adjective-noun phrases. To foreshadow, our interpretation of the above analyses for adjective noun processing

is as follows:

1. During the time the adjective is read, the brain maintains a neural representation for the adjective;
2. During the time the noun is read, the brain holds both the representation for the noun, but also a representation

of the adjective that appears to be the negation of its representation during adjective reading
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3. After the noun stimuli ends, the noun enters a negated representation state, followed by a resurgence of the

adjective representation in its original (non-negated) form.

Both the TGM and TGA analyses show highly oscillatory activity, which implies that semantics is represented in
the brain using a repeating pattern entrained to alpha band frequencies. Our ROI analysis points to a distributed

representation of composed semantics.

4.1. Adjective Semantics in Early and Late Time Windows

Figure (adjective semantics TGA), shows that the pattern for the adjective is fairly consistent within the time
that the adjective is being presented. In addition, there are significantly above chance points very late in time, as late
as 2.45s relative distance between the training and testing windows. This result implies that the early and late repre-
sentations of adjective semantics are highly similar. This late above chance accuracy could be due to the intersective
quality of most of the adjectives chosen for this study; the meaning of our selected adjectives is largely unaffected by
the semantics of the nouns in this experiment. For example, a rotten has very similar meaning when paired with either
tomato or carrot. Though the two foods may spoil in slightly different ways, the end result is inedible. Thus, it is
reasonable that, for phrases that contain intersective adjective, the neural representation of the adjective alone should
be very similar the phrase’s neural representation.

At first glance, one might think the late above chance prediction accuracy for the adjective conflicts with previous
work showing that semantic composition begins as early as 140ms after the onset of the noun, and as late as 600ms [30,
2|]. In our experiments, this would correspond to 940 ms and 1400 ms after the onset of the adjective. The early effects
of semantic composition are typically studied using contrasting stimuli that either does or does not require composition.
Thus, the timings reported in previous work are the “switching on” of the machinery required to perform semantic
composition, but not necessarily the time when we would expect to see the final product of semantic composition, or
cessation of thinking about the phrase semantics.

There is support for semantic effects as late as the effects we see here. Previous work has shown effects during
joke comprehension as late as 1100 ms after the onset of the final word [32]. Semantic violation effects have been
reported as late as 2.5s after the onset of the critical word in the sentence [6]. When the semantic plausibility of
sentence critical words is varied, differences in EEG recordings for anomalous vs expected words extend to the edge
of the 1.2s analysis window (and possibly beyond) [33]]. Many analyses have restricted themselves to the time period
ending 1s after the onset of the critical word, possibly because the windows of analysis in seminal papers extended
only that far [1,2]. A review of several other accounts of this late activation appears in VanPetten and Luka [34]]. The
results of the present study show that analyzing MEG data beyond 1s post stimulus onset can give new insight into

semantic processing.
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4.2. Noun Semantics

The neural representation of the noun is detectable until about 1.7s after the onset of the adjective (0.9s after the
onset of the noun). This duration is shorter than that of the adjective, which is detectable in the brain even 2s after
the onset of the adjective stimulus. After the noun stimulus has left the screen, a negated representation of the noun
appears in the brain, again for a much shorter time than the adjective.

Noun semantics are not predictable during the phrase wrap up period (1.3-3s). It is somewhat counter-intuitive
that the semantics of the adjective should be more salient than the semantics of the noun during the contemplation of
the phrase. This could be the result of our choice of adjectives, which manipulate the most predictable features of the

noun to their extreme ends.

4.3. The Localization of Semantic Representations

Occipital cortex is the ROI with the highest 2 vs. 2 accuracy, while temporal and IFG regions contribute less
(Figure 5] Figure 0). Though temporal and IFG ROIs have been implicated in multiple previous studies of composi-
tion [4} 30]], much of this previous work compared brain activation for composing vs not composing words, rather than
searching for the final output of semantic composition.

One might question the results for the occipital ROI (Figure[5a), as it is a region known to handle visual perception.
However, previous work has found that many semantic properties are represented in the occipital region of the brain,
including properties related to the size, manipulability, animacy and threatening nature of the stimuli (see supplemen-
tary material for [16]). These semantic features are highly related to the attributes we manipulated with our adjective
choices.

In general, visual stimulus features (e.g. word length) are most predictable in occipital cortex before 200ms post
stimulus onset, and not predictable later in time. Note that in the TGM in Figure[6a] high off-diagonal accuracy appears
for test times at 200ms and later, so is likely not attributable to a visual feature of the stimulus being recalled. As a
sanity check, we ran our prediction framework with the task of predicting the number of letters in the adjective and
found that after 700ms, we could not predict the word length of the adjective with significant accuracy. In addition, we
performed a TGA analysis using time windows centered at 70 to 130 ms post adjective onset (peak time for predicting
adjective word length) and found no significant points, implying that the resurgence of adjective semantics is not
simply the image of the word being visually recalled, or some ghosting of the visual stimuli.

Recall, also, that we are using a corpus-derived semantic representation of the adjective for the prediction tasks
throughout this paper. Though there are some correlates to the perceptual features of word strings in these corpus-
derived features (e.g. frequent words are, on average, shorter than infrequent words) we are, by and large, predicting

the semantic features of the words when we use these vectors.
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4.4. Significantly Below Chance Prediction Accuracy in Temporal Generalization Averaging

For both words of the phrase, a period of below chance prediction accuracy appears after the offset of the word
stimuli. Significantly below chance accuracy may seem counter-intuitive; how can the framework’s predictions be
systematically worse than random guessing? If the prediction is systematically inverted, perhaps the MEG signal itself
is negated. To test this, we negated the MEG signal, and found that for TGM coordinates with below chance accuracy,
the 2 vs. 2 accuracy on negated data was not only above chance, it was exactly 1 — a where a is the 2 vs. 2 accuracy
on non-negated MEG data. This is a byproduct of our prediction framework. Negated MEG signal leads to negated
predictions (§§k) from Equation , which causes the predicted vector to point in exactly opposite of the prediction for
non-negated data. The opposing direction results in a negation of the cosine of the angle, and thus flips the decision in
Equation [2] This negated representation of the word could be how the brain to maintains context while processing a
new word. Figure 9] provides some evidence that the right hemisphere may coordinate this negated representation, but
more tests are needed to confirm this hypothesis.

What does it mean for the MEG signal to be negated? MEG measures the post-synaptic potential of many parallel
dendrites. Thus, the negation of the MEG signal equates to the reversal of the underlying magnetic field, i.e. neurons
with opposite direction are firing. This could be caused by several phenomena, perhaps related to the neural loops
currently thought to be related to neural oscillations [35]. It is interesting that the negated representation for the
adjective appears during the time we would expect to see N400 and P600 effects during noun reading (approximately
500 - 1000 ms in Figure[7[C).

We hypothesize that for both the adjective and the noun, the brief negated representation is a holding pattern that
allows the brain to store a word’s meaning in memory while performing another action. In the case of the adjective, the
next action is reading the noun. In the case of the noun, the next action is recalling the adjective for composition. The
beginning of the negated noun representation aligns well with the end of the negated adjective representation. After

the negated noun representation completes, we see the return of the adjective in its original, non-negated, form.

4.5. The Oscillatory Nature of Prediction Accuracy

One of the most striking patterns in the TGMs is the oscillatory nature of prediction accuracy (Figure [6). In
Figure[/[C we can clearly see 10 Hz (alpha) oscillations in the prediction accuracy for the adjective. Originally, alpha
band oscillations were thought to be the brain’s natural idling state, as they are observed in visual cortex when subjects
close their eyes [36]. Note that we are not implying that the neural representation resides in the alpha band. Indeed, in
studying the weight maps for adjective semantics, the oscillations are are closer to 30 Hz and are entrained to alpha,
meaning they repeat every 100 ms. It has been suggested that gamma band activity may synchronize to alpha band
phase in order to share information between brain areas [37]. In previous work, memory tasks have shown oscillatory
representations, though at a lower frequency than reported here [27]. There is also evidence for alpha-entrained neural

signals for visual tasks [38], and oscillations of above and below chance accuracy in TGMs [39].
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To test if the neural representation resides in the alpha band, we bandstop filtered the MEG data to eliminate
frequencies between 7 and 14 Hz. Even after this aggressive filtering, the oscillatory dynamics remain, as do the
above and below chance patterns of performance. In fact, after bandstop filtering, the TGMs show clearer oscillations,
but they appear to be closer to 5 Hz (theta band frequency). Power in the theta band has been shown to be related
to semantics in a number of studies [40, 41, 42| 6]. Interestingly, when we highpass filtered our data to remove
all frequencies below 14 Hz the TGA analysis became extremely oscillatory and showed no significant prediction
accuracy (high or low) outside of the stimuli windows. Certainly, more exploration of these phenomena is required.

Is it possible that the alpha-aligned prediction oscillations are somehow related to a noise artifact? Each MEG
session had 7 blocks (segments of continuous MEG recording with short breaks in between), and each phrase used
for train/test is actually the mean of 20 repetitions, so the chance of any noise artifact being aligned over all 7 blocks
is very unlikely. As an additional test, we also collected an additional subject’s data using the same paradigm with a
MEQG located at Aalto University in Finland, and produced similar results.

We were concerned that the paradigm itself may have been causing the oscillation in accuracy. Because all stim-
ulus onsets were locked to multiples of 100ms with no jitter, we thought anticipation of stimuli onset could create
oscillations. To rule out this possibility, we collected an additional subject with jittered noun and adjective onsets
(between 1-100ms added to onset of each word stimuli). We found the same oscillatory pattern when we corrected the
train/time windows to account for the jitter. This result assures us that the oscillatory patterns are not a function of the
timing of our paradigm.

We also thought that the alpha entrained pattern could be a byproduct of the alpha ringing associated with viewing
a stimuli [43]]. However, that even after bandstop filtering 7-14 Hz, the oscillatory dynamics remain, as do the above
and below chance patterns of performance. We also wanted to ensure that our preprocessing had not introduced a
ringing artifact. To test this, we reprocessed our data, eliminating all pre-processing steps except for tSSS. We then
conducted the same TGA analyses and saw the performance drop by less than 1% on average, and the oscillatory
patterns remained.

Together, these sanity checks provide strong evidence that the oscillatory nature of word prediction is truly a
brain-related signal, and not some noise superimposed on the signal itself. But what is the purpose of this oscillatory
representation? There is strong evidence that oscillations are involved in working memory [44]], and working memory
must play a role in language understanding. We hypothesize that, during semantic composition, oscillatory activity is
used to coordinate brain areas, to retain and to recall information as it is needed. Here we explored a very controlled
composition task; it will be interesting to see if the same oscillatory patterns appear in tasks requiring more complex

compositional processing.
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5. Conclusion

This paper conveyed several new findings regarding adjective-noun composition in the human brain as we tracked
the flow of information during semantic composition. Our analysis showed that adjective semantics are predictable
for an extended period of time, continuously until 1.6s after the onset of the adjective, and are reactivated during
late processing, 2-3s after the onset of the adjective (1.2-2.2s after the onset of the noun). The reactivated neural
representation matches the representation seen during the initial reading of the adjective. After the offset of each word,
a negated representation of the word appears, possibly mediated by the right hemisphere. Semantic representations
are oscillatory and alpha-entrained, as evidenced by the strong diagonal peaks and troughs of accuracy in the TGMs.

The resurgence of adjective semantics is much later than the activation of the machinery responsible for combina-
torics, as documented in previous research [4) [7]]. Perhaps the combinatorial machinery of LATL and LIFG is the hub
that coordinates areas, readying them for the compositional processing. This would require them to activate sooner
than areas of the brain that sfore the composed semantic meaning. Our results imply that future research interested in
the composed representation should look beyond the typical 1s time window after the onset of a word.

With respect to semantic composition in the brain, several new research questions have emerged. For example,
does adjective resurgence appear even for non-intersective adjectives? We would also like to explore more complex
composition tasks like sentences, paragraphs, stories, and beyond. We are interested in the underlying mechanisms
that give rise to significantly below chance accuracy, and would like to explore their role in compositional processing.
Our work also raises several new questions regarding the role of oscillations in the neural processing of language.
By exploring simple composition in a controlled setting, our study establishes an analysis framework for such future

research directions.
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Appendix

Stimuli

LTINS

The phrases for the adjective noun brain imaging experiment are made from 6 nouns (“dog”, “bear”, “tomato”,
S (3 ekl (3 ” (3 t5 13

“carrot”, “hammer”, “shovel”) and 8 adjectives (“big”, “small”, “ferocious”, “gentle”, “light”, “heavy”, “rotten”,

>‘tasty”), as well as two null words: “the” and “thing”. The phrases are:

e the dog e big tomato
o the bear e big carrot
e the tomato e big hammer
o the carrot e big shovel
e the hammer e small dog
e the shovel e small bear
e big dog e small tomato
e big bear e small carrot
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e small hammer
e small shovel
e ferocious dog
e ferocious bear
e gentle dog

e gentle bear

light hammer

light shovel
heavy hammer
heavy shovel
rotten carrot
rotten tomato
tasty carrot

tasty tomato

Due to multiple word senses, the word “light” was not used in the adjective-adjective oddballs.

ROI Membership

For all ROI analyses in the paper, temporal ROIs include: superior temporal gyrus, middle temporal gyrus, inferior

temporal gyrus, banks of the superior temporal sulcus, and fusiform gyrus; inferior frontal gyrus (IFG) includes:

pars opercularis, pars orbitalis, and pars triangularis; occipital includes: lingual, lateral occipital, and cuneus; parietal

includes superior parietal, inferior parietal and the precuneus. Post central and supramarginal gyrus were omitted from

the parietal ROIs because their performance was much lower than the ROIs we included here.
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