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Abstract

Motivation: Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines
of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA
shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Sev-
eral methods have been developed to jointly account for DNA sequence and shape properties
in predicting TF binding affinity. However, a limitation of these methods is that they typically
require a training set of aligned TF binding sites.
Results: We describe a sequence+shape kernel that leverages DNA sequence and shape infor-
mation to better understand protein-DNA binding preference and affinity. This kernel extends
an existing class of k-mer based sequence kernels, based on the recently described di-mismatch
kernel. Using three in vitro benchmark datasets, derived from universal protein binding mi-
croarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate
that incorporating DNA shape information improves our ability to predict protein-DNA binding
affinity. In particular, we observe that (1) the k-spectrum+shape model performs better than
the classical k-spectrum kernel, particularly for small k values; (2) the di-mismatch kernel per-
forms better than the k-mer kernel, for larger k; and (3) the di-mismatch+shape kernel performs
better than the di-mismatch kernel for intermediate k values.
Availability: The software is available at https://bitbucket.org/wenxiu/sequence-shape.
git

Contact: rohs@usc.edu rohs@usc.edu, william-noble@uw.edu william-noble@uw.edu

1 Introduction

Modeling transcription factor (TF) binding affinity and predicting TF binding sites are important
for annotating and investigating the function of cis-regulatory elements. In the past decade, the
development of chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-
seq, Johnson et al., 2007; Robertson et al., 2007; Barski et al., 2007), protein binding microarrays
(PBMs, Berger et al., 2006) and systematic evolution of ligands by exponential enrichment coupled
with high-throughput sequencing (SELEX-seq, Zykovich et al., 2009; Zhao et al., 2009; Jolma et al.,
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2010; Slattery et al., 2011) has provided high-resolution TF binding datasets both in vivo and in
vitro. However, despite the increasingly large collection of such datasets, our ability to predict
where a given TF binds to genomic DNAs is still imperfect.

One important challenge associated with TF binding prediction is how to properly model combi-
natorial binding that involves multiple TFs or the effects of local chromatin architecture. Recent
studies have shown that the interaction of the TF with co-binding factors (Lemon and Tjian, 2000;
Slattery et al., 2011) and local chromatin architecture (Boyle et al., 2011; Dror et al., 2015) affects
TF binding to target sites. Hence, computational methods that explicitly model cis-regulatory
modules (Zhou and Wong, 2004; Kato et al., 2004) and local chromatin accessibility (Hesselberth
et al., 2009; Chen et al., 2010) have been developed to address these issues.

However, as evidenced by our inability to predict in vitro binding derived from high-throughput
assays such as PBMs or SELEX-seq experiments, combinatorial factors are not the only culprit.
A second challenge lies in building computationally tractable, physically plausible models. For
example, commonly used position weight matrix (PWM) methods depend on correctly aligned DNA
sequences and make the unrealistic assumption that each nucleotide binds to the TF independently
of one another. Accordingly, a variety of methods have been proposed that attempt to expand
this approximation (Barash et al., 2003; Zhou and Liu, 2004; Sharon et al., 2008; Zhao et al.,
2012).

Dependencies between nucleotide positions in a TF binding site can be explicitly encoded through
k-mers, for instance dinucleotides or trinucleotides (Zhao et al., 2012; Gordân et al., 2013). On the
other hand, because stacking interactions between adjacent base pairs give rise to three-dimensional
DNA structure, DNA shape features represent an alternative approach for encoding nucleotide
dependencies implicitly (Zhou et al., 2015). Recent evidence suggests that a crucial aspect of
TF binding can be explained based on the DNA shape of selected targeted sites (Rohs et al.,
2009). Local structural features of the double helix, such as minor groove width (MGW), roll,
propeller twist (ProT) and helix twist (HelT), have been proven to greatly affect TF binding (Zhou
et al., 2015). Therefore, whereas traditional TF binding prediction takes as input only the primary
nucleotide sequence, improved performance can be obtained by taking into account aspects of the
DNA shape (Zhou et al., 2015; Gordân et al., 2013; Levo et al., 2015). This approach has the
potential to significantly improve our ability to predictively model TF-DNA interactions in vitro
(Abe et al., 2015) and in vivo (Mathelier et al., 2016).

In this study, we developed a kernel-based regression and classification framework that enables
accurate and efficient modeling and prediction of TF-DNA binding affinities. One of the most
compelling motivations for using kernel functions is that kernels can be defined over arbitrary
types of heterogeneous objects, such as pairs of vectors, discrete strings of variable length, graphs,
nodes within graphs, trees, etc. (reviewed in Schoelkopf et al., 2004). In our task, we used kernel
functions to measure similarity between DNA sequences and between local DNA shape features,
simultaneously. We propose two shape-augmented kernel functions. One is the spectrum+shape
kernel (Section 2.2), which is a natural extension of the classic k-mer spectrum kernel (Leslie et al.,
2002). The other is a di-mismatch+shape kernel (Section 2.4), which is built upon the recently
developed di-mismatch kernel (Agius et al., 2010; Arvey et al., 2012) and encodes both nucleotide
sequence degeneracy and DNA shape readout.

We used these kernels in regression models, applied to both universal PBM (uPBM) and genomic-
context PBM (gcPBM) data derived from a large collection of human and mouse TFs (Zhou et al.,
2015). Our results suggest that adding shape information substantially improved our TF binding
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y1 = 6.54 q1 = TGGCCCTATAGCGACTCGTGAGTGAGGTCCACCCA x1 = 4.93 4.77...4.66 -2.54 -1.93...-3.38 -1.76 -2.41...-2.00 33.23 36.83...33.53

y2 = 6.80 q2 = CATTGGAGGAGATGCAATGTTCAGCAACCAATGAC x2 = 4.69 5.30...5.45 -10.42 -10.72...-6.37 -4.37 -2.35...-2.06 32.41 35.00...35.47

... ...... ... ...... ...... ...... ......
yn = 7.92 qn = ATCCGCCAAAGTCGATCATCTGAGATAATGCGAGG xn = 4.47 5.27...5.18 -4.49 -3.15...-6.32 -2.07 -1.61...-2.80 36.59 33.22...31.50

f(q1,x1) = 6.24
f(q2,x2) = 6.56

...
f(qn,xn) = 8.08

Predicted	affinityAffinity DNA	sequences MGW ProT Roll HelT

Kernel	encoding
1. Spectrum	kernel
2. Spectrum+shape kernel
3. Di-mismatch	kernel
4. Di-mismatch+shape kernel

ε-SVR

Figure 1: ε- Support Vector Regression (SVR) framework for the alignment-free mod-
eling of transcription factor binding

prediction accuracies. Furthermore, we applied our di-mismatch+shape kernel in a classification
setting and successfully distinguished binding sites of two homologous Hox TFs using SELEX-seq
data (Abe et al., 2015). We thus found that our shape-augmented model accurately detected subtle
but important differences in local DNA shape conformations.

2 Approach — Kernel Methods

In this study we devised and evaluated several kernel methods for building quantitative models
of TF binding affinity. In each case, we consider the following problem. Suppose we are given a
collection of triples (q1, x1, y1), . . . , (qn, xn, yn), where qi is a DNA sequence of length w, xi contains
information about the DNA shape conformation of qi, and yi is either a real number that indicates
the relative strength of binding of a particular TF to qi (in a regression setting) or a binary indicator
that the TF either binds to the sequence or does not bind (in a classification setting). Our goal is to
build a predictive model f(·) such that f(qi, xi) = yi. We consider a variety of kernel methods for
projecting either qi or qi and xi into a vector space suitable for a classical regression or classification
algorithm.

2.1 Spectrum kernel

A simple and widely used kernel for representing biological sequences is the spectrum kernel (Leslie
et al., 2002). This kernel is defined over an n-dimensional feature space, where n is the number of
unique k-mers in the dataset. Note that, due to the reverse complementarity of DNA sequences,
n = 4k/2 if k is odd and n = (4k + 4k/2)/2 otherwise (Supplementary Table 1). Each feature
corresponds to a unique string of length k, and the feature values are counts of the number of
times the given string occurs within the given DNA sequence. The kernel is a scalar product in
this feature space, which can be computed efficiently using several different data structures (Leslie
et al., 2002; Vishwanathan and Smola, 2003). The hyperparameter k determines the dimensionality
of the feature space. An important characteristic of the spectrum kernel is that it is compositional
rather than positional; i.e., the position of the k-mer within the given sequence has no effect
on the embedding. The spectrum kernel was originally described for protein homology detection
(Leslie et al., 2002), but has been used for a variety of DNA-based classification and regression
tasks, including predicting nucleosome positioning (Peckham et al., 2007) and splice site prediction
(Sonnenburg et al., 2007).
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2.2 Spectrum+shape kernel

Because we know that TF binding is mediated in part by the shape of the DNA binding site, we
incorporated local DNA shape properties into our prediction models. Specifically, we considered
four DNA shape features: MGW, Roll, ProT and HelT. These features were derived from Monte
Carlo simulations using a previously described pentamer model (Zhou et al., 2013; Chiu et al.,
2016). The MGW and ProT features are defined at each nucleotide position, whereas Roll and HelT
define translations and rotations between two adjacent nucleotides. Thus, a pentamer contributes
one MGW value and one ProT value at the central nucleotide and two Roll values and two HelT
values at the two central dinucleotide pairs.

To incorporate DNA shape information into the spectrum kernel, we developed a spectrum+shape
kernel. This kernel is defined over a (3+4k) ·n-dimensional feature space (Supplementary Table 1).
The first n features are defined over the n unique k-mer sequences in the same manner as described
for the classic spectrum k-mer kernel. The remaining features capture the four corresponding shape
properties. Consider MGW as an example. For each unique k-mer, we find all its occurrences within
the given DNA sequence, and we extract the k-mer sequences plus 2 bp flanking sequences on both
sides. If the k-mer appears in the beginning or at the end of the given DNA sequence, then we add
“NN” to its 5’ and 3’ flanks to make it of length k+ 4. Then we calculate the average MGW values
over all the extracted substrings of length k+ 4. Since each pentamer contributes one MGW value,
each (k + 4)-mer will contribute k MGW values. Therefore, we have a total of kn features defined
for MGW shape information. In this way, we can define kn features each for MGW and ProT, and
(k + 1) · n features each for Roll and HelT.

Note that our spectrum+shape kernel differs from the sequence+shape model used in Zhou et al.
(2015). Our model is compositional and hence can be applied to unaligned DNA sequences. The
Zhou model, in contrast, is positional and hence requires pre-alignment of the TF binding sites.
This requirement used in our previous studies (Zhou et al., 2015; Abe et al., 2015) represents
a limitation that restricted us from analyzing data that could not be aligned. Overcoming this
limitation is particularly important for low affinity TF binding (Crocker et al., 2015) or binding
site sampling during the search process (Dror et al., 2016).

2.3 Di-mismatch kernel

Subsequent to the spectrum kernel, a variety of more complex and more powerful DNA kernels have
been developed. For example, the mismatch kernel generalizes the spectrum kernel by relaxing
the matching function on substrings (Leslie et al., 2003). In the mismatch kernel, a k-mer is
considered to occur at a specific position within the sequence q if the k-mer matches q with up to
m mismatches. A more recent alternative generalization, the di-mismatch kernel, uses a matching
function that counts the number of matching dinucleotides in the two k-mers (Agius et al., 2010).
Like the spectrum kernel, only exact matches between dinucleotides are considered; however, a
second hyper-parameter m specifies a threshold so that the match score is set to zero if the number
of matching dinucleotides falls below k −m − 1. Precisely, we let {φi}i=1...n be the set of unique
k-mers that occur in a large set of training sequences. Then, given a training sequence q of length
w, we define the set of substrings of length k in q to be {qj = q(j, j + k − 1)}j=1...w−k+1. In this
setting, the DNA sequence q may be represented by a feature vector (ρ(q, φ1), . . . , ρ(q, φn)), where
ρ(q, φi) =

∑w−k+1
j=1 γ(k,m)1(φi, qj) and the value γ(k,m)1(φi, qj) is the di-mismatch score between two
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k-mers, which counts the number of matching dinucleotides between φi and qj , i.e.,

γ(k,m)1(φi, qj) =
k−1∑
`=1

δ(φ`i , q
`
j)δ(φ

`+1
i , q`+1

j ),

where δ(·) is the Kronecker delta function. The mismatch threshold m has the effect of setting the
score to 0 if γ(k,m)1(φi, qj) < k −m − 1, i.e., the number of dinucleotide mismatches between φi
and qj exceeds m. This threshold forces the kernel to only consider highly similar sequences. The
motivation for the di-mismatch kernel is to favor k-mers with consecutive mismatches over k-mers
with non-contiguous mismatches. Previous evidence suggests that the di-mismatch kernel yields
more accurate TF binding predictions both in vitro and in vivo (Agius et al., 2010) and helps to
identify cell-type specific binding (Arvey et al., 2012).

2.4 Di-mismatch+shape kernel

We generalize the di-mismatch kernel by expanding the feature vector to include both DNA sequence
and shape features:

(ρ(q, φ1), π1(q, φ1), · · · , πb(q, φ1),
· · · ,

ρ(q, φn), π1(q, φn), · · · , πb(q, φn)),

where ρ(q, φi) is the previously defined di-mismatch feature function, and π1(q, φi) to πb(q, φi) are
the DNA shape feature functions that we will introduce here.

Similar to Section 2.2, we consider the four DNA shape features: MGW, R, ProT and HelT. For
each k-mer φi (k ≥ 5), the sliding pentamer model (Zhou et al., 2013) generates MGW and ProT
feature vectors of length k − 4 and Roll and HelT feature vectors of length k − 3.

Our kernel requires that we define, for each unique k-mer φi and t-th shape feature, a corresponding
“canonical” shape feature vector si,t. A simple way to define such a feature vector is by averaging
over all possible 2-bp sequences immediately upstream and downstream. In this case, si,t is a vector
of length k for MGW and ProT, and k + 1 for Roll and HelT.

For each length-k substring qj in q, let xj,t be its t-th DNA shape feature vector, t = 1, 2, 3, 4. For
the first and last two substrings, i.e., j = 1, 2, w − k,w − k + 1, xj,t can be obtained by averaging
all possible 1- or 2-bp flanks; for other intermediate substrings, the DNA shape features can be
obtained directly.

Thus we define the t-th DNA shape feature function as

πt(q, φi) =
w−k+1∑
j=1

βt,(k,m)1(φi, qj),

where the shape feature similarity score βt,(k,m)1(φi, qj) is

βt,(k,m)1(φi, qj) =


si,t·xj,t

|si,t||xj,t| if γ(k,m)1(φi, qj) 6= 0

0 otherwise.
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That is, the shape similarity score equals the normalized inner product between the shape feature
vectors si,t and xj,t, and we set the score to zero if the number of dinucleotide mismatches between
φi and qj exceeds the threshold m. This generalized di-mismatch kernel is defined over a 5n-
dimensional feature space (Supplementary Table 1).

3 Methods

3.1 TF binding datasets

We used three types of in vitro datasets to evaluate and compare the performance of the kernels
described above.

The universal PBM (uPBM) data from the DREAM5 project (Weirauch et al., 2013, GEO accession
number GSE42864) consists of unaligned 35-mer PBM probes for 66 TFs from a variety of protein
families. The normalized uPBM data were downloaded from the DREAM5 challenge website, where
the data was normalized according to the total signal intensity. Unlike in Zhou et al. (2015), we
did not align or trim the probes based on the reported motifs of the biniding sites.

The genomic context PBM (gcPBM) data are for three human basic helix-loop-helix (bHLH) TF
dimers: Mad1 (Mxd1)–Max, Max–Max, and c-Myc–Max (Mad, Max, and Myc, respectively) (Zhou
et al., 2015, GEO accession number GSE59845). The gcPBM data consists of 36-mer probes, each
in its real genomic context. The gcPBM probes were by design pre-aligned at the center using
the E-box motif sites. We used the raw probes in this study, without any filtering for absence or
multiple occurence of E-box binding sites.

The homeodomain (Hox) data consists of SELEX-seq data for two Drosophila Hox proteins, Scr and
Antp, each in complex with Exd (Abe et al., 2015, GEO accession number GSE65073). These two
Exd-Hox dimers bind to a similar consensus motifs but have distinct DNA shape preferences. The
SELEX-seq-derived 16-mers and their TF binding affinities were obtained from Abe et al. (2015).
No further filtering using either Hox monomer or Exd-Hox heterodimer motifs was performed.
Each sequence in this dataset is associated with a relative TF binding affinity, normalized to values
ranging from 0.0 to 1.0. For each sequence, we calculated separately the percentiles of relative
binding affinity for the Scr and Antp bound sequences, respectively. Sequences with a relative
binding affinity greater than 0.57 (median value in the Scr data) for Scr and less than 0.27 (the
median value in the Antp data) for Antp were labeled as positive. Conversely, the sequences with
a relative binding affinity of greater than 0.57 for Scr and less than 0.27 for Antp were labeled
as negative. We used the resulting sequences and binary labels (Supplementary Figure 1) for the
classification task.

3.2 Regression experiment design

We evaluated our models separately on each TF in each dataset. To archieve this, we randomly
sampled 1000 input DNA sequences and their relative binding affinity values to evaluate our re-
gression models, which significantly reduced the computational cost for kernel calculation and SVR
learning.

We tested each kernel in the context of linear support vector regression (ε-SVR). We implemented
the SVR framework with different kernels using the Python scikit-learn/svm module, which uses
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LIBSVM (Chang and Lin, 2001) as its internal SVR implementation.

To avoid over-fitting, we performed nested cross-validation (CV). The inner five-fold CV performs
hyperparameter grid search. The grid includes the two SVR parameters, C and ε (C from -3
to 3 in log 10 space, ε={0, 0.001, 0.01, 0.1, 0.2, 0.5, 1.0}). The outer five-fold CV evaluates the
performance of the best model selected from the inner CV. We used the coefficient of determination
R2 to measure the kernel performance. The R2 measurement has been used previously to evaluate
regression performance for SELEX-seq and PBM data (Zhou et al., 2015; Abe et al., 2015). We did
not use the Spearman correlation coefficient as the metric because the rank transformation results
in an undesirable emphasis on the unbound, low intensity probes (Weirauch et al., 2013).

To restrict the dimensionality of the feature space and improve computational efficiency, we selected
the top 1,000 features for each model based on their R2 values for predicting binding affinities. To
avoid over-fitting, we performed this feature selection separately in each outer CV, using the binding
affinity values of the training data only.

3.3 Classification experiment design

We used the linear support vector machine (SVM) as our training and testing framework for the
classification task.

Similar to the SVR framework, we performed nested CV to avoid over-fitting. Because of the
unequal numbers of positives and negatives, we used stratified CV in both layers to equally split
positive and negative labels in each fold. We used the inner five-fold CV to perform grid search
for hyperparameters, which include SVM parameters (C in the linear SVM model, from -3 to 3
in log10 space). We used the outer five-fold CV to evaluate the performance of the best model
selected from the inner CV. In these classification experiments, we used the area under the ROC
curve (AUROC) to measure the performance. As k increases, the number of features increases
exponentially. To restrict the dimension of the feature space and improve computational efficiency,
we selected the top 1000 features for each model based on their individual AUROC scores for
distinguishing between sequences with positive and negative labels. As described above, this feature
selection was performed separately in each fold of the outer CV.

4 Results

4.1 In uPBM data, adding shape features yields improved performance for
small k

To evaluate our models, we started with the uPBM datasets from the DREAM5 experiment
(Weirauch et al., 2013), consisting of 66 mouse TFs from various TF families. For each TF,
we first evaluated the k-spectrum model and the k-spectrum+shape model, for every k value from
1 to 7, comparing the R2 values between the true binding affinities and our predictions.

We observed in Figure 2 that, for small k values (k ≤ 5), adding shape information to the kernel
leads to significantly better performance for more than 90% of the TFs (Wilcoxon’s one-sided test,
k=1, p=2.07e-10; k=2, p=2.87e-7; k=3, p=5.67e-5; k=4, p=1.40e-3; k=5, p=4.93e-3). This result
agrees with previous reports by Zhou et al. (2015). The DNA shape information is calculated based
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Figure 2: Comparison between k-spectrum and k-spectrum+shape models on uPBM
dataset. The top panel is the percent of DREAM5 TFs that have higher R2 values using the
k-spectrum+shape model than using the k-spectrum model; the middle panel shows the differences
of R2 values between the two models; and the bottom panel shows the R2 performance scores of
various k-spectrum models and k-spectrum+shape models, for k = 1, · · · , 7.

on pentamers, and therefore captures dependencies that may not be well represented by small k-
mers. Conversely, we observed that for larger k, the k-spectrum+shape model under-performs the
k-spectrum model. Especially when k > 5, the k-spectrum+shape model has larger variability
in its performance and in some cases even yields negative R2 values. The lack of improvement
from the shape features for large values of k is likely because the longer k-mers in the k-spectrum
kernel already implicitly capture DNA shape information. Furthermore, especially for large values
of k, shape-augmented kernels map the input sequences to a very high-dimensional feature space
in which the learning task is considerably more difficult.

In addition to the aggregated performance over all 66 TFs, we also looked at the R2 improvement for
each TF and for each TF family (Figure 3, Supplementary Figure 2). Taking k = 4 as an example,
we found that the 4mer+shape model led to great improvements for all zinc fingers, bHLH, bZip,
and helix-turn-helix (HTH) TFs. These observations are consistent with previous findings (Zhou
et al., 2015; Gordân et al., 2013; Yang et al., 2014; Stella et al., 2010). Only for zinc fingers, previous
studies did not detect a significant improvement in binding specificity predictions upon the addition
of shape information (Zhou et al., 2015). Zinc fingers recognize DNA in a modular manner with
each finger binding to 3 bp, so that alignment of such modular sites is more ambiguous. The use
of an alignment-free approach probes the effect of shape without the uncertainty in aligning such
modular binding sites.

The spectrum+shape kernel implemented in this study encodes both sequence and shape informa-
tion in a compositional fashion, i.e., without respect to the absolute position of the sequence or
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Figure 3: R2 performance for k-spectrum model verse k-spectrum+shape model on
uPBM dataset, k = 4. (a) Scatter plot of the R2 performance values between the two models.
Each dot represents one TF, colored corresponding to its protein family. (b) Bar plot of R2

improvements for various protein families. Numbers in the parentheses are the number of DREAM5
TFs in each TF family. The x-axis shows the differences of R2 values between the two models. The
length of the bars represent the mean of R2 differences and the error bars mark the standard error
of the mean.

shape feature within a given sequence. In contrast, Zhou et al. (2015) implemented a positional
sequence+shape kernel where the input sequences are required to be aligned at the binding motif
sites. In both compositional and positional models, combining sequence information and shape
information contributes to the improvement of prediction performance compared to using sequence
information alone. The advantage of our compositional approach is that it does not require the
uPBM probes to be aligned in a pre-processing step. Taken together, the results from Zhou et al.
(2015) and our study confirmed that DNA shape readout plays an important role in guiding TFs
to recognize their target binding sites.

4.2 The di-mismatch kernel benefits from inclusion of shape features on uPBM
datasets

Next, we compared our new di-mismatch+shape kernel with the di-mismatch kernel developed
by Agius et al. (2010), to examine whether adding shape information to the di-mismatch kernel
improves the prediction accuracy of TF binding affinities. We first implemented the di-mismatch
kernel in our SVR framework and compared its performance with the spectrum kernel using the
66 mouse TFs from the DREAM5 data. In agreement with previous findings (Agius et al., 2010;
Arvey et al., 2012), the di-mismatch kernel consistently performs better than the spectrum kernel
on the uPBM DREAM5 data for large k values (k ≥ 5, Supplementary Figure 3).

We then evaluated in detail (Figure 4) at the comparison between the di-mismatch kernel with
and without inclusion of shape for different k and m parameter settings (k = 3, · · · , 8 and m =
1, · · · ,max{2, (k − 3)}). We observed several trends. First, we considered the case when we only
observed one di-mismatch, i.e., m = 1. By definition, this can only happen when a single nucleotide
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Figure 4: Comparison between di-mismatch and di-mismatch+shape models on uPBM
dataset. (a) di-mismatch model verse di-mismatch+shape model for di-mismatch parameter m =
1, where k = 3, · · · , 8; (b) di-mismatch model verse di-mismatch+shape model for di-mismatch
parameter m = 2, where k = 4, · · · , 8. The top panels are the percent of DREAM5 TF datasets
that have higher R2 values using the k-spectrum+shape model than using the k-spectrum model;
the middle panels show the differences of R2 values between the two models; and the bottom panels
show the R2 performance scores of various di-mismatch models vs. di-mismatch+shape models.

mismatch occurs at the beginning or end of the k-mer sequence, since otherwise a single mismatch
in the middle of the sequence leads to two di-mismatches. In this case, adding shape features
leads to significantly improved R2 values for k = 3 and 4, for the majority of the TFs (Wilcoxon’s
one-sided test, k=3, p=1.73e-6; k=4, p=0.04) and marginal improvements for k = 5 and 6 (k=5,
p=0.36; k=6, p=0.35). Second, we looked at the case m = 2, where we allow a single mismatch to
occur in the middle of the k-mer sequences. In that case, our di-mismatch+shape kernel performs
substantialy better than the di-mismatch kernel for k = 4 and 5 (Wilcoxon’s one-sided test, k=4,
p=2.10e-6; k=5,p=0.12). However, for k ≥ 6, the performance of the di-mismatch+shape model
was affected by the high dimensionality of the feature space and led to worse R2 values compared
to the di-mismatch model.

Even though the di-mismatch kernel itself is able to encode sequence degeneracy in TF binding
patterns, our results suggest that adding pentamer-based shape information to the di-mismatch
kernel provides additional information about sequence dependencies and shape features, hence
leading to better performance for intermediate values of k (3 ≥ k ≥ 5). On the other hand, when k
is large enough, adding shape information greatly increases the dimensionality of the feature space,
and the gain from adding shape information does not offset the cost of the curse of dimensionality.
Thus, in this situation, the di-mismatch+shape kernel only leads to marginal improvement or in
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Figure 5: R2 performance for di-mismatch verse di-mismatch+shape model on uPBM
dataset, k = 4 and m = 2. (a) Scatter plot of the R2 performance values between the two
models. Each dot represents one TF, colored corresponding to its protein family. (b) Bar plot
of R2 improvements for various protein families. Numbers in the parentheses are the number of
DREAM5 TFs in each TF family. The x-axis shows the differences of R2 values between the two
models. The lengths of the bars represent the mean of R2 differences and the error bars indicate
the standard error of the mean.

some cases even decreases the prediction performance.

We also looked at the R2 improvements for different TF families between the di-mismatch model
and the di-mismatch+shape model (Figure 5, Supplementary Figure 4). For instance, in Figure 5
where k = 4 and m = 2, we observed that similar to Figure 3, adding shape features led to
substantial improvements in R2 values for various zinc fingers, bHLH and HTH TFs. In addition,
we found that combining shape features into the di-mismatch kernel contributed to the prediction
improvements for homeodomain TFs. This observation is consistent with previous reports that
specific homeodomain residues play key roles in recognizing DNA binding sites through shape
readout (Dror et al., 2014). For T-box TFs, since T-box proteins can bind to the DNA not only
in a monomeric manner but also in dimeric combinations with various spacing and orientation
patterns (Jolma et al., 2013), our results suggest that the di-mismatch+shape model might help in
recognizing the flexibility in the event of combinational TF bindings. Generally, our results seem
to indicate that the di-mismatch kernel better describes binding sites with spacers, for instance in
the center of dimeric binding targets.

4.3 The di-mismatch+shape model can accurately predict TF bindings in var-
ious experimental platforms

To investigate the extent to which our conclusions generalize beyond uPBM data, we also exam-
ined the performance of our shape-augmented models on a collection of gcPBM data for three
human bHLH TFs (Myc, Mad, Max). In agreement with our observations in the mouse uPBM
DREAM5 dataset, the k-spectrum+shape model outperformed the k-spectrum model for k < 5
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Figure 6: R2 performance on bHLH gcPBM data. (a) Myc; (b) Max; (c) Mad. In each plot,
dashed black line represents the performance of the k-spectrum model. Solid black line represents
the performance of the k-spectrum+shape model. Dashed blue line represents the performance
of the di-mismatch model. Solid blue line represents the performance of the di-mismatch+shape
model. k = 1, · · · , 8.

for all three gcPBM datasets (Figure 6). For larger values of k, although the performance of the
k-spectrum+shape model begins to drop, its R2 values are still very close to the ones for the k-
spectrum model, for two out of three TFs. Except for the Max dataset, the best R2 performance
for each the other two TF gcPBM datasets was achieved by the di-mismatch+shape model.

Similarly, we observed that the di-mismatch+shape model outperformed the di-mismatch model
for almost all k values. The benefit of adding shape information is substantial for smaller k values
but tends to be marginal for large k values (k > 5). This might be due to the definition of the
shape parameters, which require at least pentamers for the calculation of MGW.

The gcPBM dataset is of higher quality than the uPBM data, because the gcPBM data contains less
positional bias and provides information on the genomic flanking regions. Therefore, we observed
much higher R2 values for all the models in the human gcPBM dataset as compared to the ones
in mouse DREAM5 uPBM dataset. The highest R2 value is greater than 0.8 for the Mad data.
Furthermore, it has previously been shown that the flanking sequences of the 6-bp E-box core motif
contribute to the binding of bHLH TFs (Gordân et al., 2013). Consistent with this observation,
we found that longer k-mers (k ≥ 6) in both k-spectrum+shape and di-mismatch+shape models
continue to yield high R2 prediction accuracies for all three bHLH TFs.

4.4 Using DNA shape information improves the ability to distinguish between
Scr and Antp binding sites

In addition to testing our shape-augmented models in a regression setting on PBM datasets, we
also investigated the performance of our kernels in a classification setting to distinguish motif
binding sites between two homologous Hox proteins in presence of the shared cofactor Exd. This is
considered a challenging task, because the two Hox proteins, Scr and Antp, are known to bind to
a similar consensus motif with subtle differences in the binding sites. Abe et al. (2015) previously
reported that Scr and Antp recognize distinct DNA shape readout. Therefore, effectively decoding
DNA shape differences is crucial to the success of distinguishing the differential binding events
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between Scr-Exd and Antp-Exd heterodimers.

As seen in Supplementary Table 2, the k-spectrum+shape models consistently generated higher
AUROC scores for all k values. In addition, the di-mismatch+shape models benefited from the
inclusion of shape information and performed better than the di-mismatch models in most of the
experiments when 3 ≥ k ≥ 7. The highest prediction AUROC score of 0.9885 was achieved by the
di-mismatch+shape model with parameters k = 6 and m = 3. Therefore, our results demonstrate
that with the assistance of DNA shape information we can more accurately distinguish between
the binding sites of Exd-Scr and Exd-Antp heterodimers.

5 Discussion

Recent studies on DNA shape readout suggest that the double-helix DNA shape features play an
important role in DNA binding site recognition (Rohs et al., 2009). Several computational models
have been developed to incorporate DNA shape information into sequence motif models and to
use shape to improve the prediction accuracy of TF-DNA binding models (Zhou et al., 2015; Yang
et al., 2014; Dror et al., 2014; Mathelier et al., 2016).

In this study, we present two shape-augmented models. The first one, the k-spectrum+shape
model, is built on the classic k-spectrum model. The second is the di-mismatch+shape model
which extends the recently developed di-mismatch model. Unlike existing sequence+shape models
(Zhou et al., 2015; Mathelier et al., 2016), our new shape-augmented models are compositional,
that is, they do not require the alignment of sequences at motif binding sites. The compositional
model is better than a positional model because a compositional approach allows us to perform
alignment-free modeling on all available sequences. For some TFs, we might not have a pre-defined
motif model to use in creating an alignment. Furthermore, even with a well defined TF motif,
there might be some sites that are transiently bound without an obvious sequence motif. Such
DNA sequence might still have shape similarities that are transiently recognized (Dror et al., 2016)
and therefore could be recognized by our models.

Previous methods treat shape features and sequence features independently, by defining the feature
vector as the concatenation of sequence features and shape features (Zhou et al., 2015). Since shape
features are derived from sequence information, simply adding sequence and shape information
introduces redundancies in the feature space and may not be desirable. Our di-mismatch+shape
shape kernel defines similarity between shape features conditioning on sequence similarity, thereby
explicitly representing dependences between sequence and shape features.

Adding shape features inevitably increases the dimensionality of the feature space. To combat the
curse of dimensionality, we employed a straightforward feature selection procedure. In addition,
our SVM/SVR parameter C implicitly controls the kernel space dimension. We expect that more
sophisticated feature selection approaches, such as incremental selection or regularizers like LASSO
(Tibshirani, 1996) or elastic net (Zou and Hastie, 2005) could further improve our models in high-
dimensional situations.

All the kernels discussed in this study encode sequence (and shape) information into vectors of
features and then use linear kernels (scalar product) as the similarity score. Another possibility is
to use a Gaussian (RBF) kernel. The RBF kernel embeds the data into (a finite subspace of) an
infinite dimensional feature space, thus allowing efficient mapping to a high-dimensional, implicit
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feature space. Hence the RBF kernel might provide an alternate solution for the high-dimensionality
issues in our shape-augmented models.
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