Running Head: PREDICTING CELL TYPE BALANCE

INFERENCE OF CELL TYPE COMPOSITION FROM HUMAN BRAIN TRANSCRIPTOMIC

DATASETS ILLUMINATES THE EFFECTS OF AGE, MANNER OF DEATH, DISSECTION,

AND PSYCHIATRIC DIAGNOSIS

*Megan Hastings Hagenauer, Ph.D.¹, Anton Schulmann, M.D.², Jun Z. Li, Ph.D.³, Marquis P. Vawter, Ph.D.⁴, David M. Walsh, Psy.D.⁴, Robert C. Thompson, Ph.D.¹, Cortney A. Turner, Ph.D.¹, William E. Bunney, M.D.⁴, Richard M. Myers, Ph.D.⁵, Jack D. Barchas, M.D.⁶, Alan F. Schatzberg, M.D.⁷, Stanley J. Watson, M.D., Ph.D.¹, Huda Akil, Ph.D.¹

¹Mol. Behavioral Neurosci. Inst., Univ. of Michigan, Ann Arbor, MI, USA; ² Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, ³Genet., Univ. of Michigan, Ann Arbor, MI, USA; ⁴Univ. of California, Irvine, CA; ⁵HudsonAlpha Inst. for Biotech., Huntsville, AL, USA; ⁶Stanford, Palo Alto, CA, ⁷Cornell, New York, NY, USA

*Corresponding Author: Megan Hastings Hagenauer, Ph.D.

e-mail: hagenaue@umich.edu

Molecular Behavioral Neuroscience Institute (MBNI)

205 Zina Pitcher Pl.

Ann Arbor, MI 48109

Running Head: PREDICTING CELL TYPE BALANCE

Abstract

Psychiatric illness is unlikely to arise from pathology occurring uniformly across all cell types in affected brain regions. Despite this, transcriptomic analyses of the human brain have typically been conducted using macro-dissected tissue due to the difficulty of performing single-cell type analyses with donated post-mortem brains. To address this issue statistically, we compiled a database of several thousand transcripts that were specifically-enriched in one of 10 primary cortical cell types in previous publications. Using this database, we predicted the relative cell type composition for 833 human cortical samples using microarray or RNA-Seq data from the Pritzker Consortium (GSE92538) or publicly-available databases (GSE53987, GSE21935, GSE21138, CommonMind Consortium). These predictions were generated by averaging normalized expression levels across transcripts specific to each cell type using our R-package *BrainInABlender* (validated and publicly-released:

https://github.com/hagenaue/BrainInABlender). Using this method, we found that the principal components of variation in the datasets strongly correlated with the neuron to glia ratio of the samples. This variability was not simply due to dissection – the relative balance of brain cell types appeared to be influenced by a variety of demographic, pre- and post-mortem variables. Prolonged hypoxia around the time of death predicted increased astrocytic and endothelial gene expression, illustrating vascular upregulation. Aging was associated with decreased neuronal gene expression. Red blood cell gene expression was reduced in individuals who died following systemic blood loss. Subjects with Major Depressive Disorder had decreased astrocytic gene expression, mirroring previous morphometric observations. Subjects with Schizophrenia had reduced red blood cell gene expression, resembling the hypofrontality detected in fMRI experiments. Finally, in datasets containing samples with especially variable cell content, we found that controlling for predicted sample cell content while evaluating differential expression improved the detection of previously-identified psychiatric effects. We conclude that accounting for cell type can greatly improve the interpretability of transcriptomic data.

Running Head: PREDICTING CELL TYPE BALANCE

1 1. Introduction

2 The human brain is a remarkable mosaic of diverse cell types stratified into rolling cortical layers, 3 arching white matter highways, and interlocking deep nuclei. In the past decade, we have come to 4 recognize the importance of this cellular diversity in even the most basic neural circuits. At the same time, 5 we have developed the capability to comprehensively measure the thousands of molecules essential for 6 cell function. These insights have provided conflicting priorities within the study of psychiatric illness: do 7 we carefully examine individual molecules within their cellular and anatomical context or do we extract 8 transcript or protein en masse to perform large-scale unbiased transcriptomic or proteomic analyses? In 9 rodent models, researchers have escaped this dilemma by a boon of new technology: single cell laser 10 capture, cell culture, and cell-sorting techniques can provide sufficient extract for transcriptomic and 11 proteomic analyses. However, single cell type analyses of the human brain are far more challenging (1-3)12 - live tissue is only available in the rarest of circumstances and intact single cells are difficult to 13 dissociate from post-mortem tissue without intensive procedures like laser capture microscopy. 14 Therefore, to date, the vast majority of unbiased transcriptomic analyses of the human brain have 15 been conducted using macro-dissected, cell-type heterogeneous tissue. On Gene Expression Omnibus 16 (GEO) alone, there are at least 63^{*} publicly-available macro-dissected post-mortem human brain tissue datasets, and many others are available to researchers via privately-funded portals (Stanley Medical 17 18 Research Institute, Allen Brain Atlas, CommonMind Consortium). These datasets have provided us with 19 novel hypotheses (e.g., (4,5)), but often a relatively small number of candidate molecules survive analysis 20 despite careful sample collection, and interpreting molecular results in isolation from their respective 21 cellular context can be exceedingly difficult. At the core of this issue is the inability to differentiate 22 between (1) alterations in gene expression that reflect an overall disturbance in the relative ratio of the 23 different cell types comprising the tissue sample, and (2) intrinsic dysregulation of one or more cell types, 24 indicating perturbed biological function.

^{*} As of 9-14-2017

Running Head: PREDICTING CELL TYPE BALANCE

25 In this manuscript, we present results from an easily accessible solution to this problem that 26 allows researchers to statistically estimate the relative number or transcriptional activity of particular cell 27 types in macro-dissected human brain transcriptomic data by tracking the collective rise and fall of 28 previously identified cell type specific transcripts. Similar techniques have been used to successfully 29 predict cell type content in human blood samples (6-9), as well as diseased and aged brain samples (10-30 12). Our method was specifically designed for application to large, highly-normalized human brain 31 transcriptional profiling datasets, such as those commonly used by neuroscientific research bodies such as 32 the Pritzker Neuropsychiatric Research Consortium and the Allen Brain Institute.

33 We took advantage of a series of newly available data sources depicting the transcriptome of 34 known cell types, and applied them to infer the relative balance of cell types in our tissue samples. We 35 draw from seven large studies detailing cell-type specific gene expression in a wide variety of cells in the 36 forebrain and cortex (2,13–18). Our analyses include all major categories of cortical cell types (17). 37 including two overarching categories of neurons that have been implicated in psychiatric illness (19): 38 projection neurons, which are large, pyramidal, and predominantly excitatory, and interneurons, which 39 are small and predominantly inhibitory (20). These are accompanied by three prevalent forms of glia that 40 make up the majority of cells in the brain: oligodendrocytes, which provide the insulating myelin sheath 41 for axons (21), astrocytes, which help create the blood-brain barrier and provide structural and metabolic 42 support for neurons (21), and microglia, which serve as the brain's resident macrophages and provide an 43 active immune response (21). We also incorporate vascular cell types: endothelial cells, which line the 44 interior surface of blood vessels, and mural cells (smooth muscle cells and pericytes), which regulate 45 blood flow (22). We included progenitor cells because they are widely implicated in the pathogenesis of 46 mood disorders (23). Within the cortex, these cells mostly take the form of immature oligodendrocytes 47 (17). Finally, the primary cells found in blood, erythrocytes or red blood cells (RBCs), carry essential 48 oxygen throughout the brain. These cells lack a cell nucleus and do not generate new RNA, but still 49 contain an existing, highly-specialized transcriptome (24). The relative presence of these cells could

Running Head: PREDICTING CELL TYPE BALANCE

arguably represent overall blood flow, the functional marker of regional neural activity traditionally usedin human imaging studies.

52 To characterize the balance of these cell types in psychiatric samples, we first demonstrate that our 53 method of summarizing cell type specific gene expression into a single metric ("cell type index") can 54 reliably predict relative cell type balance in a variety of validation datasets. Then we discover that the 55 predicted cell type balance of samples can explain a large percentage of the variation in macro-dissected 56 human brain microarray and RNA-Seq datasets. This variability is driven by pre- and post-mortem 57 subject variables, such as age, aerobic environment, and large scale blood loss, in addition to dissection. 58 Finally, we demonstrate that our method enhances our ability to discover and interpret psychiatric effects 59 in human transcriptomic datasets, uncovering previously-documented changes in cell type balance in 60 relationship to Major Depressive Disorder and Schizophrenia and potentially increasing our sensitivity to 61 detect genes with previously-identified relationships to Bipolar Disorder and Schizophrenia in datasets 62 that contain samples with highly-variable cell content.

63

64 2. Methods

65

66 2.1 Compiling a Database of Cell Type Specific Transcripts

67 To perform this analysis, we compiled a database of several thousand transcripts that were 68 specifically-enriched in one of nine primary brain cell types within seven published single-cell or purified 69 cell type transcriptomic experiments using mammalian brain tissues (2,13-18). These primary brain cell 70 types included six types of support cells: astrocytes, endothelial cells, mural cells, microglia, immature 71 and mature oligodendrocytes, as well as two broad categories of neurons (interneurons and projection 72 neurons). We also included a category for neurons that were extracted without purification by subtype 73 ("neuron all"). The experimental and statistical methods for determining whether a transcript was 74 enriched in a particular cell type varied by publication (**Table 1**), and included both RNA-Seq and

Running Head: PREDICTING CELL TYPE BALANCE

75	microarray datasets. We focused on cell-type specific transcripts identified using cortical or forebrain
76	samples because the data available for these brain regions was more plentiful than for the deep nuclei or
77	the cerebellum. In addition, we artificially generated a list of 17 transcripts specific to erythrocytes by
78	searching Gene Card for erythrocyte and hemoglobin-related genes (<u>http://www.genecards.org/)</u> .
79	In all, we curated gene expression signatures for 10 cell types expected to account for most of the
80	cells in the cortex. Our final database included 2499 unique human-derived or orthologous (as predicted
81	by HCOP using 11 available databases: <u>http://www.genenames.org/cgi-bin/hcop)</u> transcripts, with a focus
82	on coding varieties. We have made this database publicly available within Suppl. Table 1. An updateable
83	version is also accessible within our R package (https://github.com/hagenaue/BrainInABlender) and as a
84	downloadable spreadsheet (https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-
05	

85 <u>type-analysis</u>).

Running Head: PREDICTING CELL TYPE BALANCE

Citation	Subjects	Tissue	Purification Method	Platform	Stringency	Derived Cortical Cell Type Indices	Transcripts/ Orthologs
Cahoy et al.,	Young	Forebrain	Fluorescent cell	Affymetrix	>20 Fold		
J Neuro,	transgenic		sorting using	microarray	Enrichment	Astrocyte_All	73
2008.	mice		antibodies to deplete			Neuron All	80
			non-specific cell types			Oligodendrocyte_All	50
Zhang et al.,	Young	Cortex	Fluorescent cell	RNA-Seq	Top 40 transcripts	Astrocyte All	40
J Neuro ,	transgenic		sorting using		with >20 Fold	Endothelial All	40
2014	mice		antibodies to deplete		Enrichment	Microglia All	40
			non-specific cell types			Mural Pericyte	40
						Neuron All	40
						Oligodendrocyte Myelinating	40
						Oligodendrocyte Newly-Formed	39
						Oligodendrocyte_Newly-Pormed	40
Zeisel et al.,	luu en ile	C	Unbineed continue of		Enriched with	0 1 2 0	240
	Juvenile	Somatosensory cortex	Unbiased capture of	RNA-Seq		Astrocyte_All	
Science,	mice	and CA1 hippocampus	single cells from		99.9% posterior	Endothelial_All	353
2015			whole tissue cell		probability	Microglia_All	436
			suspension			Mural_All	155
						Neuron_Interneuron	365
						Neuron_Pyramidal_Cortical	294
						Oligodendrocyte_All	453
Darmanis et	Adult	Anterior temporal lobe	Unbiased capture of	RNA-Seq	"Top 20" enriched	Astrocyte_All	21
al., PNAS,	human		single cells from		transcripts	Endothelial_All	21
2015	epileptic		whole tissue cell			Microglia_All	21
	patients		suspension			Neuron_All	21
						Oligodendrocyte_Mature	21
						Oligodendrocyte_Progenitor Cell	21
Doyle et al.,	Young	Cortex, striatum,	Capture of translated	Affymetrix	Top 25 enriched	Astrocyte All	25
<i>Cell,</i> 2008	transgenic	cerebellum, spinal cord,	mRNA from specific	microarray	transcripts	Neuron CorticoSpinal	25
	mice	basal forebrain, and	cell types labeled in		determined by	Neuron CorticoStriatal	25
		brain stem	transgenic mice using		iterative rank	Neuron CorticoThalamic	25
			translating ribosome		comparisons	Neuron Interneuron CORT	25
			affinity purification			Neuron Neuron CCK	25
			(TRAP)			Neuron Neuron PNOC	24
						Oligodendrocyte All	25
						Oligodendrocyte Mature	25
Daneman et	Young	Cortex	Fluorescent cell	Affymetrix	>20 Fold		
al., PLOS,	transgenic	Contex	sorting using	microarray	enrichment for		
2010	mice		antibodies to deplete		endothelial, >8	E date tot All	10
2010	mee		non-specific cell types		fold enrichment	Endothelial_All	49
			non specific cell types		for vasculature		
						Mural_Vascular	50
Sugino et al.,	Transgenic	Cingulate and	Hand-sorting	Affymetrix	Enriched with p<		
Nature	mice	somatosensory	fluorescently-labeled	microarray	1.5E-11		
Neuro, 2006		cortices, basolateral	cells followed by				
		amygdala, CA1-CA3	amplification			Neuron_GABA	32
		hippocampus, and					
		dorsal LGN of the				Neuron_Glutamate	67
Gene card	Human	Human	Erythrocyte-related	Unknown	Unknown		
			genes			RBC All	17

86

87 **Table 1.** Thousands of transcripts have been identified as specifically-enriched in particular cortical

88 *cell types within published single-cell or purified cell type transcriptomic experiments. The*

- 89 experimental and statistical methods for determining whether a transcript was enriched in a cell type
- 90 varied by publication, and included both RNA-Seq and microarray datasets.

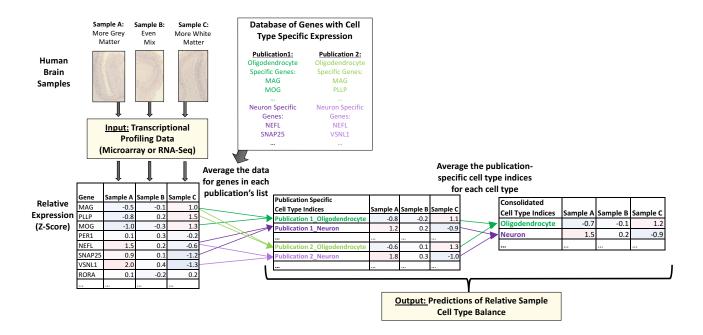
Running Head: PREDICTING CELL TYPE BALANCE

92 2.2 "BrainInABlender": Employing the Database of Cell Type Specific Transcripts to Predict

93 Relative Cell Type Balance in Heterogenous Brain Samples

Next, we designed a method that uses the collective expression of cell type specific transcripts in brain tissue samples to predict the relative cell type balance of the samples ("BrainInABlender"). We specifically designed BrainInABlender to be compatible with large human brain transcriptional profiling datasets such as those used by our research consortium (Pritzker) and the Allen Brain Institute, which may lack full information about relative levels of expression within individual samples due to the extensive normalization procedures used to combine data across batches or platforms. We have made our method publicly-available in the form of a downloadable R package

101 (https://github.com/hagenaue/BrainInABlender).


102 In brief, BrainInABlender extracts the data from transcriptional profiling datasets that represent 103 genes identified in our database as having cell type specific expression in the brain (as curated by official 104 gene symbol). Prior to application of our method, the dataset should be in the format of expression-level 105 summary data (RNA-Seq: gene-level summary - CPM, RPKM or TPM; microarray: probe or probeset 106 summary), and should have received at least some basic preprocessing, including log(2) transformation, 107 normalization to eliminate technical variation, and standard quality control. Within BrainInABlender, 108 these data are then centered and scaled across samples (mean=0, sd=1) to prevent transcripts with more 109 variable signal from exerting disproportionate influence on the results. Then, if necessary, the normalized 110 data from all transcripts representing the same gene are averaged for each sample and re-scaled. Finally, 111 for each sample, these values are averaged across the genes identified as having expression specific to a 112 particular cell type for each reference publication included in the database of cell type specific transcripts. 113 This creates 38 cell type signatures derived from the cell type specific genes identified by the eight 114 publications ("Cell Type Indices"), each of which predicts the relative content for one of the 10 primary 115 cell types in our brain samples (Figure 1).

Later, during validation analyses (*Suppl. Section 7.2*), we found substantial support for simply
averaging these 38 publication-specific cell type indices within each of the primary categories to produce

Running Head: PREDICTING CELL TYPE BALANCE

ten consolidated primary cell-type indices for each sample. To perform this consolidation, we also

- removed any transcripts that were identified as "cell type specific" to multiple primary cell type
- 120 categories (**Suppl. Figure 3**). These consolidated indices are included as output from BrainInABlender.
- 121 Please note that our method was specifically designed to tackle challenges present in our
- 122 microarray data, but we later discovered that it bears some resemblance to the existing method of
- 123 Population Specific Expression Analysis (PSEA, (10–12)). A more detailed discussion of the similarities
- 124 and differences between the techniques can be found in *Suppl. Section 7.2.2*.
- 125

- 126 Figure 1. Predicting the relative cell type balance in human brain samples using genes previously-
- 127 *identified as having cell type specific expression*. Within macro-dissected brain tissue samples, variable
- 128 *cell type balance is likely to influence the pattern of gene expression. To estimate this variability, we*
- 129 extracted the data for genes that had been previously identified as having cell type specific expression in
- 130 previous publications ("Database of genes with cell type specific expression", **Table 1**) and then
- averaged across the transcripts identified as specific to a particular cell type for each reference
- 132 publication in our database to create 38 different "Cell Type Indices" that predicted relative cell content
- 133 *in each of the brain samples. Then, for many analyses in our paper, these publication-specific cell type*
- 134 *indices were averaged within their cell type category to produce consolidated cell type indices*
- 135 representing each of the 10 primary cell types in the human cortex.
- 136

Running Head: PREDICTING CELL TYPE BALANCE

137 2.3 Validation of Relative Cell Content Predictions

We initially validated our method using publicly-available datasets from purified cortical cell types (RNA-seq datasets GSE52564 and GSE6783), artificial mixtures of cells produced *in silico* by sampling from within these datasets, and microarray data from samples containing artificially-generated mixtures of cultured cells from P1 pups (Affymetrix Rat Genome 230 2.0 Array dataset GSE19380; further detail: *Suppl. Sections 7.1.1- 7.1.2*). For each of these analyses, we examined the correlation between the cell type indices outputted by BrainInABlender and the documented cell content of the samples.

145 Next, we wanted to see whether the cell content predictions produced by BrainInABlender could 146 also correctly reflect relative cell type balance in human post-mortem samples. To test this, we applied 147 our method to a large human post-mortem Agilent microarray dataset (841 samples) spanning 160 cortical 148 and subcortical brain regions from the Allen Brain Atlas (http://human.brain-map.org/microarray/search, 149 December 2015, (25)). This dataset was derived from high-quality tissue (absence of neuropathology, 150 pH>6.7, post-mortem interval<31 hrs, RIN>5.5) from 6 human subjects (26). The tissue samples were 151 collected using a mixture of block dissection and laser capture microscopy (27). After applying 152 BrainInABlender, we compared the outputted cell type index results between selected brain regions 153 known to contain relatively more (+) or less (-) of a particular cell type using Welch's t-test (further 154 detail: Suppl. Section 7.1.4).

155

156 2.4 Predicting Relative Cell Content in Transcriptomic Data from Macro-Dissected Human

157 Cortical Tissue from Psychiatric Subjects

Next, we profiled cell type specific gene expression in several large psychiatric human brain
microarray datasets. The first was a large Pritzker Consortium Affymetrix U133A microarray dataset
derived from high-quality human post-mortem dorsolateral prefrontal cortex samples (final n=157
subjects), including tissue from subjects without a psychiatric or neurological diagnosis ("Controls",
n=71), or diagnosed with Major Depressive Disorder ("MDD", n=40), Bipolar Disorder ("BP", n=24), or

163	Schizophrenia ("Schiz", n= 22). The severity and duration of physiological stress at the time of death was
164	represented by an agonal factor score for each subject (ranging from 0-4, with 4 representing severe
165	physiological stress (28,29)). We measured the pH of cerebellar tissue to indicate the extent of oxygen
166	deprivation experienced around the time of death (28,29) and calculated the interval between the
167	estimated time of death and the freezing of the brain tissue (the postmortem interval or PMI) using
168	coroner records. Our current analyses began with subject-level summary gene expression data
169	(GSE92538).
170	We determined the replicability of our results using three smaller publicly-available post-mortem
171	human cortical Affymetrix U133Plus2 microarray datasets (GSE53987 (30), GSE21935 (31), GSE21138
172	(32), Table 2.). These datasets were selected because they included both psychiatric and control samples,
173	and provided pH, PMI, age, and gender in the demographic information on the GEO website
174	(https://www.ncbi.nlm.nih.gov/geo/). To control for technical variation, the sample processing batches
175	were estimated using the microarray chip scan dates extracted from the .CEL files and RNA degradation
176	was estimated using the R package AffyRNADegradation (33).
177	Finally, we also explored replicability within the recently-released large CommonMind
178	Consortium (CMC) human dorsolateral prefrontal cortex RNA-seq dataset (34); downloaded from the
179	CommonMind Consortium Knowledge Portal (<u>https://www.synapse.org/CMC</u> ; final n=514 subjects). We
180	predicted the relative cell type content of these samples using a newer version of BrainInABlender (v2)
181	which excluded a few of the weaker cell type specific gene sets (15).
182	In general, the full preprocessing methods for these datasets can be found in <i>Suppl. Section 7.1</i> .
183	The code for all analyses in the paper can be found at <u>https://github.com/hagenaue/</u> and
184	https://github.com/aschulmann/CMC_celltype_index.

Running Head: PREDICTING CELL TYPE BALANCE

Iviicroarra	y.								
GEO Accession #	Published?	Brain Bank	Brain Region	Sample Size (no outliers)	Subjects per group (no outliers)	AVE pH (+/- SD)	AVE Age (+/- SD)	AVE PMI (+/- SD)	% Female
GSE92538	Current paper: Hagenauer (2018)	Pritzker Consortium: UC-Irvine	BA9/BA46	337 (multiple replicates/ subject)	157: 71 CNTRL, 24 BP, 40 MDD, 22 SCHIZ	6.8 (+/-0.3)	52 (+/-15)	24 (+/-9)	27%
GSE53987	Lanz et al. (2015)	PITT	BA46: grey matter	66	66: 18 CNTRL, 17 BP, 17 MDD, 14 SCHIZ	6.6 (+/-0.3)	46 (+/-10)	20 (+/-6)	45%
GSE21935	Barnes et al. (2011)	ССНРС	BA22	42	42: 19 CNTRL, 23 SCHIZ	6.3 (+/-0.3)	70 (+/-19)	8 (+/-5)	45%
GSE21138	Narayan et al. (2008)	MHRI	BA46: grey matter	54	54: 27 CNTRL, 27 SCHIZ	6.3 (+/-0.2)	45 (+/-17)	40 (+/-13)	17%

RNA-Seq:

Microarray

Public Data Release	Published?	Brain Bank	Brain Region	Sample Size (all)	Subjects per group (all)	AVE pH (+/- SD)	AVE Age (+/- SD)	AVE PMI (+/- SD)	% Female
Synapse.org	Fromer et al. (2016)	CommonMind Consortium: MSSM, PENN, PITT	BA9 / BA46 (PITT: grey matter)	621	603: 285 CNTRL, 263 SCZ, 47 BP, 8 AFF	6.5 (+/- 0.3)	65 (+/- 18) (binned 90+)	17 +/- 11	41%

185

186 Table 2. We examined the pattern of cell-type specific gene expression in five post-mortem human

187 *cortical tissue datasets that included samples from subjects with psychiatric illness. Abbreviations:*

188 CTRL: control, BP: Bipolar Disorder, MDD: Major Depressive Disorder, SCHIZ: Schizophrenia, GEO:

189 Gene Expression Omnibus, BA: Brodmann's Area, PMI: Post-mortem interval, SD: Standard Deviation,

190 Brain Banks: UC-Irvine (University of California – Irvine), PITT (University of Pittsburgh), CCHPC

191 (Charing Cross Hospital Prospective Collection), MSSM (Mount Sinai Icahn School of Medicine), MHRI

192 (Mental Health Research Institute Australia), PENN (University of Pennsylvania)

193

194 **3.5** Examining the Relationship Between Predicted Cell Content Derived from Transcriptional

195 Profiling Data and Clinical/Biological Variables

196 We next set out to observe the relationship between the predicted cell content of our samples and

a variety of medically-relevant subject variables. To perform this analysis, we first examined the

relationship between seven relevant subject variables and each of the ten consolidated cell type indices in

- the Pritzker prefrontal cortex dataset using a linear regression model that allowed us to simultaneously
- 200 control for other likely confounding variables:
- 201 Equation 1:
- 202 Cell Type Index= $\beta 0 + \beta 1^*$ (Brain pH)+ $\beta 2^*$ (Agonal Factor)

203 $+\beta 3^{*}(PMI)+\beta 4^{*}(Age)+\beta 5^{*}(Sex)+\beta 6^{*}(Diagnosis)+\beta 7^{*}(Exsanguination)+\epsilon$

204	We then examined the replicability of these relationships using data from the three smaller
205	publicly-available human post-mortem microarray datasets (GSE53987, GSE21935, GSE21138). For
206	these datasets, we initially lacked detailed information about manner of death (agonal factor and
207	exsanguination), but were able to control for technical variation within the model using statistical
208	estimates of RNA degradation and batch (scan date):
209	Equation 2:
210 211	Cell Type Index= $\beta 0 + \beta 1^{*}(Brain pH) + \beta 2^{*}(PMI) + \beta 3^{*}(Age) + \beta 4^{*}(Sex) + \beta 5^{*}(Diagnosis) + \beta 6^{*}(RNA Degradation) + \beta 7^{*}(Batch, when applicable) + \varepsilon$
212	We evaluated replicability by performing a meta-analysis for each variable and cell type combination
213	across the four microarray datasets. To do this, we applied random effects modeling to the respective
214	betas and accompanying sampling variance derived from each dataset using the <i>rma.mv()</i> function within
215	the metafor package (35). P-values were corrected for multiple comparisons following the Benjamini-
216	Hochberg method (FDR or q-value; (36)).
217	Finally, we characterized these relationships in the large CMC RNA-seq dataset. For this dataset, we
218	had some information about manner of death but lacked knowledge of agonal factor or exsanguination.
219	We controlled for technical variation due to dissection site (institution) and RNA degradation (RIN):
220	Equation 3:
221 222 223	Cell Type Index= $\beta 0 + \beta 1^{*}(Brain pH) + \beta 2^{*}(PMI) + \beta 3^{*}(Age) + \beta 4^{*}(Sex) + \beta 5^{*}(Diagnosis) + \beta 6^{*}(RNA Degradation) + \beta 7^{*}(Institution) + \beta 8^{*}(MannerOfDeath) + \varepsilon$
224	3.6 Characterizing Psychiatric Gene Expression using Differential Expression Models that Include
225	Either Standard Co-variates or Cell Type Indices
226	To determine whether controlling for variability in cell type balance in the dataset could improve our
227	ability to detect differential expression related to psychiatric illness, we compared differential expression
228	results within the human psychiatric datasets that were derived from linear regression models of
229	increasing complexity, including a simple base model containing just the variable of interest ("Model 1"),
230	a standard model controlling for traditional co-variates ("Model 2"), and a model controlling for

Running Head: PREDICTING CELL TYPE BALANCE

- traditional co-variates as well as each of the cell type indices ("Model 5"). We also used two reduced
- 232 models that only included the most prevalent cell types (Astrocyte, Microglia, Oligodendrocyte,
- 233 Neuron_Interneuron, Neuron_Projection; (21)) to avoid issues with multicollinearity. The first of these
- models included traditional co-variates ("Model 4"), whereas the second model excluded them ("Model
- 235 3") (Equation 4).

236 Equation 4: A model of gene expression for each dataset, colored to illustrate the subcomponents

evaluated during our model comparison (#M1-M5). The base model (intercept and variable of interest)
is presented in green, traditional subject variable covariates are blue, the cell type indices for the most
prevalent cell types are red, and the remaining cell type indices are purple. Model components unique to
each dataset are underlined.

- 241 The Pritzker microarray dataset:
- 242 Gene Expression (Probeset Signal) =
- 243 $\beta 0 + \beta 1^*$ (The variable of interest: Diagnosis)
- 244 $+\beta 2^*(Brain pH) + \beta 3^*(PMI) + \beta 4^*(Age) + \beta 5^*(Sex) + \beta 6^*(Agonal Factor) +$
- 245 + β 7*(Astrocyte)+ β 8*(Oligodendrocyte)+ β 9*(Microglia)+ β 10*(Interneuron)+ β 11*(ProjectionNeuron)
- 246 $+\beta 12^{(Endothelial)}+\beta 13^{(Neuron_All)}+\beta 14^{(Oligodendrocyte_Immature)}+\beta 15^{(Mural)}+\beta 16^{(RBC)}+\epsilon$
- 247 The CMC RNA-Seq dataset:
- 248 Gene Expression (Probeset Signal) =
- 249 $\beta 0 + \beta 1^*$ (The variable of interest: Diagnosis)
- $250 +\beta 2*(Brain pH)+\beta 3*(PMI)+\beta 4*(Age)+\beta 5*(Sex)+\beta 6*(\underline{RIN})+\beta 7*(\underline{Institution})+\beta 8*(\underline{CauseOfDeath})+\beta 6*(\underline{RIN})+\beta 6*(\underline{RIN})+\beta 7*(\underline{Institution})+\beta 8*(\underline{CauseOfDeath})+\beta 6*(\underline{RIN})+\beta 6*(\underline{RIN$
- $251 + \beta 9*(Astrocyte) + \beta 10*(Oligodendrocyte) + \beta 11*(Microglia) + \beta 12*(Interneuron) + \beta 13*(ProjectionNeuron)$
- 252 + β 14*(Endothelial)+ β 15*(Neuron_All)+ β 16*(Oligodendrocyte_Immature)+ β 17*(Mural)+ β 18*(RBC)+ ϵ
- 253
- 254 The smaller microarray datasets (GSE53987, GSE21935, GSE21138):
- 255 Gene Expression (Probeset Signal) =
- **256** $\beta 0 + \beta 1^*$ (The variable of interest: Diagnosis)
- 257 $+\beta 2^{*}(Brain pH)+\beta 3^{*}(PMI)+\beta 4^{*}(Age)+\beta 5^{*}(Sex)+\beta 6^{*}(\underline{RNADegradation})+$
- 258 + β 7*(Astrocyte)+ β 8*(Oligodendrocyte)+ β 9*(Microglia)+ β 10*(Interneuron)+ β 11*(ProjectionNeuron)
- 259 $+\beta 12^{(Endothelial)}+\beta 13^{(Neuron_All)}+\beta 14^{(Oligodendrocyte_Immature)}+\beta 15^{(Mural)}+\beta 16^{(RBC)}+\epsilon$
- 260

261 **3.7** Functional Ontology with Cell Type Specific Gene Sets

- We ran a series of analyses to evaluate how well we could distinguish between changes in cell type
- balance in the tissue and changes in cell type specific functions. First, as a case study, we specifically
- examined the relationship between age and the functional annotation for genes found in the Neuron_All
- index in more depth. To do this, we evaluated the relationship between age and gene expression in the
- 266 Pritzker dataset using a standard model that controlled for traditional confounds ("Model 2") using the

Running Head: PREDICTING CELL TYPE BALANCE

267	signal data for all probesets in the dataset. We used "DAVID: Functional Annotation Tool"
268	(//david.ncifcrf.gov/summary.jsp, (37,38) to identify the functional clusters that were overrepresented by
269	the genes included in our neuronal cell type index (using the full HT-U133A chip as background), and
270	then determined the average effect of age (beta) for the genes included in each of the 240 functional
271	clusters. These functional clusters overrepresented dendritic/axonal related functions, so for a follow-up
272	analysis, in a manner that was blind to the results, we subsetted the results into 29 functional clusters that
273	were clearly related to dendritic/axonal functions and 41 functional clusters that seemed distinctly
274	unrelated to dendritic/axonal functions (Suppl. Table 4) and compared the average effect of age in these
275	two subsets using a Welch's t-test.
276	In the next analysis, we decided to make the process of differentiating between altered cell type-
277	specific functions and relative cell type balance more efficient. We used our cell type specific gene lists to
278	construct gene sets in a file format (.gmt) compatible with the popular tool Gene Set Enrichment Analysis
279	(GSEA, (39,40)) and combined them with two other commonly-used gene set collections from the
280	molecular signatures database (MSigDB: http://software.broadinstitute.org/gsea/msigdb/index.jsp,
281	downloaded 09/2017, "C2: Curated Gene Sets" and "C5: GO Gene Sets", Suppl. Table 5). Then we
282	tested the utility of incorporating our new gene sets into GSEA (fGSEA: (41)) using the ranked results
283	(betas) for the relationship between each subject variable and each probeset in the Pritzker dataset (as
284	evaluated using a standard model: "Model 2").
285	

286 3. Results & Discussion

287

288 **3.1 Validation of Relative Cell Content Predictions**

289 *Validation Using Datasets Derived from Purified or Cultured Cells:* We initially validated our

- 290 method using publicly-available datasets from purified cell types (datasets GSE52564 and GSE6783;
- 291 (2,18) and *in silico* derived mixtures and found that the statistical cell type indices easily predicted the cell

292	type identities of the samples (Suppl. Section 7.2.10). Therefore, as further validation, we determined
293	whether relative cell type balance could be accurately deciphered from microarray data for samples
294	containing artificially-generated mixtures of cultured cells (GSE19380; (12)). We found that the
295	consolidated cell type indices produced by BrainInABlender strongly correlated with the actual
296	percentage of cells of a particular type included in the artificial mixtures (Figure 2, Neuron% vs.
297	Neuron_All Index: R ² =0.93, p=1.54e-15, Astrocyte% vs. Astrocyte Index: R ² =0.77, p=5.05e-09,
298	Microglia% vs. Microglia Index: R ² =0.64, p=8.2e-07), although we found that the cell type index for
299	immature oligodendrocytes better predicted the percentage of cultured oligodendrocytes in the samples
300	than the cell type index for mature oligodendrocytes (Mature: R ² =0.45, p=0.000179, Immature: R ² =0.81,
301	p=4.14e-10). We believe this discrepancy is likely to reflect the specific cell culture conditions used in the
302	original admixture experiment. Notably, the relationship between the consolidated cell type indices and
303	the actual percentage of each cell type included in the artificial mixtures was approximately linear, despite
304	the use of log(2)-transformed expression data.

Running Head: PREDICTING CELL TYPE BALANCE

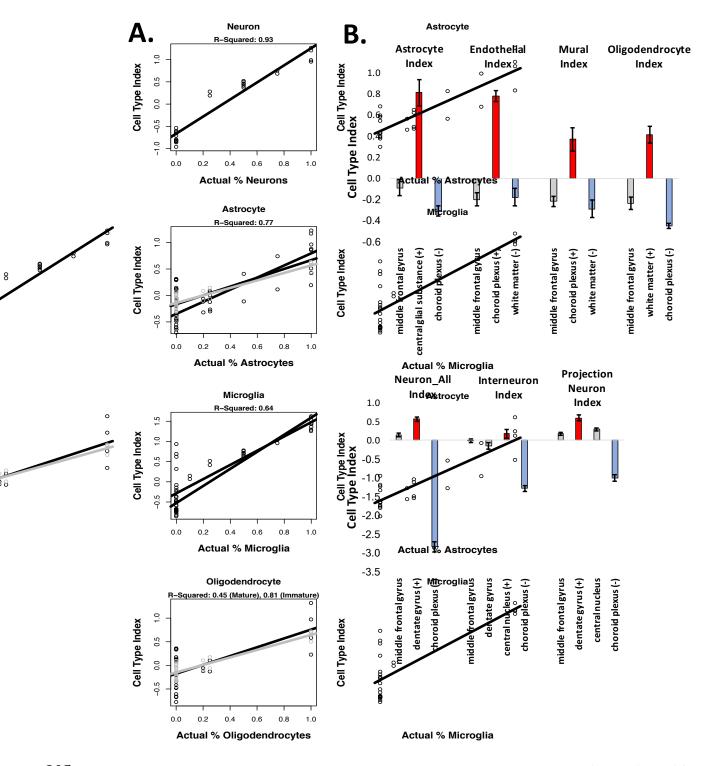


Figure 2. Validation of Relative Cell Content Predictions. A) Using a microarray dataset derived from
samples that contained artificially-generated mixtures of cultured cells (GSE19380; (12)), we found that
our relative cell content predictions ("cell type indices") closely reflected actual known content.
However, note that the numeric values for the cell type indices do not convey an absolute proportion of

308 However, note that the numeric values for the cell type indices do not convey an absolute proportion of 309 cells of a particular type in the sample - simply whether a sample contains relatively more or less of the

310 cell type of interest in comparison to other samples in the dataset. B) Our cell type indices also easily

Running Head: PREDICTING CELL TYPE BALANCE

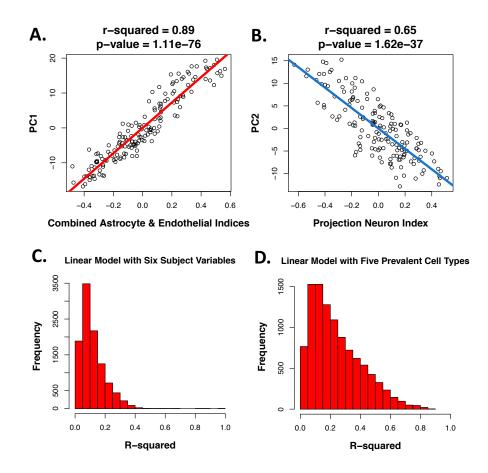
311 differentiated human post-mortem samples derived from brain regions that are known to contain

312relatively more (+, red) or less (-, blue) of the targeted cell type of interest (all p < 0.007). Results from the313middle frontal gyrus are included for comparison, since the rest of the paper primarily focuses on

- 314 prefrontal cortical data. (Bars: average +/-SE).
- 315

316 Validation Using a Dataset Derived from Human Post-Mortem Tissue: Next, we wanted to see 317 whether the cell content predictions produced by BrainInABlender correctly reflected relative cell type 318 balance in human post-mortem samples. To test this, we applied our method to a large cross-regional 319 human post-mortem microarray dataset (25), and extracted the results for a selection of brain regions that 320 are known to contain relatively more (+) or less (-) of particular cell types (the results for other regions 321 can be found in **Suppl. Table 2**). The results clearly indicated that our cell type analyses could identify 322 well-established differences in cell type balance across brain regions (Figure 2, (+) region vs. (-) region 323 for all cell types: p < 0.007, Cohen's d > 3.2). The choroid plexus had elevated gene expression specific to 324 vasculature (endothelial cells, mural cells, (42)). The corpus callosum and cingulum bundle showed an 325 enrichment of oligodendrocyte-specific gene expression (42). The central glial substance was enriched 326 with gene expression specific to glia and support cells, especially astrocytes. The dentate gyrus, which 327 contains densely-packed glutamatergic granule cells (43), was enriched for gene expression specific to 328 projection neurons. The highly GABA-ergic central nucleus of the amygdala (44) had a slight enrichment 329 of gene expression specific to interneurons. These results provide fundamental validation that our 330 methodology can accurately predict relative cell type balance in human post-mortem samples. Moreover, 331 these results suggest that the cell type indices are capable of generally tracking their respective cell types 332 in subcortical structures, despite the dependency of our method on cell type specific gene lists derived 333 from the forebrain and cortex.

Running Head: PREDICTING CELL TYPE BALANCE


335 **3.8** Inferred Cell Type Composition Explains a Large Percentage of the Sample-Sample Variability

336 in Transcriptomic Data from Macro-Dissected Human Cortical Tissue

337 Using principal components analysis we found that the primary gradients of gene expression 338 variation across samples in all four of the cortical transcriptomic datasets strongly correlated with our 339 estimates of cell type balance. For example, while analyzing the Pritzker microarray dataset, we found 340 that the first principal component (PC1), which encompassed 23% of the variation in gene expression 341 across samples in the dataset, spanned from samples with high predicted support cell content to samples 342 with high predicted neuronal content. Therefore, a large percentage of the variation in PC1 (91%) was 343 accounted for by an average of the astrocyte and endothelial indices (p=2.2e-82, with a respective R^2 of 0.80 and 0.75 for each index analyzed separately) or by the general neuron index (p=6.3e-32, $R^2=0.59$). 344 345 The second notable gradient in the dataset (PC2) encompassed 12% of the variation overall, and spanned 346 samples with high predicted projection neuron content to samples with high predicted oligodendrocyte 347 content (with a respective R^2 of 0.62 and 0.42, and p-values of p=8.5e-35 and p=8.7e-20). 348 To confirm that the strong relationship between the top principal components of variation and our 349 cell type indices did not originate artificially due to cell type specific genes representing a large 350 percentage of the most highly variable transcripts in the dataset, we repeated the principal components 351 analysis after excluding all cell type specific transcripts from the dataset and still found these strong correlations (Figure 3: PC1 vs. average astrocyte/endothelial index: R²=0.89, p=1.1e-76; PC2 vs. 352 353 projection neuron index: R²=0.65, p=1.6e-37). Indeed, individual cell type indices still better accounted 354 for the main principal components of variation in the microarray data than all other major subject variables combined (pH, Agonal Factor, PMI, Age, Gender, Diagnosis; PC1: R²=0.416, PC2: R²=0.203). 355 356 Similarly, when examining the data for individual probesets, a linear model that included just the six 357 subject variables (Equation 4) accounted for an average of only 12% of the variation (\mathbb{R}^2 , 358 Adj. R^2 =0.0692), whereas a linear model including the astrocyte and projection neuron indices alone accounted for 17% (R², Adj.R²=0.156) and a linear model including all 10 cell types accounted for an 359 360 average of 30% (R², Adj.R²=0.255), almost one third of the variation present in the data for any particular

Running Head: PREDICTING CELL TYPE BALANCE

- 361 probeset. Therefore, a large percentage of the genes in our dataset seemed to be preferentially expressed
- in relationship to particular cell types, even if their expression was not defined as strictly cell type specific
- in our database.

364

365 Figure 3. Cell content predictions explain a large percentage of the variability in microarray data 366 derived from the human cortex. As an example, within the Pritzker dataset, even after excluding all data 367 from genes identified as cell type specific in our database. A) the first principal component of variation 368 (PC1) was strongly correlated with predicted "support cell" content in the samples (the average of the 369 astrocyte and endothelial indices). **B)** PC2 was strongly correlated with predicted projection neuron 370 content. Likewise, when applying a linear model to the data for each probeset, the R^2 values for each 371 probeset (illustrated in the histogram) tended to be much smaller when using a model that included C) 372 only the six subject variables, versus D) only the five most prevelant cortical cell types.

373

```
Within the other four human cortical tissue datasets, the relationships between the top principal
components of variation and the consolidated cell type indices were similarly strong (Suppl. Section 3.8),
despite the fact that these datasets had received less preprocessing to remove the effects of technical
```

377 variation. These results indicated that accounting for cell type balance is important for the interpretation

Running Head: PREDICTING CELL TYPE BALANCE

378 of post-mortem human brain transcriptomic data and might improve the signal-to-noise ratio in analyses

aimed at identifying psychiatric risk genes.

380 **3.9** Cell Content Predictions Derived from Transcriptional Profiling Data Match Known

381 Relationships Between Clinical/Biological Variables and Brain Tissue Cell Content

We next set out to observe the relationship between the predicted cell content of our samples and a

383 variety of medically-relevant subject variables. This analysis uncovered many relationships that had been

384 previously-identified using other paradigms or animal models (Figure 4, Suppl. Table 3).

385 *Dissection:* First, as a proof of principle, we were able to clearly observe dissection differences

386 between institutions within the large CMC RNA-Seq dataset, with samples from University of Pittsburgh

387 having a predicted relative cell type balance that closely matched what would be expected due to their

gray matter only dissection method (Oligodendrocyte: $\beta = -0.404$, p=2.42e-11; Microglia: $\beta = -0.274$,

389 p=3.06e-05; Neuron_Interneuron: β =0.0916, p=0.0161; Neuron_Projection: β =0.145, p=2.31e-05; Mural:

 β =0.170, p=2.14e-08; Endothelial: β=0.200, p=1.12e-05). In contrast, samples from University of

391 Pennsylvania were associated with lower predicted cell content related to vasculature (Endothelial: β =-

392 0.255, p=4.01-04; Mural: β =-0.168, p=4.59e-04; Astrocyte: β =-0.189, p=7.47e-03).

393 *Manner of Death:* Predicted cell type content was also closely related to manner of death. Within the

394 Pritzker dataset we found that subjects who died in a manner that involved exsanguination had a notably

low red blood cell index (β =-0.398; p=0.00056). Later, we were able replicate this result within

396 GSE21138 using data from 5 subjects who were also likely to have died in a manner involving

397 exsanguination (β =-0.516, p=0.052**trend*, manner of death reported in suppl. in (32)).

398 The presence of prolonged hypoxia around the time of death, as indicated by either low brain pH or

399 high agonal factor score within the Pritzker dataset, was associated with a large increase in the endothelial

400 cell index (Agonal Factor: β =0.118 p=2.85e-07; Brain pH: β =-0.210, p=0.0003) and astrocyte index

401 (Brain pH: β =-0.437, p=2.26e-07; Agonal Factor: β =0.071, p=0.024), matching previous demonstrations

402 of cerebral angiogenesis, endothelial and astrocyte activation and proliferation in low oxygen

Running Head: PREDICTING CELL TYPE BALANCE

- 403 environments (45). Smaller increases were also seen in the mural index (Mural vs. Agonal Factor: β =
- 404 0.0493, p=0.0286). In contrast, prolonged hypoxia was associated with a clear decrease in all of the
- 405 neuronal indices (Neuron_All vs. Agonal Factor: β =-0.242, p=3.58e-09; Neuron_All vs. Brain pH:
- 406 β =0.334, p=0.000982; Neuron_Interneuron vs. Agonal Factor: β =-0.078, p=4.13e-05;
- 407 Neuron_Interneuron vs. Brain pH: β =0.102, p=0.034; Neuron_Projection vs. Agonal Factor: β =-0.096, p=
- 408 0.000188), mirroring the notorious vulnerability of neurons to low oxygen (e.g., (46)).
- 409 These overall effects of hypoxia on predicted cell type balance replicated in the smaller human
- 410 microarray post-mortem datasets (Astrocyte vs. Brain pH (meta-analysis: b=-0.459, p=2.59e-11):
- 411 GSE21138: β=-0.856, p=0.00661, GSE53987: β=-0.461, p=0.00812, Neuron_All vs. Brain pH (meta-
- 412 analysis: b= 0.245, p=7.72e-04), Neuron_Interneuron vs. Brain pH (meta-analysis: b=0.109, p=7.89e-03):
- 413 GSE21138: β =0.381134, p=0.0277), despite lack of information about agonal factor, and partially
- 414 replicated in the CMC human RNA-Seq dataset (Neuron_Interneuron vs. Brain pH: β=0.186, p=9.81e-
- 415 05). In several datasets, we also found that prolonged hypoxia correlated with a decreased microglial
- 416 index (Microglia vs. Brain pH: GSE53987: β=0.462, p=0.00603; CMC: β=0.286, p=4.66e-04).

	A .	ndex	0.3 0.2	Gre	y Ma	tter	-	/ Disse ific Ex			s Cel	l Type	e E	B. F	xsang RBC–S	uination I Specific Ex	ressio	s n
		pel	0.2				-	_	т	I I	I	-	•		-	c	്ര	
		Coefficient for Cell Type Index	0 -0.1 -0.2 -0.3 -0.4 -0.5	I	I	T	Į	T	1				Blood Cell Index			0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₽ - - - - - - - - - - - - - - - - - - -	10-
		Coe		Oligodendrocyte	Microglia	RBC	Astrocyte	Oligodendrocyte_Immature	Neuron_All	Neuron_Interneuron Neuron Projection	Mural	Endothelial	Hed Blood	ol O.Nara		seanguinated O		
	c.	Hy End	poxia Ir lothelia Expres	ncreas I–Speo ssion	es cific		D.	Hypo Neu E	cia Dec ron–Sp xpress	crease becific sion	S	E.	Age D Interneu Exp	ecreases ron–Specifi ression		Major I Decrease	Depressive es Astrocy Expressio	Disorder te-Specific on
Endothelial Index	-0.4 -0.2 0.0 0.2 0.4 0.6	- ტ-იფა <mark>ფითი სად</mark> აფალიად ტინ	අ යන <mark>ය හි 0 0 0 0</mark> − − + ቀ	8 0 0 0 0 0 0 0 0 0 0 0	φ φ	Neuron (All) Index	-1.5 -1.0 -0.5 0.0 0.5	$\phi = \partial \partial$	≁∟			-0.4 -0.2 0.0 0.2			Astroc	-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6	- +	
		0	1 Agonal	2 Factor	3		1	0		2 3			20 40		0	Control		
		G. TI	Agonal he mc effect	Factor	ighly		plica	Ag ted	1 : onal Fa		Barnes et al. 2011	Narayan et al. 2008		eddy Meta-Analysis: FDR (q-value)	0 CMC	Controo Nominal P-value	BP MI Diagnosis CWC: FDK (d-value)	
		G. Tl <u>Hypo</u> Astro	Agonal he mc effect <u>wia:</u> ocyte vs	Factor Dost hi ts aci	ighly ross	dat	plica	Ag ted	Dritzker	ractor Lanz et al. 2015	1.1- Barnes et al.	-2.9	Meta-Analysis: Nominal P-value	Age Meta-Analysis: FDR (q-value) 5.032	CWC 2.1	CMC: Nominal P-value 3525-05	Diagnosis CWC: PDK (d-value) 9.55E-02	Replication in Microarray Meta-analysis and CMCC
		G. Tl <u>Hypo</u> Astro Neur	Agonal he mc effect <u>oxia:</u> ocyte vs on_All	Factor Dst hi ts aci s. Brair vs. Bra	ighly ross	dat	plica	Ag ted :s:	unal Fa	rotor raus et al. 2012	Barnes et al.	-2.9 1.9	Meta-Analysis: Nominal P-value 2.59E-11 7.72E-04	Age Meta-Analysis: 2.33E-09 1.16E-02	CWC CWC 0.6	Nominal P-value 250-252-02 2005-01	Diagnosis Diagnosis CWC: PDK (d-valne) P.55E-02 7.00E-01	* Replication in Microarray Meta-analysis and CMCC
		G. Tl <u>Hypo</u> Astro Neur Neur	Agonal he mc effect <u>wia:</u> ocyte vs	Factor Dost hi ts aci s. Brair vs. Bra erneur	ighly ross n pH ain pH on vs	dat	plica	Ag ted :s:	Dritzker	Ctor Fause et al. 2012 Cause et al. 2012 Cause et al. 2012	1.1- Barnes et al.	-2.9	Meta-Analysis: Nominal P-value	Age Weta-Yualysis: 2.33E-09 1.16E-02 5.52E-02	CWC 2.1	CMC: Nominal P-value 3525-05	Diagnosis CWC: PDK (d-value) 9.55E-02	* * Replication in Microarray Meta-analysis and CMCC
		G. Tl Astro Neur Micro Oligo	Agonal he mc effect wia: ocyte vs on_All on_Inte	Factor Dost hi ts aci s. Brain vs. Brain . Brain	ighly ross <u>pH</u> on vs	dat 1 . Bra	olica aset	Ag ted :s:	average on al Fair state of the second secon	Ctor Faustice al. 2015 Cause al. 201	Barnes et al.	-2.9 1.9 2.3	Meta-Analysis: Mominal P-value 2.340 2.440 2.440 2.596	Age Verter Local L	CWC CWC 0.6 3.9	CWC: Vominal P-value CMC: S205-02 0-318.0 CMC: CWC: CMC: CMC: CMC: CMC: CMC: CMC:	Diagnosis Diagnosis CWC DWC DWC 9.55E-02 7.00E-01 6.69E-04	* * * Replication in Microarray Meta-analysis and CMCC
		G. TI Astro Neur Neur Micro Oligo Age	Agonal he mc effect oxia: ocyte vs on_All on_Inte oglia vs odendro	Factor Dost hi S. Brain S. Brain S. Brain Docyte_	ighly ross <u>pH</u> ipH ipH ipH imma	dat 1 . Bra	olica aset	Ag ted :s:	average on al Fair state of the second secon	2012 -2.7 0.1 1.0 2.9 0.4	Barnes et al. -1.1 -0.5 -0.5 -0.5	-2.9 1.9 2.3 1.9	Vertice 2012 Products	Age 2.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01	2.1 0.6 3.9 3.5	CWC: Nominal 2.25E-02 3.25E-02 5.60E-01 9.81E-05 4.66E-04	Diagnosis () () () () () () () () () ()	* * * Replication in Microarray Meta-analysis and CMCC
		G. Tl <u>Hypo</u> Astro Neur Micro Oligo Age Neur Neur	Agonal he mc effect wia: con_Inte oglia vs odendro on_All o con_All o	Factor ost hi s. Brair vs. Brair s. Brain ocyte_ vs. Age	ighly ross i pH in pH imma e oon vs	dat 1 Bra nture	plica asset	Ag ted :s:	-1.9 -1.9 -3.4	STO2 E 2007 F 20	-1.1 -0.5 -0.5 -0.5 -1.2 -1.2	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5		Age iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	CWC 2.1 0.6 3.9 3.5 3.0 -4.3	Participanti Superiority Supe	Diagnosis	** ** * Replication in Microarray
		G. Tl <u>Hypo</u> Astro Neur Micro Oligo Age Neur Neur Neur	Agonal he mc effect via: cyte vs on_All t on_Inte oglia vs odendro on_All of on_Inte on_Pro	Factor Dost hi ts action s. Brain vs. Brain rocyte_ vs. Age erneur vjection	ighly ross i pH in pH imma e on vs n vs. /	dat I S. Bra I S. Age	plica asset	Ag ted :s:	-5.4 3.4 2.1 -1.0 -3.0 -3.4 -2.8	C102 2.9 2.1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	-1.1 -1.3 -0.5 -0.5 -0.1 -0.5 -1.2 -2.5 -0.5	-2.9 1.9 1.9 1.4 -1.2 -2.5 -3.1	Section 2012 - 2	Age 2.33E-09 2.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 4.83E-05	200 2.11 0.66 3.99 3.55 3.00 -4.33 -6.5 -7.5	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13	Diagnosis	** ** * Replication in Microarray
		G. TI Hypo Astro Neur Neur Neur Neur Neur Neur Neur Oligo	Agonal he mc effect wia: con_Inte oglia vs odendro on_All o con_All o	Factor Dost hi ts acc <u>s. Brain</u> <u>vs. Brain</u> <u>vs. Ageneur</u> vs. Ageneur <u>vjection</u> <u>jection</u>	ighly ross pH in pH in pH in ma e on vs. 7 rs. Ag	dat I. Bra Iture Age e	plica aset in pH vs. Br	Ag ted :s:	-5.4 -5.4 -1.0 -1.9 -3.4	STO2 - FE 32 - STO2	-1.1 -0.5 -0.5 -0.5 -1.2 -1.2	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5	2.59E-111 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.57E-03 2.91E-06 1.61E-06 2.74E-03	Age 3.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 6.56E-05 2.74E-02	CWC 2.1 0.6 3.9 3.5 3.0 -4.3	Participanti Superiority Supe	Diagnosis	* * * * * Replication in Microarray
		G. TI Astro Neur Neur Neur Neur Neur Neur Oligo Oligo Oligo Oligo	Agonal he mcc effecti xxia: ccyte vs or_All : on_Inte on_Inte on_All : ion_Inte on_All : ion_Inte on_Inte on_Inte on_Inte ion_Inte on_Inte ion_ion_ion_inte ion_inte ion_inte ion_inte	Factor post hi s. Brain vs. Brain vs. Agenemeur vs. Agenemeur	ighly ross n pH n pH n pH n vs. <i>j</i> rs. Age Imma	dat I I. Bra Iture Age e Iture	plica aset in pH vs. Br	Ag ted :s:	-5.4 -5.4 -3.4 -1.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0	STO2 'IE STO2' '	Barues -1.1 1.3 -0.5 -0.1 -0.5	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5	International and a second a	Age 34 34 34 34 34 34 34 34 34 34	20 2.1 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23	* * * * * * * * * * * * * * * * * * *
		G. TI <u>Hypoo</u> Astro Neur Neur Neur Neur Oligo Oligo Oligo Oligo Oligo	Agonal he mcc effect wia: ocyte vs ocyte vs ocyt	Factor ost hi s. Brain vs. Brain vs. Agur vs. Agur	ighly ross n pH in	dat I I. Bra Iture Age e Iture	plica aset in pH vs. Br	Ag ted :s:	-5.4 -5.4 -7.9 -3.0 -3.0 -3.0 -3.6	CTOT STOT	-1.1 -3.3 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5 -0.1 -0.5	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5	an and a second	Age iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	× 50 ×	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.25E-01 2.25E-01 3.36E-04	** ** ** ** ** ** ** ** ** ** ** ** **
		G. Tl Hypoo Astro Neur Micro Oligo Oligo Oligo PMI Oligo Endo	Agonal he mcc effecti xxia: ccyte vs or_All : on_Inte on_Inte on_All : ion_Inte on_All : ion_Inte on_Inte on_Inte on_Inte ion_Inte on_Inte ion_ion_ion_inte ion_inte ion_inte ion_inte	Factor Dost hi ts act s. Brain vs. Age erneur vs. Age vs. A	ighly ross n pH in	dat I I. Bra Iture Age e Iture	plica aset in pH vs. Br	Ag ted :s:	-5.4 -5.4 -3.4 -1.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0	STOC 2.2.7 0.1 1.0 2.9 0.4 -2.1 1.0 2.9 0.4 -2.1 1.2 -3.7 1.2 -4.7 -3.6 6 -0.8	Barues -1.1 1.3 -0.5 -0.1 -0.5	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5	International and a second a	Age 3:50 3:52E-02 3:71E-01 3:71E-01 3:71E-01 2:02E-02 6:56E-05 4:83E-05 2:74E-02 2:05E-09 4:02E-04 4:02E-04 2:36E-01	20 2.1 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23	* * * * * * * * * * * * * * * * * * *
		G. TI Astro Neur Neur Neur Neur Neur Neur Oligo Oligo Endo Micro Oligo Micro	Agonal he mcc effecti xxia: cryte vs oro_All v oro_Intec	Factor Dost hi s. Brain vs. Brain vs. Brain vs. Agg vs. Agg vs. Agg vs. Agg vs. Que vs. Que vs. Que vs. Que vs. Que vs. PMI Docyte_l	ighly ross pH in pH in pH in pH in pH in rs. pH in rs. Ag in rs. A	dat	plica aset vs. Br	Ag ted :s: rain pH	-5.4 3.4 -5.4 -1.0 -3.0 -1.9 -3.4 -3.6 -3.7 -3.6 -3.0 -2.0 -1.0 -3.5	STOC STOC Test STOC Test STOC Test STOC Test STOC Test STOC Test STOC Test STOC	-1.1 1.3 -0.5 -0.1 -0.5 -0.5 -0.3 -0.2 -1.6 0.4 -1.2 1.6	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.4	2.59E-11 7.72E-04 7.72E-04 7.72E-04 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.57E-03 2.91E-06 2.74E-03 5.98E-11 2.23E-05 5.51E-02 9.72E-02 4.81E-03	Age 3.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 4.83E-05 2.74E-02 2.69E-09 4.02E-04 2.36E-01 3.05E-01 4.33E-09	2,11 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0 -4.1 -3.9 -3.5 -0.4	3.25E-02 5.60E-01 9.81E-05 9.81E-05 9.81E-05 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 5.13E-04 6.86E-01	Diagnosis Diagnosis 9.55E-02 7.00E-01 6.69E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 8.60E-04 8.60E-04 8.60E-04 8.60E-04	* * * * * * * * * * * * * * * * * * *
		G. TI Astro Neur Neur Neur Oligo Oligo Oligo Oligo Oligo Oligo Oligo Neur Oligo Neur	Agonal he mcc effecti xxia: ccyte vs on_All i on_Intec goglia vs odendro on_Pro odendro dende	Factor Dost hi s. Brain vs. Brain vs. Brain coyte brain coyte coyte coyte v vs. Agg coyte	ighly ross pH limma e e on vs. J rs. Ag limma rs. PM li limma n vs. I	dat	plica aset vs. Br	Ag ted :s: rain pH	-5.4 3.4 -5.4 3.4 -1.0 -3.0 -3.0 -3.0 -3.4 -3.8 -3.7 -3.6 -2.0 -1.0 3.5 3.9	STOC STOC	-1.1 1.3 -0.5 -0.1 -0.5 -0.5 -0.3 -0.2 -1.6 0.4 -1.2 1.6 -0.2	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.4 -1.2	2.59E-11 7.72E-04 7.89F-03 2.91E-06 1.57E-03 2.91E-06 1.61E-06 2.74E-03 5.98E-11 2.23E-05 5.51E-02 9.72E-02 4.81E-03 2.28E-03	Age 3.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 4.83E-05 2.74E-02 2.69E-09 4.02E-04 2.36E-01 3.05E-01 4.33E-02 2.56E-02	200 2.11 0.6 3.9 3.5 3.0 -4.3 3.6 -7.5 1.6 -11.0 -4.11 -3.9 -3.5 -0.4 3.1	3.25E-02 5.60E-01 9.81E-05 2.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 5.15E-04 6.86E-01 1.97E-03	Diagnosis 9.55E-02 9.55E-02 7.00E-01 6.69E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 2.75E-03 8.04E-01 9.24E-03	** * </td
		G. TI <u>Hypo</u> Astro Neur Neur Neur Neur Oligo Oligo Oligo Oligo Oligo Oligo Oligo Nicro Oligo Nicro Neur Neur	Agonal he mcc effecti xxia: cryte vs oro_All v oro_Intec	Factor Dost hi s. Brain vs. Brain vs. Brain coyte brain coyte coyte coyte v vs. Agg coyte	ighly ross pH limma e e on vs. J rs. Ag limma rs. PM li limma n vs. I	dat	plica aset vs. Br	Ag ted :s: rain pH	-5.4 3.4 -5.4 -1.0 -3.0 -1.9 -3.4 -3.6 -3.7 -3.6 -2.0 -1.0 -2.0 -1.0 -3.5	STOC STOC	-1.1 1.3 -0.5 -0.1 -0.5 -0.5 -0.3 -0.2 -1.6 0.4 -1.2 1.6	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.4	2.59E-11 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.57E-03 2.91E-06 1.61E-06 2.74E-03 5.98E-11 2.23E-05 5.51E-02 2.53E-02 9.72E-02 4.81E-03 2.28E-03	Age 3.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 4.83E-05 2.74E-02 2.69E-09 4.02E-04 2.36E-01 3.05E-01 4.33E-02 2.56E-02	2,11 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0 -4.1 -3.9 -3.5 -0.4	3.25E-02 5.60E-01 9.81E-05 9.81E-05 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 5.15E-04 6.86E-01 1.97E-03	Diagnosis Diagnosis 9.55E-02 7.00E-01 6.69E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 8.60E-04 8.60E-04 8.60E-04 8.60E-04	** * </td
		G. TI Neur Neur Neur Oligo Oligo Oligo Digo PMI Oligo Coligo Astro Digo Astro Digo Astro	Agonal he mcc effect xia: corte vs con_All : con_Inte con Inte con_Inte con Inte con	Factor Dost hi ts acl . Brain vs. Age erneur . Brain ocyte v vs. Age erneur jection ocyte v vs. Age vs. Age erneur jection ocyte v vs. PMI . PMI . Dryte_l . SPMI . S	ighly ross n pH ain pH on vs n vs. i Imma e rs. PM II Imma rvs. 1 I Imma n vs. 1 I I I I I I I I I I I I I I I I I I I	dat	olica iaset vs. Br	Ag ted :s: rain pH	-5.4 3.4 2.1 -1.9 -3.4 -2.8 1.8 -3.7 -3.6 -2.0 -1.0 3.5 3.9 2.5 -2.6	-2.7 1.00 -2.7 0.1 1.00 2.9 0.4 -2.1 -0.5 -3.7 1.2 -3.6 -0.8 -1.5 1.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	-1.1 1.3 -0.5 -0.1 -0.5 -0.5 0.3 -0.2 -1.6 0.4 -1.2 1.6 -0.2	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.4 -1.2	2.59E-11 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.40E-01 1.57E-03 2.91E-06 1.61E-06 2.74E-03 5.98E-11 2.23E-05 5.51E-02 9.72E-02 4.81E-03 2.28E-03 1.74E-02 5.88E-03	Age 34 2.33E-09 1.16E-02 5.52E-02 7.91E-01 3.71E-01 2.02E-02 6.56E-05 4.83E-05 2.74E-02 2.66E-09 4.02E-04 2.36E-01 3.05E-01 4.33E-02 2.56E-02 9.81E-02 4.81E-02	2.1 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0 -4.1 -3.9 -3.5 -0.4 3.1 2.6	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 6.86E-01 1.97E-03 1.10E-02	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 2.76E-03 8.04E-01 9.24E-03 3.88E-02	* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
		G. TI Hypo Astro Oligo Age Neur Neur Neur Oligo Oligo Digo Micro Oligo Neur Neur Digo Astro Neur	Agonal he mc effecti xxia: ccyte vs on_All + con_intec on intec on	Factor Dost hi s. Brain vs. Brain vs. Age erneur vs. Age erneur vs. Age vs. Age vs. Age vs. Age vs. Age vs. Age vs. Stational vs. Brain Doyte	ighly ross pH imma e on vs. j pH imma e rs. Ag imma rs. Ag imma rs. PM i i i i i i i i i i i i i i i i i i i	dat dat dat dat dat dat dat dat	olica iaset vs. Br	Ag ted :s: rain pH	-5.4 3.4 -5.4 -1.0 -3.0 -1.9 -3.4 -2.8 1.8 -3.7 -3.6 -2.0 -1.0 3.5 3.9 2.5 -2.6 -0.9	Correction S100 rest to 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-1.1 1.3 -0.5 -0.5 -0.5 -0.5 -0.5 0.3 -0.2 -1.6 0.4 -1.2 -1.6 0.4 -1.2 -0.5 0.3 -0.2 -0.5 0.3 -0.2 -0.5 0.3 -0.2 -0.5 -	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.7 -0.4 -1.2 0.0	2.59E-11 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.57E-03 5.98E-11 2.23E-05 5.51E-02 9.72E-02 4.81E-03 2.28E-03 1.74E-02 5.88E-03 2.46E-01	Age 335	2.1 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0 -4.1 -3.9 -3.5 -0.4 3.1 2.6	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 7 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 5.15E-04 6.86E-01 1.97E-03 1.10E-02 8.44E-03	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 2.76E-03 8.60E-04 2.76E-03 8.60E-04 2.76E-03 8.88E-02 3.38E-02 3.38E-02	+ + + + + + + + + + + + + + + + + + +
		G. TI Hypo Astro Oligo Age Neur Neur Neur Oligo Oligo Digo Micro Oligo Neur Neur Digo Astro Neur	Agonal he mcc effecti xxia: cycte vs oro_allite oro_intec oro_oro_intec oro_oro_intec oro_oro_intec oro_oro_oro_oro_oro_oro_oro_oro_oro_oro	Factor Dost hi s. Brain vs. Brain vs. Age erneur vs. Age erneur vs. Age vs. Age vs. Age vs. Age vs. Age vs. Age vs. Stational vs. Brain Doyte	ighly ross pH imma e on vs. j pH imma e rs. Ag imma rs. Ag imma rs. PM i i i i i i i i i i i i i i i i i i i	dat dat dat dat dat dat dat dat	olica iaset vs. Br	Ag ted :s: rain pH	-5.4 3.4 2.1 -1.9 -3.4 -2.8 1.8 -3.7 -3.6 -2.0 -1.0 3.5 3.9 2.5 -2.6	STOC STOC Te STOC Te STOC Te STOC Te STOC Te STOC Te STOC Te STOC Te STOC Te STOC STOC Te STOC ST	-1.1 1.3 -0.5 -0.1 -0.5 -0.5 0.3 -0.2 -1.6 0.4 -1.2 1.6 -0.2	-2.9 1.9 2.3 1.9 1.4 -1.2 -2.5 -3.1 3.1 -4.5 -0.5 -0.1 -0.7 -0.4 -1.2	2.59E-11 7.72E-04 7.89E-03 5.41E-01 1.40E-01 1.40E-01 1.57E-03 2.91E-06 1.61E-06 2.74E-03 5.98E-11 2.23E-05 5.51E-02 9.72E-02 4.81E-03 2.28E-03 1.74E-02 5.88E-03	Age 335	2.1 0.6 3.9 3.5 3.0 -4.3 -6.5 -7.5 1.6 -11.0 -4.1 -3.9 -3.5 -0.4 3.1 2.6	3.25E-02 5.60E-01 9.81E-05 4.66E-04 2.68E-03 2.27E-05 2.10E-10 2.93E-13 1.02E-01 3.32E-25 4.70E-05 1.32E-04 6.86E-01 1.97E-03 1.10E-02	Diagnosis 9.55E-02 7.00E-01 6.69E-04 2.59E-03 1.22E-02 1.93E-04 3.15E-09 7.33E-12 2.25E-01 2.49E-23 3.36E-04 8.60E-04 2.76E-03 8.04E-01 9.24E-03 3.88E-02	+ + + + + + + + + + + + + + + + + + +

Running Head: PREDICTING CELL TYPE BALANCE

419 Figure 4. Cell content predictions derived from microarray data match known relationships between 420 subject variables and brain tissue cell content. Boxplots represent the median and interguartile range, 421 with whiskers illustrating either the full range of the data or 1.5x the interquartile range. A. Within the 422 CMC dataset, cortical tissue samples that were dissected to only contain gray matter (PITT) show lower 423 predicted oligodendrocyte and microglia content and more neurons and vasculature (bars: β +/- SE. 424 red/blue: p < 0.05). **B.** Subjects who died in a manner that involved exsanguination had a notably low red 425 blood cell index in both the Pritzker (p=0.00056) and Narayan et al. datasets (p=0.052*trend). C. The 426 presence of prolonged hypoxia around the time of death, as indicated by high agonal factor score, was 427 associated with a large increase in the endothelial cell index (p=2.85e-07) matching previous 428 demonstrations of cerebral angiogenesis, activation, and proliferation in low oxygen environments (45). 429 **D.** High agonal factor was also associated with a clear decrease in neuronal indices (p=3.58e-09) 430 mirroring the vulnerability of neurons to low oxygen (46). E. Age was associated with a decrease in the 431 neuronal indices (p = 0.000956) which fits known decreases in gray matter density in the frontal cortex in 432 aging humans (47). F. Major Depressive Disorder was associated with a moderate decrease in astrocyte 433 index (p = 0.0118), which fits what has been observed morphometrically (48). G. The most highly-434 replicated relationships between subject variables and predicted cortical cell content across all five of the 435 post-mortem human datasets. Provided in the table are the T-stats for the effects (red=upregulation, 436 blue=downregulation), derived from a larger linear model controlling for confounds (Equation 1, 437 Equation 2, Equation 3), as well as the nominal p-values from the meta-analysis of the results across the 438 four microarray studies, and p-values following multiple-comparisons correction (q-value). Only effects 439 that had a q < 0.05 in either our meta-analysis or the large CMC RNA-Seq dataset are included in the 440 table. Asterisks denote effects that had consistent directionality in the meta-analysis and CMC dataset (*) 441 or consistent directionality and q < 0.05 in both datasets (**). Please note that lower pH and higher 442 agonal factor are both indicators of greater hypoxia prior to death, but have an inverted relationship and 443 therefore show opposing relationships with the cell type indices. 444 445 Age: In the Pritzker dataset, age was associated with a moderate decrease in two of the neuronal 446 indices (Neuron Interneuron vs. Age: β =-0.00291, p=0.000956; Neuron Projection Neuron vs. Age: β =-447 0.00336, p=0.00505) and this was strongly replicated in the large CMC RNA-Seq dataset (Neuron All vs. 448 Age: β =-0.00497, p=2.27e-05; Neuron Projection Neuron vs. Age: β =-0.00612, p=2.93e-13; 449 Neuron Interneuron vs. Age: β =-0.00591, p=2.10e-10). A similar decrease in predicted neuronal content 450 was seen in all three of the smaller human post-mortem datasets (Neuron All vs. Age (meta-analysis: b=-451 0.00415, p=1.57e-03): GSE53987: β=-0.00722, p=0.0432, Neuron Interneuron vs. Age (meta-analysis: 452 b=-0.00335, p=2.91e-06): GSE21138: β=-0.00494, p=0.0173, GSE21935: β=-0.00506, p=0.0172, 453 Neuron Projection vs. Age (meta-analysis: b=-0.00449, p=1.61e-06): GSE53987: $\beta=-0.0103$, 454 p=0.000497, GSE21138: β =-0.00763, p=0.00386). This result mirrors known decreases in gray matter

455 density in the frontal cortex in aging humans (47), as well as age-related sub-region specific decreases in

456 frontal neuron numbers in primates (49) and rats (50).

Running Head: PREDICTING CELL TYPE BALANCE

457	There was a consistent decrease in the immature oligodendrocyte index in relationship to age across
458	datasets (Oligodendrocyte_Immature vs. Age (meta-analysis: b=-0.00514, p=5.98e-11): Pritzker: β =-
459	0.00432, p=0.000354, GSE21138: β=-0.00721, p=5.73e-05, GSE53987: β=-0.00913, p=1.85e-05; CMC:
460	β =-0.00621, p=3.32e-25), which seems intuitive, but actually contradicts animal studies on the topic (51).
461	Since the validation of the immature oligodendrocyte index was relatively weak (Suppl. Section 7.2), this
462	result should perhaps be considered with caution.
463	In some datasets, there also appeared to be an increase in the oligodendrocyte index with age
464	(Oligodendrocyte vs. Age (meta-analysis: b=0.00343, p=2.74e-03): GSE21138, β=0.00957, p=0.00349)
465	which, at initial face value, seems to contrast with well-replicated observations that frontal white matter
466	decreases with age in human imaging studies (47,52,53). However, it is worth noting that several
467	histological studies in aging primates suggest that brain regions that are experiencing demyelination with
468	age actually show an <i>increasing</i> number of oligodendrocytes due to repair (51,54).
469	PMI: A prominent unexpected effect was a large decrease in the oligodendrocyte index with longer
470	post-mortem interval (Oligodendrocyte vs. PMI (meta-analysis: b=-0.00764, p=2.23e-05): Pritzker: β =-
471	0.00749, p=0.000474, GSE53987: β=-0.0318, p=0.000749; CMC: β=-0.00759, p=4.70e-05). Upon further
472	investigation, we found a publication documenting a 52% decrease in the fractional anisotropy of white
473	matter with 24 hrs post-mortem interval as detected by neuroimaging (55), but to our knowledge the topic
474	is otherwise not well studied. These changes were paralleled by a decrease in the endothelial index
475	(CMC: β =-0.00542, p=1.32e-04) and microglial index (CMC: β =-0.00710, p=5.15e-04) and increase in
476	the immature oligodendrocyte index (Oligodendrocyte_Immature vs. PMI (meta-analysis: b=0.00353,
477	p=4.81e-03): Pritzker: β=0.00635, p=0.000683) and neuronal indices (Neuron_All vs. PMI: Pritzker:
478	β=0.006997, p=0.000982; CMC: β=0.00386, p=0.0110; Neuron_Projection vs. PMI (meta-analysis:
479	b=0.00456, p=2.28e-03): Pritzker: β= 0.00708, p=1.64e-04; CMC: β=0.00331, p=0.00197). These results
480	could arise from the zero-sum nature of transcriptomics analysis: due to the use of a standardized
481	dissection size, RNA concentration, and data normalization, if there are large decreases in gene

Running Head: PREDICTING CELL TYPE BALANCE

482 expression for one common variety of cell type (oligodendrocytes), then gene expression related to other483 cell types may appear to increase.

484 *Psychiatric Diagnosis:* Of most interest to us were potential changes in cell type balance in relation 485 to psychiatric illness. In previous post-mortem morphometric studies, there was evidence of glial loss in 486 the prefrontal cortex of subjects with Major Depressive Disorder, Bipolar Disorder, and Schizophrenia 487 (reviewed in (56)). This decrease in glia, and particularly astrocytes, was replicated experimentally in 488 animals exposed to chronic stress (57), and when induced pharmacologically, drove animals into a 489 depressive-like condition (57). Replicating the results of (48), we observed a moderate decrease in 490 astrocyte index in the prefrontal cortex of subjects with Major Depressive Disorder (meta-analysis: 491 b=0.132, p=5.88e-03, Pritzker: β =-0.133, p=0.0118, Figure 4 F), but did not see similar changes in the 492 brains of subjects with Bipolar Disorder or Schizophrenia. We also observed a decrease in red blood cell 493 index in association with Schizophrenia (CMC: β =-0.104, p=0.0141) which is tempting to ascribe to 494 reduced blood flow due to hypofrontality (58). This decrease in red blood cell content could also arise due 495 to psychiatric subjects having an increased probability of dying a violent death, but the effect remained 496 present when we controlled for exsanguination, and therefore is likely to be genuinely tied to the illness 497 itself.

498 *General Discussion:* Overall, these results indicate that statistical predictions of the cell content of 499 samples effectively capture many known biological changes in cell type balance, and imply that within 500 both chronic (age, diagnosis) and acute conditions (agonal, PMI, pH) there is substantial influences upon 501 the relative representation of different cell types.

The effect of hypoxia within our results is particularly worth discussing in greater depth. It has been acknowledged for a long time that exposure to a hypoxic environment prior to death has a huge impact on gene expression in human post-mortem brains (e.g., (28,29,59–61)). This impact on gene expression is so large that up until recently the primary principal component of variation (PC1) in our data was assumed to represent the degree of hypoxia, and was sometimes even removed before performing diagnosis-related analyses (e.g., (62)). These large effects of hypoxia on gene expression were hypothesized to be partially

Running Head: PREDICTING CELL TYPE BALANCE

508 mediated by neuronal necrosis (63) and lactic acidosis (60). However, the magnitude of the effect of 509 hypoxia was still puzzling, especially when compared to the much more moderate effects of post-mortem 510 interval (even when ranging from 8-40+ hrs). Our current analysis provides an explanation for this 511 discrepancy, since it is clear from our results that the brains of our subjects are actively compensating for 512 a hypoxic environment prior to death by altering the balance or overall transcriptional activity of support 513 cells and neurons. The differential effects of hypoxia on neurons and glial cells have been studied since 514 the 1960's (64), but to our knowledge this is the first time that anyone has related the large effects of 515 hypoxia in post-mortem transcriptomic data to a corresponding upregulation in the transcriptional activity 516 of vascular cell types (45).

517 This connection is important for understanding why results associating gene expression and 518 psychiatric illness in human post-mortem tissue sometimes do not replicate. If a study contains mostly 519 tissue from individuals who experienced greater hypoxia before death (e.g., hospital care with artificial 520 respiration or coma), then differential expression analyses are likely to inadvertently focus on 521 neuropsychiatric effects in support cell types, whereas a study that mostly contains tissue from individuals 522 who died a fast death (e.g., myocardial infarction) will emphasize the neuropsychiatric effects in neurons. 523 That said, although both indicators of perimortem hypoxia (agonal factor and pH) showed similar strong 524 relationships with cell type balance, we recommend caution when interpreting the relationship between 525 pH and cell type in tissue from psychiatric subjects, as pH can indicate other biological changes besides 526 hypoxia. For example, there are small consistent decreases in pH associated with Bipolar Disorder even in 527 live subjects (65–67) and metabolic changes associated with pH are theorized to play an important role in 528 Schizophrenia (61). Therefore, the relationship between pH and cell type balance may be partially driven 529 by a third variable (psychiatric illness or treatment). It is also possible that changes in tissue cell content 530 could cause a change in pH (68).

531

Running Head: PREDICTING CELL TYPE BALANCE

532 3.10 It is Difficult to Discriminate Between Changes in Cell Type Balance and Cell-Type Specific 533 Function

534 Gray matter density has been shown to decrease in the frontal cortex in aging humans (47), and 535 frontal neuron numbers decrease in specific subregions in aging primates (49) and rats (50). However, 536 many scientists would argue that age-related decreases in gray matter are primarily driven by synaptic 537 atrophy instead of decreased cell number (69). This raised the question of whether the decline that we saw 538 in neuronal cell indices with age was being largely driven by the enrichment of genes related to synaptic 539 function in the index. More generally, it raised the question of how well cell type indices could 540 discriminate changes in cell number from changes in cell-type function. 541 We examined this question using two methods. First, as a case study, we specifically examined the 542 relationship between age and the functional annotation for genes found in the Neuron All index in more 543 depth. We found that transcripts from functional clusters that seemed distinctly unrelated to 544 dendritic/axonal functions still showed an average decrease in expression with age (T(40)=-2.7566). 545 p=0.008756), but this decrease was larger for transcripts clearly associated with dendritic/axonal-related 546 functions (T(28)=-4.5612, p=9.197e-05; dendritic/axonal vs. non-dendritic/axonal: T(50.082)=2.3385, 547 p=0.02339, Suppl. Figure 11). Based on this analysis, we conclude that synaptic atrophy could be 548 partially driving age-related effects on neuronal cell type indices in the human prefrontal cortex dataset 549 but are unlikely to fully explain the relationship.

550 Next, we decided to make the process of differentiating between altered cell type-specific functions 551 and relative cell type balance more efficient. We used our cell type specific gene lists to construct gene 552 sets in a file format (.gmt) compatible with the popular tool Gene Set Enrichment Analysis (39,40). Then, 553 for the results from each subject variable within the Pritzker dataset, we compared the enrichment of the 554 effects within gene sets defined by brain cell type to the enrichment seen within gene sets for other 555 functional categories. In general, we found that gene sets for brain cell types tended to be the top result 556 (most extreme normalized enrichment score, NES) for each of the subject variables that showed a strong 557 relationship with cell type in our previous analyses (Agonal Factor vs.

Running Head: PREDICTING CELL TYPE BALANCE

- 558 "Neuron_All_Cahoy_JNeuro_2008": NES=-2.46, p=0.00098, q=0.012, Brain pH vs.
- 559 "Astrocyte_All_Cahoy_JNeuro_2008": NES=-2.48, p=0.0011, q=0.014, MDD vs.
- 560 "Astrocyte_All_Cahoy_JNeuro_2008": NES=-2.60, p=0.0010, q=0.017, PMI vs.
- 561 "GO_OLIGODENDROCYTE_DIFFERENTIATION": NES=-2.42, p=0.00078, q=0.027; Suppl. Table
- **6**). Similarly, the relationship between the effects of age and neuron-specific gene expression was ranked
- 563 #4, following the gene sets "GO SYNAPTIC SIGNALING",
- 564 "REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES",
- 565 "REACTOME_OPIOID_SIGNALLING", but each of them was assigned a similar p-value (p=0.001) and
- adjusted p-value (q=0.036). We conclude that it is important to consider cell type-specific expression
- 567 during the analysis of macro-dissected brain microarray data above and beyond the consideration of
- 568 specific functional pathways, and have submitted our .gmt files to the Broad Institute for addition to their
- 569 curated gene sets in MSigDB to promote this form of analysis.
- 570

3.11 Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit and Enhances the Detection of Diagnosis-Related Genes in Some Datasets

573 Over the years, many researchers have been concerned that transcriptomic analyses of 574 neuropsychiatric illness often produce non-replicable or contradictory results and, perhaps more 575 disturbingly, are typically unable to replicate well-documented effects detected by other methods. We 576 posited that this lack of sensitivity and replicability might be partially due to cell type variability in the 577 samples, especially since such a large percentage of the principal components of variation in our samples 578 were explained by neuron to glia ratio. Within the Pritzker dataset, we were particularly interested in 579 controlling for cell type variability, because dissection may have differed between technical batches that 580 were unevenly distributed across diagnosis categories (Figure 5 A). There was a similarly uneven 581 distribution of dissection methods across diagnosis categories within the large CMC RNA-Seq dataset. In 582 this dataset, the majority of the bipolar samples (75%) were collected by a brain bank that performed gray

Running Head: PREDICTING CELL TYPE BALANCE

583 matter only dissections (PITT), whereas the control and schizophrenia samples were more evenly

distributed across all three institutions (34).

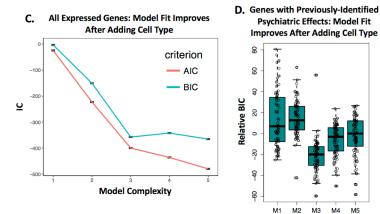
585 We hypothesized that controlling for cell type while performing differential expression analyses 586 in these datasets would improve our ability to detect previously-documented psychiatric effects on gene 587 expression, especially psychiatric effects that were previously-identified within specific cell types, since 588 these effects should not be mediated by psychiatric changes in overall cell type balance. To test the 589 hypothesis, we first compiled a list of 130 strong, previously-documented relationships between 590 Schizophrenia or Psychosis and gene expression in particular cell types in the human cortex, as detected 591 by *in situ* hybridization or immunocytochemistry ((70–75) reviewed further in (19)) or by single-cell type 592 laser capture microscopy (Suppl. Figure 12, Suppl. Table 7 (1,76,77)). 593 As a comparison, we also considered lists of transcripts strongly-associated with Schizophrenia 594 (78) and Bipolar Disorder (79) in meta-analyses of microarray data derived from human frontal cortical 595 tissue (Suppl. Figure 12, Suppl. Table 7). The effects of psychiatric illness on the expression of these 596 transcripts could be mediated by either psychiatric effects on cell type balance or by effects within 597 individual cells. Therefore, controlling for cell type balance while performing differential expression 598 analyses could detract from the detection of some psychiatric effects, but perhaps also enhance the 599 detection of other psychiatric effects by controlling for large, confounding sources of noise (e.g., 600 dissection variability). 601 Next, we examined our ability to detect these previously-documented psychiatric effects using

Rext, we examined our ability to detect these previously-documented psychiatric effects using
 regression models of increasing complexity (Figure 5 B), including a standard model controlling for
 traditional co-variates (Model 2) and models controlling for cell type co-variates (Models 3-5).

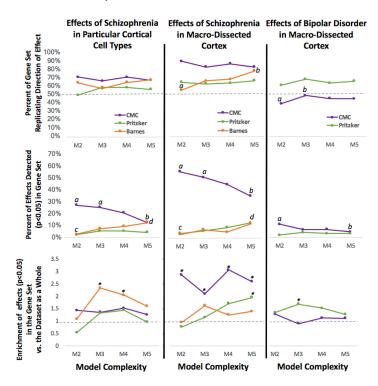
Running Head: PREDICTING CELL TYPE BALANCE

M4 M5

Model Complexity


Α. Diagnosis Effects May Be Partially Confounded By Dissection Variability

Pritzker:]	С
Samples	Batch*]	S
Control	All Batches]	С
BP, MDD	1-4, 9-13	1	В
Schiz	5-8, 13-15]	s


	Samples	Institution*				
	Controls	All (PITT, MSSM, PENN)				
	BP	PITT, MSSM				
	Schiz	All (PITT, MSSM, PENN)				
· .						

*Batches partially defined by subject cohort *PITT was a grey matter only dissection

В. **Model Complexity M1** Base Model: Diagnosis Only M2 Standard Model: Diagnosis + Traditional Co-variates **M3** Diagnosis + Most Prevalent Cell Types Diagnosis + Traditional Co-variates + Most Prevalent Cell Types M4 M5 Diagnosis + Traditional Co-variates + All Cell Types

Ε. **Controlling for Cell Type Variability Enhances Detection of Psychiatric Effects in Some Datasets**

Running Head: PREDICTING CELL TYPE BALANCE

605 Figure 5. Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit 606 and Enhances the Detection of Previously-Identified Diagnosis-Related Genes in Some Datasets. A. 607 Diagnosis effects were likely to be partially confounded by dissection variability within the Pritzker and 608 CMC datasets. **B**: We examined a series of differential expression models of increasing complexity, 609 including a base model (M1), a standard model (M2), and three models that included cell type co-610 variates (M3-M5). C-D. Model fit improved with the addition of cell type (M1/M2 vs. M3-M5) when 611 examining either C. all expressed genes in the dataset (example from CMC: points = AVE + /-SE). D. 612 genes with previously-documented relationships with psychiatric illness in particular cell types (example 613 from Pritzker: BIC values for all models for each gene were centered prior to analysis. Boxes represent 614 the median and interguartile range of the data). E. Evaluating the replication of previously-observed 615 psychiatric effects (Suppl. Figure 12) in three datasets (Pritzker, CMC, and Barnes) using a standard 616 differential expression model (M2) vs. models that include cell type co-variates (M3-5). Letters (a vs. b, c 617 vs. d) denote significant model comparisons (Fisher's exact test: p < 0.05). Top graphs: The percentage of 618 genes (y-axis: 0-1) replicating the direction of previously-documented psychiatric effects on cortical gene 619 expression sometimes increases with the addition of cell type to the model (p < 0.05: Barnes (effects of 620 Schiz): M2 vs. M5, CMC (effects of Bipolar Disorder): M2 vs. M3). Middle graphs: The detection of 621 previously-identified psychiatric effects on gene expression (p < 0.05 & replicated direction of effect) 622 increases with the addition of cell type to the model in some datasets (p < 0.05, Barnes: M2 vs. M5, 623 Pritzker: M2 vs. M5) but decreases in others (p<0.05, CMC: M2 vs. M5, M3 vs. M5). Bottom graphs: In 624 some datasets we see an enrichment of psychiatric effects (*p < 0.05) in previously-identified psychiatric 625 gene sets only after controlling for cell type (Barnes: M3, M4, Pritzker: M5, M3). For the CMC dataset, 626 we see an enrichment using all models (*p < 0.05).

627

628	We found that including predictions of cell type balance in our models assessing the effect of
629	diagnosis on gene expression dramatically improved model fit as assessed by Akaike's Information
630	Criterion (AIC) or Bayesian Information Criterion (BIC). These improvements were largest with the
631	addition of the five most prevalent cell types to the model (M3, M4); the addition of less common cell
632	types produced smaller gains (M5). These improvements were clear whether we considered the average
633	model fit for all expressed genes (e.g., Figure 5 C) or just genes with previously-identified psychiatric
634	effects (e.g., Figure 5 D).
635	However, models that included cell type were not necessarily superior at replicating previously-
636	observed psychiatric effects on gene expression, even when examining psychiatric effects that were likely

637 to be independent of changes in cell type balance. For each model, we quantified the percentage of genes

638 replicating the previously-observed direction of effect in relationship to psychiatric illness, as well as the

639 percentage of genes that replicated the effect using a common threshold for detection (p < 0.05). Finally,

640 we also looked at the enrichment of psychiatric effects (p < 0.05) in each of the previously-documented

Running Head: PREDICTING CELL TYPE BALANCE

641 psychiatric gene sets in comparison to the other genes in our datasets (genes universally represented in all642 three datasets- Pritzker, CMC, Barnes).

643 In general, we found that the two datasets that had the most variability in gene expression related 644 to cell type (Pritzker, Barnes) were more likely to replicate previously-documented psychiatric effects on 645 gene expression when the differential expression model included cell type covariates. For example, in the 646 Barnes dataset, adding cell type co-variates to the model increased our ability to detect effects of 647 Schizophrenia that had been previously documented within particular cell types or macro-dissected tissue 648 (Figure 5E, Fisher's exact test: M2 vs. M5, p < 0.05 in both gene sets) and revealed an enrichment of 649 Schizophrenia effects in genes with previously-documented psychiatric effects in particular cell types 650 (Fisher's exact test p<0.05: M3 & M4). In the Pritzker dataset, adding cell type co-variates to the model 651 increased our ability to detect previously-documented effects of Schizophrenia in macrodissected tissue 652 (M2 vs. M5: p<0.05) and revealed a significant enrichment of Schizophrenia and Bipolar effects in genes 653 with previously-documented psychiatric effects in macro-dissected tissue (Fisher's exact test p < 0.05: 654 Schizophrenia: M5, Bipolar: M3). This mirrored the results of another analysis that we had conducted 655 suggesting that controlling for cell type increased the overlap between the top diagnosis results in the 656 Pritzker dataset and previous findings in the literature as a whole (*Suppl. Section 7.3.4*). 657 In the large CMC RNA-Seq dataset, the rate of replication of previously-documented effects of 658 Schizophrenia was already quite high using a standard differential expression model containing traditional 659 co-variates (M2). Using a standard model, we could detect 27% of the previously-documented effects in 660 cortical cell types and 55% of the previously-documented effects in macro-dissected tissue (with a 661 replicated direction of effect and p < 0.05). However, in contrast to what we had observed in the Pritzker 662 and Barnes datasets, controlling for cell type *diminished* the ability to detect effects of Schizophrenia that 663 had been previously-observed within particular cell types or macrodissected tissue in a manner that scaled 664 with the number of co-variates included in the model (M2 or M3 vs. M5: p<0.05 for both gene sets), 665 despite improvements in model fit parameters and a lack of significant relationship between 666 Schizophrenia and any of the prevalent cell types. Including cell type co-variates in the model did not

Running Head: PREDICTING CELL TYPE BALANCE

667	improve our ability to observe an enrichment of Schizophrenia effects in genes with previously-
668	documented psychiatric effects in macro-dissected tissue (all models showed enrichment, M2-M5:
669	Fisher's exact test p<0.05). Controlling for cell type slightly improved the replication of the direction of
670	previously-documented Bipolar Disorder effects (Fisher's exact test: M2 vs. M3: p<0.05) in a manner that
671	would seem appropriate due to the highly uneven distribution of bipolar samples across institutions and
672	dissection methods, but even after this improvement the rate of replication was still no better than chance
673	(48%), and, counterintuitively, the ability to successfully detect those effects still diminished in a manner
674	that seemed to scale with the number of co-variates included in the model (Fisher's exact test: M2 vs. M5,
675	p<0.05). In a preliminary analysis of the two smaller human microarray datasets that were derived from
676	gray-matter only dissections (GSE53987, GSE21138), the addition of cell type co-variates to differential
677	expression models clearly diminished both the percentage of genes replicating the previously-documented
678	direction of effect of Schizophrenia in particular cell types (Fisher's exact test: GSE21138: M2 vs. M4 or
679	M5: p<0.05, GSE53987: M2 vs. M4 or M5: p<0.05) and the ability to successfully detect previously-
680	documented effects (Fisher's exact test: GSE21138: M2 vs. M4 or M5: p<0.05).
680 681	documented effects (Fisher's exact test: GSE21138: M2 vs. M4 or M5: p<0.05). <i>General Discussion</i> : We found that including cell type indices as co-variates while running
681	General Discussion: We found that including cell type indices as co-variates while running
681 682	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships
681 682 683	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected
681 682 683 684	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by
681 682 683 684 685	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity
681 682 683 684 685 686	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further
681 682 683 684 685 686 687	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further consideration makes sense, as the cell type indices are multi-parameter gene expression variables.
681 682 683 684 685 686 687 688	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further consideration makes sense, as the cell type indices are multi-parameter gene expression variables. Therefore, there is increased risk of overfitting when modeling the data for any particular gene. We
 681 682 683 684 685 686 687 688 689 	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further consideration makes sense, as the cell type indices are multi-parameter gene expression variables. Therefore, there is increased risk of overfitting when modeling the data for any particular gene. We conclude that the addition of cell type covariates to differential expression models is only recommended
 681 682 683 684 685 686 687 688 689 690 	<i>General Discussion</i> : We found that including cell type indices as co-variates while running differential expression analyses helped improve our ability to detect previously-documented relationships between psychiatric illness and gene expression in human cortical datasets that were particularly affected by variability in cell type balance. This improvement was not seen in datasets that were less affected by variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further consideration makes sense, as the cell type indices are multi-parameter gene expression variables. Therefore, there is increased risk of overfitting when modeling the data for any particular gene. We conclude that the addition of cell type covariates to differential expression models is only recommended when there is a particularly large amount of variability in the dataset associated with cell type balance, or

Running Head: PREDICTING CELL TYPE BALANCE

693 conducting differential expression analyses should be considered carefully, and evaluated not only in694 terms of fit parameters but also validity and interpretability.

695 Regarding the importance of model selection for interpretability, it is worth noting that an 696 important difference between our final analysis methods and those used by some previous researchers 697 (e.g., 10–12) was the lack of cell type interaction terms included in our models (e.g., Diagnosis*Astrocyte 698 Index). Theoretically, the addition of cell type interaction terms should allow the researcher to statistically 699 interrogate cell-type differentiated diagnosis effects because samples that contain more of a particular cell 700 type should exhibit more of that cell type's respective diagnosis effect. Versions of this form of analysis 701 have been successful in other investigations (e.g., (11,12,80)) but we were not able to validate the method 702 using a variety of model specifications and our database of previously-documented relationships with 703 diagnosis in prefrontal cell types. Upon consideration, we realized that these negative results were 704 difficult to interpret because significant diagnosis*cell type interactions should only become evident if the 705 effect of diagnosis in a particular cell type is different from what is occurring in all cell types on average. 706 For genes with expression that is reasonably specific to a particular cell type (e.g., GAD1, PVALB), the 707 overall average diagnosis effect may already largely reflect the effect within that cell type and the 708 respective interaction term will not be significantly different, even though the disease effect is clearly 709 tracking the balance of that cell population. In the end, we decided that the addition of interaction terms to 710 our models was not demonstrably worth the associated decrease in overall model fit and statistical power. 711 For public use we have released the full differential expression results for each dataset analyzed using the 712 different models discussed above (Suppl. Table 8-Suppl. Table 12).

713

4. Conclusion and Future Directions

In this manuscript, we have demonstrated that the statistical cell type index is a relatively simple manner of interrogating cell-type specific expression in transcriptomic datasets from macro-dissected human brain tissue. We find that statistical estimations of cell type balance almost fully account for the top principal components of variation in microarray data derived from macro-dissected brain tissue

Running Head: PREDICTING CELL TYPE BALANCE

718 samples, far surpassing the effects of traditional subject variables (post-mortem interval, hypoxia, age, 719 gender). Indeed, our results suggest that many variables of medical interest are themselves accompanied 720 by strong changes in cell type specific gene expression in naturally-observed human brains. We find that 721 within both chronic (age, sex, diagnosis) and acute conditions (agonal, PMI, pH) there may be substantial 722 changes in the relative representation of different cell types. Thus, accounting for demography at the 723 cellular population level can be as important for the interpretation of microarray data as cell-level 724 functional regulation. This form of data deconvolution was useful for identifying the subtler effects of 725 psychiatric illness within our samples, divulging the decrease in astrocytes that is known to occur in 726 Major Depressive Disorder and the decrease in red blood cell content in the frontal cortex in 727 Schizophrenia, resembling known fMRI hypofrontality. This form of data deconvolution may also aid in 728 the detection of psychiatric effects while conducting differential expression analyses in datasets that have 729 highly-variable cell content.

730 These results touch upon the fundamental question as to whether organ-level function responds to 731 challenge by changing the biological states of individual cells or the life and death of different cell 732 populations. To reach such a sweeping perspective in human brain tissue using classic cell biology 733 methods would require epic efforts in labeling, cell sorting, and counting. We have demonstrated that 734 scientists can approximate this vantage point using an elegant, supervised signal decomposition exploiting 735 increasingly available genomic data. However, it should be noted that, similar to other forms of functional 736 annotation, cell type indices are best treated as a hypothesis-generation tool instead of a final conclusion 737 regarding tissue cell content. We have demonstrated the utility of cell type indices for detecting large-738 scale alterations in cell content in relationship with known subject variables in post-mortem tissue. We 739 have not tested the sensitivity of the technique for detecting smaller effects or the validity under all 740 circumstances or non-cortical tissue types. Likewise, while using this technique it is impossible to 741 distinguish between alterations in cell type balance and cell-type specific transcriptional activity: when a 742 sample shows a higher value of a particular cell type index, it could have a larger number of such cells, or 743 each cell could have produced more of its unique group of transcripts, via a larger cell body, slower

Running Head: PREDICTING CELL TYPE BALANCE

744 mRNA degradation, or an overall change in transcription rate. In this regard, the index that we calculate 745 does not have a specific interpretation; rather it is a holistic property of the cell populations, the "neuron-746 ness" or "microglia-ness" of the sample. Such an abstract index represents the ecological shifts inferred 747 from the pooled transcriptome. That said, our cell type indices do have real biological meaning - they can 748 be interpreted in a known system of cell type taxonomy. When single-cell genomic data uncovers new 749 cell types (e.g., the Allen Brain Atlas cellular taxonomy initiative (81)) or meta-analyses refine the list of 750 genes defined that have cell-type specific expression (e.g., (82)), our indices will surely evolve with these 751 new classification frameworks, but the power of the approach will remain, in that we can disentangle the 752 intrinsic changes of individual genes from the population-level shifts of major cell types.

753 Our work drives home the fact that any comprehensive theory of psychiatric illness needs to 754 account for the dichotomy between the health of individual cells and that of their ecosystem. We found 755 that the functional changes accompanying psychiatric illness in the cortex occurred both at the level of 756 cell population shifts (decreased astrocytic presence and red blood cell count) and at the level of intrinsic 757 gene regulation not explained by population shifts. A similar conclusion regarding the importance of cell 758 type balance in association with psychiatric illness was recently drawn by our collaborators (e.g., (83)) 759 using a similar technique to analyze RNA-Seq data from the anterior cingulate cortex. In the future, we 760 plan to use our technique to re-analyze many other large transcriptomic datasets with the hope of gaining 761 better insight into psychiatric disease. This application of our technique seems particularly important in 762 light of recent evidence linking disrupted neuroimmunity (84) and neuroglia (e.g., (48,57,85)) to 763 psychiatric illness, as well as growing evidence that growth factors with cell type specific effects play an 764 important role in depressive illness and emotional regulation (for a review see (23,86)). 765 In conclusion, we have found this method to be a valuable addition to traditional functional 766 ontology tools as a manner of improving the interpretation of transcriptomic results. For the benefit of 767 other researchers, we have made our database of brain cell type specific genes (Suppl. Table 1, 768 https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-type-analysis) and code for

conducting cell type analyses publicly available in the form of a downloadable R package

Running Head: PREDICTING CELL TYPE BALANCE

(<u>https://github.com/hagenaue/BrainInABlender</u>) and we are happy to assist researchers in their usage for
pursuing better insight into psychiatric illness and neurological disease.

772

773 5. Acknowledgements

774 We thank all members of the Pritzker Consortium (especially the University of California, Irvine 775 Brain Bank staff), Drs. Adriana Medina and David Krolewski for brain dissections and methodological 776 input, and Dr. Simon Evans, Sharon Burke and Mary Hoverstein for their involvement in the initial 777 mRNA extraction and microarrays. Grace Hsienyuan Chang, Jennifer Fitzpatrick, LeAnn Fitzpatrick, Jim 778 Stewart, Tom Dixon, Doug Smith, Andy Lin, and Manhong Dai were invaluable for maintaining our 779 databases of clinical information and biological specimens. Drs. Elyse Aurbach, Katherine Prater, 780 Kathryn Hilde, Fan Meng, Lilah Toker, Mark Reimers, and Angela O'Connor provided insightful advice 781 and feedback regarding the methodology or manuscript. Our undergraduate research assistants Isabelle 782 Birt, Alek Pankonin, and Daniela Romero Vargas helped compile the Allen Brain Atlas data, annotate and 783 upload code, create the BrainInABlender R package, and provide editorial assistance. Finally, we would 784 like to thank our reviewers, whose insightful feedback helped inspire several particularly useful analyses, 785 leading us to a stronger set of conclusions.

Running Head: PREDICTING CELL TYPE BALANCE

786 6. References

- Arion D, Corradi JP, Tang S, Datta D, Boothe F, He A, et al. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol Psychiatry. 2015 Nov;20(11):1397–405.
- Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285–90.
- Zake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016 Jun 24;352(6293):1586–90.
- 796 4. Choi KH, Elashoff M, Higgs BW, Song J, Kim S, Sabunciyan S, et al. Putative psychosis genes in 797 the prefrontal cortex: combined analysis of gene expression microarrays. BMC Psychiatry. 798 2008;8:87.
- 5. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the
 fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A. 2004 Oct
 26;101(43):15506–11.
- 802 6. Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PloS One.
 804 2009;4(7):e6098.
- Response of the second secon
- 808 8. Gaujoux R, Seoighe C. CellMix: a comprehensive toolbox for gene expression deconvolution.
 Bioinforma Oxf Engl. 2013 Sep 1;29(17):2211–2.
- 810 9. Shen-Orr SS, Gaujoux R. Computational deconvolution: extracting cell type-specific information
 811 from heterogeneous samples. Curr Opin Immunol. 2013 Oct;25(5):571–8.
- 812 10. Capurro A, Bodea L-G, Schaefer P, Luthi-Carter R, Perreau VM. Computational deconvolution of
 813 genome wide expression data from Parkinson's and Huntington's disease brain tissues using
 814 population-specific expression analysis. Front Neurosci. 2014;8:441.
- Kuhn A, Kumar A, Beilina A, Dillman A, Cookson MR, Singleton AB. Cell population-specific
 expression analysis of human cerebellum. BMC Genomics. 2012;13:610.
- 817 12. Kuhn A, Thu D, Waldvogel HJ, Faull RLM, Luthi-Carter R. Population-specific expression analysis
 818 (PSEA) reveals molecular changes in diseased brain. Nat Methods. 2011 Nov;8(11):945–7.
- 819 13. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci Off J Soc Neurosci. 2008 Jan 2;28(1):264–78.

- Baneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier
 transcriptome: a new resource for understanding the development and function of brain endothelial
 cells. PloS One. 2010;5(10):e13741.
- B25 15. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell. 2008 Nov 14;135(4):749–62.
- 828 16. Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci. 2006 Jan;9(1):99–107.
- 830 17. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain
 831 structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.
 832 Science. 2015 Mar 6;347(6226):1138–42.
- 833 18. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J
 835 Neurosci Off J Soc Neurosci. 2014 Sep 3;34(36):11929–47.
- B36
 19. Lewis DA, Sweet RA. Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest. 2009 Apr;119(4):706–16.
- 838 20. Lynch JC. The Cerebral Cortex. In: Fundamental Neuroscience. 2nd ed. Philadelphia: Churchill
 839 Livingstone; 2002. p. 505–20.
- 840 21. Hutchins DE, Naftel JP, Ard MD. The cell biology of neurons and glia. In: Fundamental
 841 Neuroscience. 2nd ed. Philadelphia: Churchill Livingstone; 2002. p. 15–36.
- 842 22. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol.
 843 2005 Oct;7(4):452–64.
- B44 23. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol
 Psychiatry. 2006 Jun 15;59(12):1116–27.
- B46 24. Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi J-T. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics. 2015;16(1):952.
- 848 25. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012 Sep 20;489(7416):391–9.
- 850 26. Allen Brain Atlas. Technical White Paper: Case qualification and donor profiles, v.7 [Internet].
 851 2013. Available from: help.brain-map.org
- Allen Brain Atlas. Technical White Paper: Microarray Survey, v.7 [Internet]. 2013. Available from:
 help.brain-map.org
- Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet. 2004 Mar 15;13(6):609–16.

- Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry. 2004 Feb 15;55(4):346–52.
- 30. Lanz TA, Joshi JJ, Reinhart V, Johnson K, Grantham LE, Volfson D. STEP levels are unchanged in
 pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with
 schizophrenia, bipolar disorder and major depressive disorder. PloS One. 2015;10(3):e0121744.
- Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, et al. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res. 2011 Aug;89(8):1218–27.
- 866 32. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res. 2008 Nov 6;1239:235–48.
- 868 33. Fasold M, Binder H. AffyRNADegradation: control and correction of RNA quality effects in
 869 GeneChip expression data. Bioinformatics. 2013 Jan;29(1):129–31.
- 870 34. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression
 871 elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016
 872 Nov;19(11):1442–53.
- 873 35. Viechtbauer W. Conducting Meta-Analyses in R with The metafor Package. J Stat Softw. 2010 Aug
 874 1;36.
- 875 36. Pollard KS, Dudoit S, Laan MJ van der. Multiple Testing Procedures: the multtest Package and
 876 Applications to Genomics. In: Bioinformatics and Computational Biology Solutions Using R and
 877 Bioconductor [Internet]. Springer, New York, NY; 2005 [cited 2017 Oct 13]. p. 249–71. (Statistics
 878 for Biology and Health). Available from: https://link.springer.com/chapter/10.1007/0-387-29362879 0 15
- Huang DW, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, et al. Extracting biological
 meaning from large gene lists with DAVID. Curr Protoc Bioinforma Ed Board Andreas Baxevanis
 Al. 2009 Sep;Chapter 13:Unit 13.11.
- 883 38. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
- Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
 Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545–50.
- 40. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha responsive genes involved in oxidative phosphorylation are coordinately downregulated in human
 diabetes. Nat Genet. 2003 Jul;34(3):267–73.
- 891 41. Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv [Internet]. 2016 Jun 20; Available from: 893 http://biorxiv.org/content/early/2016/06/20/060012.abstract
- 42. Carpenter MB. Core Text of Neuroanatomy. 4th ed. Baltimore, MD: Williams & Wilkins; 1991.

- 43. Amaral DG, Scharfman HE, Lavenex P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res. 2007;163:3–22.
- 897 44. Sun N, Cassell MD. Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp
 898 Neurol. 1993 Apr 15;330(3):381–404.
- 45. Li L, Welser JV, Dore-Duffy P, del Zoppo GJ, Lamanna JC, Milner R. In the hypoxic central
 nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and
 increased expression of the alpha 6 beta 4 integrin and dystroglycan. Glia. 2010 Aug;58(10):1157–
 67.
- 46. Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res. 1998 Jun 29;797(2):295–304.
- 905 47. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003 Mar;6(3):309–15.
- 8. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric
 808 evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999
 809 May 1;45(9):1085–98.
- 910 49. Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH. Memory impairment in aged
 911 primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J
 912 Neurosci Off J Soc Neurosci. 2004 May 5;24(18):4373–81.
- 50. Stranahan AM, Jiam NT, Spiegel AM, Gallagher M. Aging reduces total neuron number in the
 dorsal component of the rodent prefrontal cortex. J Comp Neurol. 2012 Apr 15;520(6):1318–26.
- 915 51. Peters A, Sethares C. Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex. Cereb Cortex N Y N 1991. 2004 Sep;14(9):995–1007.
- 917 52. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic
 918 resonance imaging studies of older adults: a shrinking brain. J Neurosci Off J Soc Neurosci. 2003
 919 Apr 15;23(8):3295–301.
- 53. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex N Y N 1991. 2004 Jul;14(7):721–30.
- 922 54. Peters A, Sethares C, Moss MB. HOW THE PRIMATE FORNIX IS AFFECTED BY AGE. J
 923 Comp Neurol. 2010 Oct 1;518(19):3962–80.
- 55. Shepherd TM, Flint JJ, Thelwall PE, Stanisz GJ, Mareci TH, Yachnis AT, et al. Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue--implications for MRI studies of human autopsy samples. NeuroImage. 2009 Feb 1;44(3):820–6.
- 56. Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: The evidence and implications. Brain Res Bull. 2001 Jul 15;55(5):585–95.
- 57. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like
 behaviors. Biol Psychiatry. 2008 Nov 15;64(10):863–70.

- 931 58. RAGLAND JD, YOON J, MINZENBERG MJ, CARTER CS. Neuroimaging of cognitive disability
 932 in schizophrenia: Search for a pathophysiological mechanism. Int Rev Psychiatry Abingdon Engl.
 933 2007 Aug;19(4):417–27.
- 59. Atz M, Walsh D, Cartagena P, Li J, Evans S, Choudary P, et al. Methodological considerations for
 gene expression profiling of human brain. J Neurosci Methods. 2007 Jul 30;163(2):295–309.
- Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S, et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry. 2006 Jul;11(7):615, 663–79.
- 939 61. Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis. 2012 Jan 1;45(1):23–36.
- 62. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of
 gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci
 U S A. 2013 Jun 11;110(24):9950–5.
- Weis S, Llenos IC, Dulay JR, Elashoff M, Martínez-Murillo F, Miller CL. Quality control for microarray analysis of human brain samples: The impact of postmortem factors, RNA characteristics, and histopathology. J Neurosci Methods. 2007 Sep 30;165(2):198–209.
- 947 64. Hamberger A, Hyden H. Inverse enzymatic changes in neurons and glia during increased function
 948 and hypoxia. J Cell Biol. 1963 Mar;16:521–5.
- 65. Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T. Decreased brain intracellular pH
 measured by P-31-MRS in bipolar disorder: a confirmation in drug-free patients and correlation
 with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci. 1998 Dec;248(6):301–6.
- 66. Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T. Reduced intracellular pH in the
 basal ganglia and whole brain measured by P-31-MRS in bipolar disorder. Psychiatry Clin
 Neurosci. 2004 Feb;58(1):82–8.
- 955 67. Johnson CP, Follmer RL, Oguz I, Warren LA, Christensen GE, Fiedorowicz JG, et al. Brain
 956 abnormalities in bipolar disorder detected by quantitative T1 rho mapping. Mol Psychiatry. 2015
 957 Feb;20(2):201–6.
- 68. Chesler M, Kraig R. Intracellular Ph of Astrocytes Increases Rapidly with Cortical Stimulation. Am J Physiol. 1987 Oct;253(4):R666–70.
- 960 69. Peters A, Sethares C, Luebke JI. Synapses are lost during aging in the primate prefrontal cortex.
 961 Neuroscience. 2008 Apr 9;152(4):970–81.
- 962 70. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000 Nov;57(11):1061–9.
- 965 71. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci Off J Soc Neurosci. 2003 Jul 16;23(15):6315–26.

- Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid
 decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric
 acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000 Mar;57(3):237–45.
- 971 73. Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the
 972 dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb
 973 Cortex N Y N 1991. 2008 Jul;18(7):1575–87.
- 974 74. Volk D, Austin M, Pierri J, Sampson A, Lewis D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry. 2001
 976 Feb;158(2):256–65.
- 977 75. Pandey GN, Dwivedi Y, Rizavi HS, Ren X, Pandey SC, Pesold C, et al. Higher expression of
 978 serotonin 5-HT(2A) receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry.
 979 2002 Mar;159(3):419–29.
- 980 76. Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, et al. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J
 982 Neurogenet. 2014 Jun;28(1–2):70–85.
- 77. Mauney SA, Pietersen CY, Sonntag K-C, Woo T-UW. Differentiation of oligodendrocyte
 precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res. 2015 Dec;169(1– 3):374–80.
- 986 78. Mistry M, Gillis J, Pavlidis P. Genome-wide expression profiling of schizophrenia using a large combined cohort. Mol Psychiatry. 2013 Feb;18(2):215–25.
- 79. Choi KH, Higgs BW, Wendland JR, Song J, McMahon FJ, Webster MJ. Gene expression and
 genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry. 2011 Feb 15;69(4):353–
 90.
- 80. Montaño CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, et al. Measuring celltype specific differential methylation in human brain tissue. Genome Biol. 2013;14(8):R94.
- 81. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016 Feb;19(2):335–46.
- 82. Mancarci O, Toker L, Tripathy S, Li B, Rocco B, Sibille E, et al. NeuroExpresso: A cross-laboratory database of brain cell-type expression profiles with applications to marker gene identification and bulk brain tissue transcriptome interpretation. bioRxiv [Internet]. 2016 Nov 22;
 898 Available from: http://biorxiv.org/content/biorxiv/early/2016/11/22/089219.full.pdf
- 83. Bowling K, Ramaker RC, Lasseigne BN, Hagenauer M, Hardigan A, Davis N, et al. Post-mortem
 molecular profiling of three psychiatric disorders reveals widespread dysregulation of cell-type
 associated transcripts and refined disease-related transcription changes. bioRxiv. 2016 Jun
 29;061416.
- 1003 84. Chase KA, Rosen C, Gin H, Bjorkquist O, Feiner B, Marvin R, et al. Metabolic and inflammatory genes in schizophrenia. Psychiatry Res. 2015 Jan 30;225(1–2):208–11.

Running Head: PREDICTING CELL TYPE BALANCE

- 1005
 85. Medina A, Watson SJ, Bunney W, Myers RM, Schatzberg A, Barchas J, et al. Evidence for
 alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res. 2016
 Jan;72:15–21.
- 1008 86. Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron. 2012 Oct 4;76(1):160–74.

1010