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Abstract  

Psychiatric illness is unlikely to arise from pathology occurring uniformly across all cell types in affected 

brain regions. Despite this, transcriptomic analyses of the human brain have typically been conducted 

using macro-dissected tissue due to the difficulty of performing single-cell type analyses with donated 

post-mortem brains. To address this issue statistically, we compiled a database of several thousand 

transcripts that were specifically-enriched in one of 10 primary cortical cell types in previous 

publications. Using this database, we predicted the relative cell type composition for 833 human cortical 

samples using microarray or RNA-Seq data from the Pritzker Consortium (GSE92538) or publicly-

available databases (GSE53987, GSE21935, GSE21138, CommonMind Consortium). These predictions 

were generated by averaging normalized expression levels across transcripts specific to each cell type 

using our R-package BrainInABlender (validated and publicly-released: 

https://github.com/hagenaue/BrainInABlender). Using this method, we found that the principal 

components of variation in the datasets strongly correlated with the neuron to glia ratio of the samples. 

This variability was not simply due to dissection – the relative balance of brain cell types appeared to be 

influenced by a variety of demographic, pre- and post-mortem variables. Prolonged hypoxia around the 

time of death predicted increased astrocytic and endothelial gene expression, illustrating vascular 

upregulation. Aging was associated with decreased neuronal gene expression. Red blood cell gene 

expression was reduced in individuals who died following systemic blood loss. Subjects with Major 

Depressive Disorder had decreased astrocytic gene expression, mirroring previous morphometric 

observations. Subjects with Schizophrenia had reduced red blood cell gene expression, resembling the 

hypofrontality detected in fMRI experiments. Finally, in datasets containing samples with especially 

variable cell content, we found that controlling for predicted sample cell content while evaluating 

differential expression improved the detection of previously-identified psychiatric effects. We conclude 

that accounting for cell type can greatly improve the interpretability of transcriptomic data. 
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1. Introduction 1	

The human brain is a remarkable mosaic of diverse cell types stratified into rolling cortical layers, 2	

arching white matter highways, and interlocking deep nuclei. In the past decade, we have come to 3	

recognize the importance of this cellular diversity in even the most basic neural circuits. At the same time, 4	

we have developed the capability to comprehensively measure the thousands of molecules essential for 5	

cell function. These insights have provided conflicting priorities within the study of psychiatric illness: do 6	

we carefully examine individual molecules within their cellular and anatomical context or do we extract 7	

transcript or protein en masse to perform large-scale unbiased transcriptomic or proteomic analyses?  In 8	

rodent models, researchers have escaped this dilemma by a boon of new technology: single cell laser 9	

capture, cell culture, and cell-sorting techniques can provide sufficient extract for transcriptomic and 10	

proteomic analyses. However, single cell type analyses of the human brain are far more challenging (1–3) 11	

– live tissue is only available in the rarest of circumstances and intact single cells are difficult to 12	

dissociate from post-mortem tissue without intensive procedures like laser capture microscopy.  13	

Therefore, to date, the vast majority of unbiased transcriptomic analyses of the human brain have 14	

been conducted using macro-dissected, cell-type heterogeneous tissue. On Gene Expression Omnibus 15	

(GEO) alone, there are at least 63* publicly-available macro-dissected post-mortem human brain tissue 16	

datasets, and many others are available to researchers via privately-funded portals (Stanley Medical 17	

Research Institute, Allen Brain Atlas, CommonMind Consortium). These datasets have provided us with 18	

novel hypotheses (e.g., (4,5)), but often a relatively small number of candidate molecules survive analysis 19	

despite careful sample collection, and interpreting molecular results in isolation from their respective 20	

cellular context can be exceedingly difficult. At the core of this issue is the inability to differentiate 21	

between (1) alterations in gene expression that reflect an overall disturbance in the relative ratio of the 22	

different cell types comprising the tissue sample, and (2) intrinsic dysregulation of one or more cell types, 23	

indicating perturbed biological function. 24	

																																																								
* As of 9-14-2017 
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In this manuscript, we present results from an easily accessible solution to this problem that 25	

allows researchers to statistically estimate the relative number or transcriptional activity of particular cell 26	

types in macro-dissected human brain transcriptomic data by tracking the collective rise and fall of 27	

previously identified cell type specific transcripts. Similar techniques have been used to successfully 28	

predict cell type content in human blood samples (6–9), as well as diseased and aged brain samples (10–29	

12). Our method was specifically designed for application to large, highly-normalized human brain 30	

transcriptional profiling datasets, such as those commonly used by neuroscientific research bodies such as 31	

the Pritzker Neuropsychiatric Research Consortium and the Allen Brain Institute. 32	

We took advantage of a series of newly available data sources depicting the transcriptome of 33	

known cell types, and applied them to infer the relative balance of cell types in our tissue samples. We 34	

draw from seven large studies detailing cell-type specific gene expression in a wide variety of cells in the 35	

forebrain and cortex (2,13–18). Our analyses include all major categories of cortical cell types (17), 36	

including two overarching categories of neurons that have been implicated in psychiatric illness (19): 37	

projection neurons, which are large, pyramidal, and predominantly excitatory, and interneurons, which 38	

are small and predominantly inhibitory (20). These are accompanied by three prevalent forms of glia that 39	

make up the majority of cells in the brain: oligodendrocytes, which provide the insulating myelin sheath 40	

for axons (21), astrocytes, which help create the blood-brain barrier and provide structural and metabolic 41	

support for neurons (21), and microglia, which serve as the brain’s resident macrophages and provide an 42	

active immune response (21). We also incorporate vascular cell types: endothelial cells, which line the 43	

interior surface of blood vessels, and mural cells (smooth muscle cells and pericytes), which regulate 44	

blood flow (22). We included progenitor cells because they are widely implicated in the pathogenesis of 45	

mood disorders (23). Within the cortex, these cells mostly take the form of immature oligodendrocytes 46	

(17). Finally, the primary cells found in blood, erythrocytes or red blood cells (RBCs), carry essential 47	

oxygen throughout the brain. These cells lack a cell nucleus and do not generate new RNA, but still 48	

contain an existing, highly-specialized transcriptome (24). The relative presence of these cells could 49	
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arguably represent overall blood flow, the functional marker of regional neural activity traditionally used 50	

in human imaging studies. 51	

To characterize the balance of these cell types in psychiatric samples, we first demonstrate that our 52	

method of summarizing cell type specific gene expression into a single metric (“cell type index”) can 53	

reliably predict relative cell type balance in a variety of validation datasets. Then we discover that the 54	

predicted cell type balance of samples can explain a large percentage of the variation in macro-dissected 55	

human brain microarray and RNA-Seq datasets. This variability is driven by pre- and post-mortem 56	

subject variables, such as age, aerobic environment, and large scale blood loss, in addition to dissection. 57	

Finally, we demonstrate that our method enhances our ability to discover and interpret psychiatric effects 58	

in human transcriptomic datasets, uncovering previously-documented changes in cell type balance in 59	

relationship to Major Depressive Disorder and Schizophrenia and potentially increasing our sensitivity to 60	

detect genes with previously-identified relationships to Bipolar Disorder and Schizophrenia in datasets 61	

that contain samples with highly-variable cell content.  62	

 63	

2. Methods  64	

 65	

2.1 Compiling a Database of Cell Type Specific Transcripts 66	

To perform this analysis, we compiled a database of several thousand transcripts that were 67	

specifically-enriched in one of nine primary brain cell types within seven published single-cell or purified 68	

cell type transcriptomic experiments using mammalian brain tissues (2,13–18). These primary brain cell 69	

types included six types of support cells: astrocytes, endothelial cells, mural cells, microglia, immature 70	

and mature oligodendrocytes, as well as two broad categories of neurons (interneurons and projection 71	

neurons). We also included a category for neurons that were extracted without purification by subtype 72	

(“neuron_all”). The experimental and statistical methods for determining whether a transcript was 73	

enriched in a particular cell type varied by publication (Table	1), and included both RNA-Seq and 74	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 6	

microarray datasets. We focused on cell-type specific transcripts identified using cortical or forebrain 75	

samples because the data available for these brain regions was more plentiful than for the deep nuclei or 76	

the cerebellum. In addition, we artificially generated a list of 17 transcripts specific to erythrocytes by 77	

searching Gene Card for erythrocyte and hemoglobin-related genes (http://www.genecards.org/).  78	

 In all, we curated gene expression signatures for 10 cell types expected to account for most of the 79	

cells in the cortex. Our final database included 2499 unique human-derived or orthologous (as predicted 80	

by HCOP using 11 available databases: http://www.genenames.org/cgi-bin/hcop) transcripts, with a focus 81	

on coding varieties. We have made this database publicly available within Suppl. Table 1. An updateable 82	

version is also accessible within our R package (https://github.com/hagenaue/BrainInABlender) and as a 83	

downloadable spreadsheet (https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-84	

type-analysis).  85	
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 86	

Table	1. Thousands of transcripts have been identified as specifically-enriched in particular cortical 87	
cell types within published single-cell or purified cell type transcriptomic experiments. The 88	
experimental and statistical methods for determining whether a transcript was enriched in a cell type 89	
varied by publication, and included both RNA-Seq and microarray datasets.  90	

 91	

Citation Subjects Tissue Purification	Method Platform Stringency Derived	Cortical	Cell	Type	Indices	 Transcripts/Orthologs

Astrocyte_All 73
Neuron_All 80
Oligodendrocyte_All 50

Astrocyte_All 40
Endothelial_All 40
Microglia_All 40
Mural_Pericyte 40
Neuron_All 40
Oligodendrocyte_Myelinating 40
Oligodendrocyte_Newly-Formed 39
Oligodendrocyte_Progenitor	Cell 40
Astrocyte_All 240
Endothelial_All 353
Microglia_All 436
Mural_All 155
Neuron_Interneuron 365
Neuron_Pyramidal_Cortical 294
Oligodendrocyte_All 453
Astrocyte_All 21
Endothelial_All 21
Microglia_All 21
Neuron_All 21
Oligodendrocyte_Mature 21
Oligodendrocyte_Progenitor	Cell 21

Astrocyte_All 25
Neuron_CorticoSpinal 25
Neuron_CorticoStriatal 25
Neuron_CorticoThalamic 25
Neuron_Interneuron_CORT 25
Neuron_Neuron_CCK 25
Neuron_Neuron_PNOC 24
Oligodendrocyte_All 25
Oligodendrocyte_Mature 25

Endothelial_All 49

Mural_Vascular 50

Neuron_GABA 32

Neuron_Glutamate 67
Gene	card Human Human Erythrocyte-related	

genes
Unknown Unknown

RBC_All 17

	Transgenic	
mice

	Affymetrix	
microarray

RNA-Seq

RNA-Seq

RNA-Seq

Affymetrix	
microarray

Affymetrix	
microarray

	Affymetrix	
microarray

Sugino	et	al.,	
Nature	

Neuro, 	2006

Cingulate	and	
somatosensory	

cortices,	basolateral	
amygdala,	CA1-CA3	
hippocampus,	and	
dorsal	LGN	of	the	

thalamus

Hand-sorting	
fluorescently-labeled	
cells	followed	by	
amplification

Enriched	with	p<	
1.5E-11

Young	
transgenic	

mice

Young	
transgenic	

mice

	Juvenile	
mice

Adult	
human	
epileptic	
patients	

Young	
transgenic	

mice

Young	
transgenic	

mice

Doyle	et	al.,	
Cell,	2008

Cortex,	striatum,	
cerebellum,	spinal	cord,	
basal	forebrain,	and	

brain	stem	

Capture	of	translated	
mRNA	from	specific	
cell	types	labeled	in	
transgenic	mice	using	
translating	ribosome	
affinity	purification	

(TRAP)	

Top	25	enriched	
transcripts	

determined	by	
iterative	rank	
comparisons

Daneman	et	
al.,	PLOS,	
2010

Cortex	 Fluorescent	cell	
sorting	using	

antibodies	to	deplete	
non-specific	cell	types

>20	Fold	
enrichment	for	
endothelial,	>8		
fold	enrichment	
for	vasculature

Zeisel	et	al.,	
Science,	
2015

Somatosensory	cortex	
and	CA1	hippocampus

Unbiased	capture	of	
single	cells	from	
whole	tissue	cell	

suspension	

Enriched	with	
99.9%	posterior	

probability

Darmanis	et	
al.,	PNAS,	
2015

Anterior	temporal	lobe	 Unbiased	capture	of	
single	cells	from	
whole	tissue	cell	

suspension	

"Top	20"	enriched	
transcripts	

Cahoy	et	al.,	
J	Neuro,	
2008.

Forebrain Fluorescent	cell	
sorting	using	

antibodies	to	deplete	
non-specific	cell	types	

>20	Fold	
Enrichment

Zhang	et	al.,	
J	Neuro ,	
2014

Cortex Fluorescent	cell	
sorting	using	

antibodies	to	deplete	
non-specific	cell	types	

Top	40	transcripts	
with	>20	Fold	
Enrichment
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2.2 “BrainInABlender”: Employing the Database of Cell Type Specific Transcripts to Predict 92	

Relative Cell Type Balance in Heterogenous Brain Samples   93	

Next, we designed a method that uses the collective expression of cell type specific transcripts in 94	

brain tissue samples to predict the relative cell type balance of the samples (“BrainInABlender”). We 95	

specifically designed BrainInABlender to be compatible with large human brain transcriptional profiling 96	

datasets such as those used by our research consortium (Pritzker) and the Allen Brain Institute, which 97	

may lack full information about relative levels of expression within individual samples due to the 98	

extensive normalization procedures used to combine data across batches or platforms. We have made our 99	

method publicly-available in the form of a downloadable R package 100	

(https://github.com/hagenaue/BrainInABlender). 101	

In brief, BrainInABlender extracts the data from transcriptional profiling datasets that represent 102	

genes identified in our database as having cell type specific expression in the brain (as curated by official 103	

gene symbol). Prior to application of our method, the dataset should be in the format of expression-level 104	

summary data (RNA-Seq: gene-level summary - CPM, RPKM or TPM; microarray: probe or probeset 105	

summary), and should have received at least some basic preprocessing, including log(2) transformation, 106	

normalization to eliminate technical variation, and standard quality control. Within BrainInABlender, 107	

these data are then centered and scaled across samples (mean=0, sd=1) to prevent transcripts with more 108	

variable signal from exerting disproportionate influence on the results. Then, if necessary, the normalized 109	

data from all transcripts representing the same gene are averaged for each sample and re-scaled. Finally, 110	

for each sample, these values are averaged across the genes identified as having expression specific to a 111	

particular cell type for each reference publication included in the database of cell type specific transcripts. 112	

This creates 38 cell type signatures derived from the cell type specific genes identified by the eight 113	

publications ("Cell Type Indices"), each of which predicts the relative content for one of the 10 primary 114	

cell types in our brain samples (Figure 1).  115	

Later, during validation analyses (Suppl. Section 7.2), we found substantial support for simply 116	

averaging these 38 publication-specific cell type indices within each of the primary categories to produce 117	
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ten consolidated primary cell-type indices for each sample. To perform this consolidation, we also 118	

removed any transcripts that were identified as “cell type specific” to multiple primary cell type 119	

categories (Suppl. Figure 3). These consolidated indices are included as output from BrainInABlender. 120	

Please note that our method was specifically designed to tackle challenges present in our 121	

microarray data, but we later discovered that it bears some resemblance to the existing method of 122	

Population Specific Expression Analysis (PSEA, (10–12)). A more detailed discussion of the similarities 123	

and differences between the techniques can be found in Suppl. Section 7.2.2. 124	

 125	

 

Figure 1. Predicting the relative cell type balance in human brain samples using genes previously-126	
identified as having cell type specific expression. Within macro-dissected brain tissue samples, variable 127	
cell type balance is likely to influence the pattern of gene expression. To estimate this variability, we 128	
extracted the data for genes that had been previously identified as having cell type specific expression in 129	
previous publications (“Database of genes with cell type specific expression”, Table 1) and then 130	
averaged across the transcripts identified as specific to a particular cell type for each reference 131	
publication in our database to create 38 different "Cell Type Indices" that predicted relative cell content 132	
in each of the brain samples. Then, for many analyses in our paper, these publication-specific cell type 133	
indices were averaged within their cell type category to produce consolidated cell type indices 134	
representing each of the 10 primary cell types in the human cortex. 135	

 136	

Sample	A:

More	Grey
Matter

Sample	C:

More	White	
Matter

Sample	B:

Even	
Mix

Publication1:	

Oligodendrocyte	
Specific	Genes:

MAG
MOG
…

Neuron	Specific	
Genes:
NEFL

SNAP25
…

Publication	2:	

Oligodendrocyte	
Specific	Genes:

MAG
PLLP
…

Neuron	Specific	
Genes:
NEFL
VSNL1
…

Database	of	Genes	with	Cell	

Type	Specific	Expression

Human	

Brain	

Samples

Input: Transcriptional	

Profiling	Data

(Microarray	or	RNA-Seq)

Relative	

Expression

(Z-Score)

Average	the	data	

for	genes	in	each	

publication’s	list

Output:	Predictions	of	Relative	Sample	

Cell	Type	Balance

Gene	 Sample	A Sample	B Sample	C
MAG -0.5 -0.1 1.0
PLLP -0.8 0.2 1.5
MOG -1.0 -0.3 1.3
PER1 0.1 0.3 -0.2
NEFL 1.5 0.2 -0.6
SNAP25 0.9 0.1 -1.2
VSNL1 2.0 0.4 -1.3
RORA 0.1 -0.2 0.2
… … … …

Consolidated	
Cell	Type	Indices Sample	A Sample	B Sample	C
Oligodendrocyte -0.7 -0.1 1.2
Neuron 1.5 0.2 -0.9
… … … …

Publication	Specific
Cell	Type	Indices Sample	A Sample	B Sample	C
Publication	1_Oligodendrocyte -0.8 -0.2 1.1
Publication	1_Neuron 1.2 0.2 -0.9
… … … …
Publication	2_Oligodendrocyte -0.6 0.1 1.3
Publication	2_Neuron 1.8 0.3 -1.0
… … … …

Average	the	publication-

specific	cell	type	indices	

for	each	cell	type
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2.3 Validation of Relative Cell Content Predictions  137	

We initially validated our method using publicly-available datasets from purified cortical cell 138	

types (RNA-seq datasets GSE52564 and GSE6783), artificial mixtures of cells produced in silico by 139	

sampling from within these datasets, and microarray data from samples containing artificially-generated 140	

mixtures of cultured cells from P1 pups (Affymetrix Rat Genome 230 2.0 Array dataset GSE19380; 141	

further detail: Suppl. Sections 7.1.1- 7.1.2). For each of these analyses, we examined the correlation 142	

between the cell type indices outputted by BrainInABlender and the documented cell content of the 143	

samples.  144	

Next, we wanted to see whether the cell content predictions produced by BrainInABlender could 145	

also correctly reflect relative cell type balance in human post-mortem samples. To test this, we applied 146	

our method to a large human post-mortem Agilent microarray dataset (841 samples) spanning 160 cortical 147	

and subcortical brain regions from the Allen Brain Atlas (http://human.brain-map.org/microarray/search, 148	

December 2015, (25)). This dataset was derived from high-quality tissue (absence of neuropathology, 149	

pH>6.7, post-mortem interval<31 hrs, RIN>5.5) from 6 human subjects (26). The tissue samples were 150	

collected using a mixture of block dissection and laser capture microscopy (27). After applying 151	

BrainInABlender, we compared the outputted cell type index results between selected brain regions 152	

known to contain relatively more (+) or less (-) of a particular cell type using Welch’s t-test (further 153	

detail: Suppl. Section 7.1.4).  154	

 155	

2.4 Predicting Relative Cell Content in Transcriptomic Data from Macro-Dissected Human 156	

Cortical Tissue from Psychiatric Subjects 157	

Next, we profiled cell type specific gene expression in several large psychiatric human brain 158	

microarray datasets. The first was a large Pritzker Consortium Affymetrix U133A microarray dataset 159	

derived from high-quality human post-mortem dorsolateral prefrontal cortex samples (final n=157 160	

subjects), including tissue from subjects without a psychiatric or neurological diagnosis (“Controls”, 161	

n=71), or diagnosed with Major Depressive Disorder (“MDD”, n=40), Bipolar Disorder (“BP”, n=24), or 162	
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Schizophrenia (“Schiz”, n= 22). The severity and duration of physiological stress at the time of death was 163	

represented by an agonal factor score for each subject (ranging from 0-4, with 4 representing severe 164	

physiological stress (28,29)). We measured the pH of cerebellar tissue to indicate the extent of oxygen 165	

deprivation experienced around the time of death (28,29) and calculated the interval between the 166	

estimated time of death and the freezing of the brain tissue (the postmortem interval or PMI) using 167	

coroner records. Our current analyses began with subject-level summary gene expression data 168	

(GSE92538). 169	

We determined the replicability of our results using three smaller publicly-available post-mortem 170	

human cortical Affymetrix U133Plus2 microarray datasets (GSE53987 (30), GSE21935 (31), GSE21138 171	

(32), Table 2.	). These datasets were selected because they included both psychiatric and control samples, 172	

and provided pH, PMI, age, and gender in the demographic information on the GEO website 173	

(https://www.ncbi.nlm.nih.gov/geo/). To control for technical variation, the sample processing batches 174	

were estimated using the microarray chip scan dates extracted from the .CEL files and RNA degradation 175	

was estimated using the R package AffyRNADegradation (33).  176	

Finally, we also explored replicability within the recently-released large CommonMind 177	

Consortium (CMC) human dorsolateral prefrontal cortex RNA-seq dataset (34); downloaded from the 178	

CommonMind Consortium Knowledge Portal (https://www.synapse.org/CMC; final n=514 subjects). We 179	

predicted the relative cell type content of these samples using a newer version of BrainInABlender (v2) 180	

which excluded a few of the weaker cell type specific gene sets (15).  181	

In general, the full preprocessing methods for these datasets can be found in Suppl. Section 7.1. 182	

The code for all analyses in the paper can be found at https://github.com/hagenaue/ and 183	

https://github.com/aschulmann/CMC_celltype_index.  184	
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 185	

Table	2.	We examined the pattern of cell-type specific gene expression in five post-mortem human 186	
cortical tissue datasets that included samples from subjects with psychiatric illness. Abbreviations: 187	
CTRL: control, BP: Bipolar Disorder, MDD: Major Depressive Disorder, SCHIZ: Schizophrenia, GEO: 188	
Gene Expression Omnibus, BA: Brodmann’s Area, PMI: Post-mortem interval, SD: Standard Deviation, 189	
Brain Banks: UC-Irvine (University of California – Irvine), PITT (University of Pittsburgh), CCHPC 190	
(Charing Cross Hospital Prospective Collection), MSSM (Mount Sinai Icahn School of Medicine), MHRI 191	
(Mental Health Research Institute Australia), PENN (University of Pennsylvania) 192	

	193	
3.5 Examining the Relationship Between Predicted Cell Content Derived from Transcriptional 194	

Profiling Data and Clinical/Biological Variables  195	

 We next set out to observe the relationship between the predicted cell content of our samples and 196	

a variety of medically-relevant subject variables. To perform this analysis, we first examined the 197	

relationship between seven relevant subject variables and each of the ten consolidated cell type indices in 198	

the Pritzker prefrontal cortex dataset using a linear regression model that allowed us to simultaneously 199	

control for other likely confounding variables: 200	

Equation 1: 201	

Cell Type Index= β0 +β1*(Brain pH)+β2*(Agonal Factor) 202	
+β3*(PMI)+β4*(Age)+β5*(Sex)+β6*(Diagnosis)+ β7*(Exsanguination)+ e 203	

Microarray:
GEO	

Accession	#
Published? Brain	Bank

Brain	
Region

Sample	
Size	(no	
outliers)

Subjects	per	group	
(no	outliers)

AVE	
pH

(+/-	SD)

AVE	
Age

(+/-	SD)

AVE	
PMI

(+/-	SD)

%	
Female

GSE92538

Current	
paper:	

Hagenauer	
(2018)

Pritzker	
Consortium:	
UC-Irvine

BA9/BA46

337	
(multiple	
replicates/	
subject)

157:	71	CNTRL,	24	
BP,	40	MDD,	22	

SCHIZ

6.8
	(+/-0.3)

52
	(+/-15)

24	
(+/-9)

27%

GSE53987
Lanz	et	al.	
(2015)

PITT
BA46:	
grey	
matter

66
66:	18	CNTRL,	17	
BP,	17	MDD,	14	

SCHIZ

6.6	
(+/-0.3)

46
	(+/-10)

20	
(+/-6)

45%

GSE21935
Barnes	et	al.	

(2011)
CCHPC BA22 42

42:	19	CNTRL,	23	
SCHIZ

6.3	
(+/-0.3)

70
	(+/-19)

8	
(+/-5)

45%

GSE21138
Narayan	et	
al.	(2008)

MHRI
BA46:	
grey	
matter

54
54:	27	CNTRL,	27	

SCHIZ
6.3	

(+/-0.2)
45

	(+/-17)
40	

(+/-13)
17%

RNA-Seq:
Public	Data	
Release

Published? Brain	Bank
Brain	
Region

Sample	
Size		(all)

Subjects	per	group		
(all)

AVE	
pH

(+/-	SD)

AVE	
Age

(+/-	SD)

AVE	
PMI

(+/-	SD)

%	
Female

Synapse.org
Fromer	et	al.	

(2016)

CommonMind	
Consortium:	
MSSM,	PENN,	

PITT

BA9	/	
BA46	
(PITT:	
grey	

matter)

621
603:	285	CNTRL,	
263	SCZ,	47	BP,	8	

AFF

6.5	
(+/-	0.3)

65
	(+/-	18)	
(binned	
90+)

17	
+/-	11

41%
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We then examined the replicability of these relationships using data from the three smaller 204	

publicly-available human post-mortem microarray datasets (GSE53987, GSE21935, GSE21138). For 205	

these datasets, we initially lacked detailed information about manner of death (agonal factor and 206	

exsanguination), but were able to control for technical variation within the model using statistical 207	

estimates of RNA degradation and batch (scan date): 208	

Equation 2: 209	

Cell Type Index= β0 +β1*(Brain pH)+β2*(PMI)+β3*(Age)+β4*(Sex)+β5*(Diagnosis)+ 210	
β6*(RNA Degradation)+ β7*(Batch, when applicable)+ e 211	

We evaluated replicability by performing a meta-analysis for each variable and cell type combination 212	

across the four microarray datasets. To do this, we applied random effects modeling to the respective 213	

betas and accompanying sampling variance derived from each dataset using the rma.mv() function within 214	

the metafor package (35). P-values were corrected for multiple comparisons following the Benjamini-215	

Hochberg method (FDR or q-value; (36)).  216	

Finally, we characterized these relationships in the large CMC RNA-seq dataset. For this dataset, we 217	

had some information about manner of death but lacked knowledge of agonal factor or exsanguination. 218	

We controlled for technical variation due to dissection site (institution) and RNA degradation (RIN): 219	

Equation 3: 220	

Cell Type Index= β0 +β1*(Brain pH)+β2*(PMI)+β3*(Age)+β4*(Sex)+β5*(Diagnosis)+ 221	
β6*(RNA Degradation)+ β7*(Institution)+ β8*(MannerOfDeath)+e 222	

 223	

3.6 Characterizing Psychiatric Gene Expression using Differential Expression Models that Include 224	

Either Standard Co-variates or Cell Type Indices 225	

To determine whether controlling for variability in cell type balance in the dataset could improve our 226	

ability to detect differential expression related to psychiatric illness, we compared differential expression 227	

results within the human psychiatric datasets that were derived from linear regression models of 228	

increasing complexity, including a simple base model containing just the variable of interest (“Model 1”), 229	

a standard model controlling for traditional co-variates (“Model 2”), and a model controlling for 230	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/089391doi: bioRxiv preprint 

https://doi.org/10.1101/089391


Running	Head:	PREDICTING	CELL	TYPE	BALANCE	

	 14	

traditional co-variates as well as each of the cell type indices (“Model 5”). We also used two reduced 231	

models that only included the most prevalent cell types (Astrocyte, Microglia, Oligodendrocyte, 232	

Neuron_Interneuron, Neuron_Projection; (21)) to avoid issues with multicollinearity. The first of these 233	

models included traditional co-variates (“Model 4”), whereas the second model excluded them (“Model 234	

3”) (Equation 4). 235	

Equation 4: A model of gene expression for each dataset, colored to illustrate the subcomponents 236	
evaluated during our model comparison (#M1-M5). The base model (intercept and variable of interest) 237	
is presented in green, traditional  subject variable covariates are blue, the cell type indices for the most 238	
prevalent cell types are red, and the remaining cell type indices are purple. Model components unique to 239	
each dataset are underlined. 240	

The Pritzker microarray dataset: 241	
Gene Expression (Probeset Signal) =  242	
β0 + β1*(The variable of interest: Diagnosis) 243	
+β2*(Brain pH)+ β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(Agonal Factor)+  244	
+ β7*(Astrocyte)+β8*(Oligodendrocyte)+β9*(Microglia)+β10*(Interneuron)+β11*(ProjectionNeuron) 245	
+β12*(Endothelial)+β13*(Neuron_All)+β14*(Oligodendrocyte_Immature)+β15*(Mural)+β16*(RBC)+ e 246	

The CMC RNA-Seq dataset: 247	
Gene Expression (Probeset Signal) =  248	
β0 + β1*(The variable of interest: Diagnosis) 249	
+β2*(Brain pH)+β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(RIN)+β7*(Institution)+ β8*(CauseOfDeath)+ 250	
+ β9*(Astrocyte)+β10*(Oligodendrocyte)+β11*(Microglia)+β12*(Interneuron)+β13*(ProjectionNeuron) 251	
+β14*(Endothelial)+β15*(Neuron_All)+β16*(Oligodendrocyte_Immature)+β17*(Mural)+β18*(RBC)+ e 252	
 253	
The smaller microarray datasets (GSE53987, GSE21935, GSE21138): 254	
Gene Expression (Probeset Signal) =  255	
β0 + β1*(The variable of interest: Diagnosis) 256	
+β2*(Brain pH)+β3*(PMI)+ β4*(Age)+ β5*(Sex)+ β6*(RNADegradation)+ 257	
+ β7*(Astrocyte)+β8*(Oligodendrocyte)+β9*(Microglia)+β10*(Interneuron)+β11*(ProjectionNeuron) 258	
+β12*(Endothelial)+β13*(Neuron_All)+β14*(Oligodendrocyte_Immature)+β15*(Mural)+β16*(RBC)+ e 259	

 260	

3.7 Functional Ontology with Cell Type Specific Gene Sets 261	

We ran a series of analyses to evaluate how well we could distinguish between changes in cell type 262	

balance in the tissue and changes in cell type specific functions. First, as a case study, we specifically 263	

examined the relationship between age and the functional annotation for genes found in the Neuron_All 264	

index in more depth. To do this, we evaluated the relationship between age and gene expression in the 265	

Pritzker dataset using a standard model that controlled for traditional confounds (“Model 2”) using the 266	
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signal data for all probesets in the dataset. We used “DAVID: Functional Annotation Tool” 267	

(//david.ncifcrf.gov/summary.jsp, (37,38) to identify the functional clusters that were overrepresented by 268	

the genes included in our neuronal cell type index (using the full HT-U133A chip as background), and 269	

then determined the average effect of age (beta) for the genes included in each of the 240 functional 270	

clusters. These functional clusters overrepresented dendritic/axonal related functions, so for a follow-up 271	

analysis, in a manner that was blind to the results, we subsetted the results into 29 functional clusters that 272	

were clearly related to dendritic/axonal functions and 41 functional clusters that seemed distinctly 273	

unrelated to dendritic/axonal functions (Suppl. Table 4) and compared the average effect of age in these 274	

two subsets using a Welch’s t-test. 275	

In the next analysis, we decided to make the process of differentiating between altered cell type-276	

specific functions and relative cell type balance more efficient. We used our cell type specific gene lists to 277	

construct gene sets in a file format (.gmt) compatible with the popular tool Gene Set Enrichment Analysis 278	

(GSEA, (39,40)) and combined them with two other commonly-used gene set collections from the 279	

molecular signatures database (MSigDB: http://software.broadinstitute.org/gsea/msigdb/index.jsp, 280	

downloaded 09/2017, “C2: Curated Gene Sets” and “C5: GO Gene Sets”, Suppl. Table 5). Then we 281	

tested the utility of incorporating our new gene sets into GSEA (fGSEA: (41)) using the ranked results 282	

(betas) for the relationship between each subject variable and each probeset in the Pritzker dataset (as 283	

evaluated using a standard model: “Model 2”). 284	

 285	

3. Results & Discussion 286	

	287	
3.1 Validation of Relative Cell Content Predictions  288	

Validation Using Datasets Derived from Purified or Cultured Cells:	We initially validated our 289	

method using publicly-available datasets from purified cell types (datasets GSE52564 and GSE6783; 290	

(2,18) and in silico derived mixtures and found that the statistical cell type indices easily predicted the cell 291	
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type identities of the samples (Suppl. Section 7.2.10). Therefore,  as further validation, we determined 292	

whether relative cell type balance could be accurately deciphered from microarray data for samples 293	

containing artificially-generated mixtures of cultured cells (GSE19380; (12)). We found that the 294	

consolidated cell type indices produced by BrainInABlender strongly correlated with the actual 295	

percentage of cells of a particular type included in the artificial mixtures (Figure 2, Neuron% vs. 296	

Neuron_All Index: R2=0.93, p=1.54e-15, Astrocyte% vs. Astrocyte Index: R2=0.77, p=5.05e-09,  297	

Microglia% vs. Microglia Index: R2=0.64, p=8.2e-07), although we found that the cell type index for 298	

immature oligodendrocytes better predicted the percentage of cultured oligodendrocytes in the samples 299	

than the cell type index for mature oligodendrocytes (Mature: R2=0.45, p=0.000179, Immature: R2=0.81, 300	

p=4.14e-10). We believe this discrepancy is likely to reflect the specific cell culture conditions used in the 301	

original admixture experiment. Notably, the relationship between the consolidated cell type indices and 302	

the actual percentage of each cell type included in the artificial mixtures was approximately linear, despite 303	

the use of log(2)-transformed expression data. 304	
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Figure 2. Validation of Relative Cell Content Predictions. A) Using a microarray dataset derived from 305	
samples that contained artificially-generated mixtures of cultured cells (GSE19380; (12)), we found that 306	
our relative cell content predictions (“cell type indices”) closely reflected actual known content. 307	
However, note that the numeric values for the cell type indices do not convey an absolute proportion of 308	
cells of a particular type in the sample - simply whether a sample contains relatively more or less of the 309	
cell type of interest in comparison to other samples in the dataset. B) Our cell type indices also easily 310	
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differentiated human post-mortem samples derived from brain regions that are known to contain 311	
relatively more (+, red) or less (-, blue) of the targeted cell type of interest (all p<0.007). Results from the 312	
middle frontal gyrus are included for comparison, since the rest of the paper primarily focuses on 313	
prefrontal cortical data. (Bars: average +/-SE). 314	

 315	

Validation Using a Dataset Derived from Human Post-Mortem Tissue: Next, we wanted to see 316	

whether the cell content predictions produced by BrainInABlender correctly reflected relative cell type 317	

balance in human post-mortem samples. To test this, we applied our method to a large cross-regional 318	

human post-mortem microarray dataset (25), and extracted the results for a selection of brain regions that 319	

are known to contain relatively more (+) or less (-) of particular cell types (the results for other regions 320	

can be found in Suppl. Table 2). The results clearly indicated that our cell type analyses could identify 321	

well-established differences in cell type balance across brain regions (Figure 2, (+) region vs. (-) region 322	

for all cell types: p<0.007, Cohen’s d>3.2). The choroid plexus had elevated gene expression specific to 323	

vasculature (endothelial cells, mural cells, (42)). The corpus callosum and cingulum bundle showed an 324	

enrichment of oligodendrocyte-specific gene expression (42). The central glial substance was enriched 325	

with gene expression specific to glia and support cells, especially astrocytes. The dentate gyrus, which 326	

contains densely-packed glutamatergic granule cells (43), was enriched for gene expression specific to 327	

projection neurons. The highly GABA-ergic central nucleus of the amygdala (44) had a slight enrichment 328	

of gene expression specific to interneurons. These results provide fundamental validation that our 329	

methodology can accurately predict relative cell type balance in human post-mortem samples. Moreover, 330	

these results suggest that the cell type indices are capable of generally tracking their respective cell types 331	

in subcortical structures, despite the dependency of our method on cell type specific gene lists derived 332	

from the forebrain and cortex. 333	

 334	
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3.8 Inferred Cell Type Composition Explains a Large Percentage of the Sample-Sample Variability 335	

in Transcriptomic Data from Macro-Dissected Human Cortical Tissue 336	

Using principal components analysis we found that the primary gradients of gene expression 337	

variation across samples in all four of the cortical transcriptomic datasets strongly correlated with our 338	

estimates of cell type balance. For example, while analyzing the Pritzker microarray dataset, we found 339	

that the first principal component (PC1), which encompassed 23% of the variation in gene expression 340	

across samples in the dataset, spanned from samples with high predicted support cell content to samples 341	

with high predicted neuronal content. Therefore, a large percentage of the variation in PC1 (91%) was 342	

accounted for by an average of the astrocyte and endothelial indices (p=2.2e-82, with a respective R2 of 343	

0.80 and 0.75 for each index analyzed separately) or by the general neuron index (p=6.3e-32, R2=0.59). 344	

The second notable gradient in the dataset (PC2) encompassed 12% of the variation overall, and spanned 345	

samples with high predicted projection neuron content to samples with high predicted oligodendrocyte 346	

content (with a respective R2 of 0.62 and 0.42, and p-values of p=8.5e-35 and p=8.7e-20).  347	

To confirm that the strong relationship between the top principal components of variation and our 348	

cell type indices did not originate artificially due to cell type specific genes representing a large 349	

percentage of the most highly variable transcripts in the dataset, we repeated the principal components 350	

analysis after excluding all cell type specific transcripts from the dataset and still found these strong 351	

correlations (Figure 3; PC1 vs. average astrocyte/endothelial index: R2=0.89, p=1.1e-76; PC2 vs. 352	

projection neuron index: R2=0.65, p=1.6e-37). Indeed, individual cell type indices still better accounted 353	

for the main principal components of variation in the microarray data than all other major subject 354	

variables combined (pH, Agonal Factor, PMI, Age, Gender, Diagnosis; PC1: R2=0.416, PC2: R2=0.203). 355	

Similarly, when examining the data for individual probesets, a linear model that included just the six 356	

subject variables (Equation 4) accounted for an average of only 12% of the variation (R2, 357	

Adj.R2=0.0692), whereas a linear model including the astrocyte and projection neuron indices alone 358	

accounted for 17% (R2, Adj.R2=0.156) and a linear model including all 10 cell types accounted for an 359	

average of 30% (R2, Adj.R2=0.255), almost one third of the variation present in the data for any particular 360	
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probeset.  Therefore, a large percentage of the genes in our dataset seemed to be preferentially expressed 361	

in relationship to particular cell types, even if their expression was not defined as strictly cell type specific 362	

in our database.     363	

 364	

Figure 3. Cell content predictions explain a large percentage of the variability in microarray data 365	
derived from the human cortex. As an example, within the Pritzker dataset, even after excluding all data 366	
from genes identified as cell type specific in our database, A) the first principal component of variation 367	
(PC1) was strongly correlated with predicted “support cell” content in the samples (the average of the 368	
astrocyte and endothelial indices). B) PC2 was strongly correlated with predicted projection neuron 369	
content. Likewise, when applying a linear model to the data for each probeset, the R2 values for each 370	
probeset (illustrated in the histogram) tended to be much smaller when using a model that included C) 371	
only the six subject variables, versus D) only the five most prevelant cortical cell types. 372	

 373	

Within the other four human cortical tissue datasets, the relationships between the top principal 374	

components of variation and the consolidated cell type indices were similarly strong (Suppl. Section 3.8), 375	

despite the fact that these datasets had received less preprocessing to remove the effects of technical 376	

variation. These results indicated that accounting for cell type balance is important for the interpretation 377	
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of post-mortem human brain transcriptomic data and might improve the signal-to-noise ratio in analyses 378	

aimed at identifying psychiatric risk genes. 379	

 

3.9 Cell Content Predictions Derived from Transcriptional Profiling Data Match Known 380	

Relationships Between Clinical/Biological Variables and Brain Tissue Cell Content 381	

We next set out to observe the relationship between the predicted cell content of our samples and a 382	

variety of medically-relevant subject variables. This analysis uncovered many relationships that had been 383	

previously-identified using other paradigms or animal models (Figure 4, Suppl. Table 3).  384	

Dissection: First, as a proof of principle, we were able to clearly observe dissection differences 385	

between institutions within the large CMC RNA-Seq dataset, with samples from University of Pittsburgh 386	

having a predicted relative cell type balance that closely matched what would be expected due to their 387	

gray matter only dissection method (Oligodendrocyte: β =-0.404, p=2.42e-11; Microglia: β=-0.274, 388	

p=3.06e-05; Neuron_Interneuron: β=0.0916, p=0.0161; Neuron_Projection: β=0.145, p=2.31e-05; Mural: 389	

β=0.170, p=2.14e-08; Endothelial: β=0.200, p=1.12e-05). In contrast, samples from University of 390	

Pennsylvania were associated with lower predicted cell content related to vasculature (Endothelial: β=-391	

0.255, p=4.01-04; Mural: β=-0.168, p=4.59e-04; Astrocyte: β=-0.189, p=7.47e-03). 392	

Manner of Death: Predicted cell type content was also closely related to manner of death. Within the 393	

Pritzker dataset we found that subjects who died in a manner that involved exsanguination had a notably 394	

low red blood cell index (β=-0.398; p=0.00056). Later, we were able replicate this result within 395	

GSE21138 using data from 5 subjects who were also likely to have died in a manner involving 396	

exsanguination (β=-0.516, p=0.052*trend, manner of death reported in suppl. in (32)).  397	

The presence of prolonged hypoxia around the time of death, as indicated by either low brain pH or 398	

high agonal factor score within the Pritzker dataset, was associated with a large increase in the endothelial 399	

cell index (Agonal Factor: β=0.118 p=2.85e-07; Brain pH: β=-0.210, p=0.0003) and astrocyte index 400	

(Brain pH: β=-0.437, p=2.26e-07; Agonal Factor: β=0.071, p=0.024), matching previous demonstrations 401	

of cerebral angiogenesis, endothelial and astrocyte activation and proliferation in low oxygen 402	
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environments (45). Smaller increases were also seen in the mural index (Mural vs. Agonal Factor: β= 403	

0.0493, p=0.0286). In contrast, prolonged hypoxia was associated with a clear decrease in all of the 404	

neuronal indices (Neuron_All vs. Agonal Factor: β=-0.242, p=3.58e-09; Neuron_All vs. Brain pH: 405	

β=0.334, p=0.000982; Neuron_Interneuron vs. Agonal Factor: β=-0.078, p=4.13e-05; 406	

Neuron_Interneuron vs. Brain pH: β=0.102, p=0.034; Neuron_Projection vs. Agonal Factor: β=-0.096, p= 407	

0.000188), mirroring the notorious vulnerability of neurons to low oxygen (e.g., (46)).  408	

These overall effects of hypoxia on predicted cell type balance replicated in the smaller human 409	

microarray post-mortem datasets (Astrocyte vs. Brain pH (meta-analysis: b=-0.459, p=2.59e-11): 410	

GSE21138: β=-0.856, p=0.00661, GSE53987: β=-0.461, p=0.00812, Neuron_All vs. Brain pH (meta-411	

analysis: b= 0.245, p=7.72e-04), Neuron_Interneuron vs. Brain pH (meta-analysis: b=0.109, p=7.89e-03): 412	

GSE21138: β=0.381134, p=0.0277), despite lack of information about agonal factor, and partially 413	

replicated in the CMC human RNA-Seq dataset (Neuron_Interneuron vs. Brain pH: β=0.186, p=9.81e-414	

05). In several datasets, we also found that prolonged hypoxia correlated with a decreased microglial 415	

index (Microglia vs. Brain pH: GSE53987: β=0.462, p=0.00603; CMC: β=0.286, p=4.66e-04). 416	

  417	
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Neuron_Projection	vs.	Age -2.8 -3.7 -0.5 -3.1 1.61E-06 4.83E-05 -7.5 2.93E-13 7.33E-12 **
Oligodendrocyte	vs.	Age 1.8 1.2 0.3 3.1 2.74E-03 2.74E-02 1.6 1.02E-01 2.25E-01 *
Oligodendrocyte_Immature	vs.	Age -3.7 -4.7 -0.2 -4.5 5.98E-11 2.69E-09 -11.0 3.32E-25 2.49E-23 **
PMI
Oligodendrocyte	vs.	PMI -3.6 -3.6 -1.6 -0.5 2.23E-05 4.02E-04 -4.1 4.70E-05 3.36E-04 **
Endothelial	vs.	PMI -2.0 -0.8 0.4 -0.1 5.51E-02 2.36E-01 -3.9 1.32E-04 8.60E-04 *
Microglia	vs.	PMI -1.0 -1.5 -1.2 -0.7 9.72E-02 3.05E-01 -3.5 5.15E-04 2.76E-03 *
Oligodendrocyte_Immature	vs.	PMI 3.5 1.0 1.6 -0.4 4.81E-03 4.33E-02 -0.4 6.86E-01 8.04E-01
Neuron_Projection	vs.	PMI 3.9 1.6 -0.2 -1.2 2.28E-03 2.56E-02 3.1 1.97E-03 9.24E-03 **
Neuron_All	vs.	PMI 2.5 1.8 -0.4 0.0 1.74E-02 9.81E-02 2.6 1.10E-02 3.88E-02 *
Diagnosis:
Astrocyte	vs.	Diagnosis_MDD -2.6 -1.0 5.88E-03 4.81E-02
Neuron_All	vs.	Diagnosis	BP -0.9 -0.7 2.46E-01 5.39E-01 2.6 8.44E-03 3.17E-02
RBC	vs.	Diagnosis_Schiz -1.2 0.1 -1.0 -0.5 2.04E-01 4.96E-01 -2.5 1.41E-02 4.71E-02 *
Gender:
Neuron_Interneuron	vs.	GenderFemale -0.9 0.0 0.7 0.3 6.65E-01 9.06E-01 -2.5 1.20E-02 4.09E-02
Neuron_Projection	vs.	GenderFemale 1.0 -0.3 -0.4 1.6 3.60E-01 6.46E-01 -2.5 1.11E-02 3.88E-02
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Figure 4. Cell content predictions derived from microarray data match known relationships between 419	
subject variables and brain tissue cell content. Boxplots represent the median and interquartile range, 420	
with whiskers illustrating either the full range of the data or 1.5x the interquartile range. A. Within the 421	
CMC dataset, cortical tissue samples that were dissected to only contain gray matter (PITT) show lower 422	
predicted oligodendrocyte and microglia content and more neurons and vasculature (bars: β+/- SE, 423	
red/blue: p<0.05). B. Subjects who died in a manner that involved exsanguination had a notably low red 424	
blood cell index in both the Pritzker (p=0.00056) and Narayan et al. datasets (p=0.052*trend). C. The 425	
presence of prolonged hypoxia around the time of death, as indicated by high agonal factor score, was 426	
associated with a large increase in the endothelial cell index (p=2.85e-07) matching previous 427	
demonstrations of cerebral angiogenesis, activation, and proliferation in low oxygen environments (45). 428	
D. High agonal factor was also associated with a clear decrease in neuronal indices (p=3.58e-09) 429	
mirroring the vulnerability of neurons to low oxygen (46). E. Age was associated with a decrease in the 430	
neuronal indices (p= 0.000956) which fits known decreases in gray matter density in the frontal cortex in 431	
aging humans (47). F. Major Depressive Disorder was associated with a moderate decrease in astrocyte 432	
index (p= 0.0118), which fits what has been observed morphometrically (48). G. The most highly-433	
replicated relationships between subject variables and predicted cortical cell content across all five of the 434	
post-mortem human datasets. Provided in the table are the T-stats for the effects (red=upregulation, 435	
blue=downregulation), derived from a larger linear model controlling for confounds (Equation 1, 436	
Equation 2, Equation 3), as well as the nominal p-values from the meta-analysis of the results across the 437	
four microarray studies, and p-values following multiple-comparisons correction (q-value). Only effects 438	
that had a q<0.05 in either our meta-analysis or the large CMC RNA-Seq dataset are included in the 439	
table. Asterisks denote effects that had consistent directionality in the meta-analysis and CMC dataset (*) 440	
or consistent directionality and q<0.05 in both datasets (**). Please note that lower pH and higher 441	
agonal factor are both indicators of greater hypoxia prior to death, but have an inverted relationship and 442	
therefore show opposing relationships with the cell type indices. 443	

 444	
Age: In the Pritzker dataset, age was associated with a moderate decrease in two of the neuronal 445	

indices (Neuron_Interneuron vs. Age: β=-0.00291, p=0.000956; Neuron_Projection Neuron vs. Age: β=- 446	

0.00336, p=0.00505) and this was strongly replicated in the large CMC RNA-Seq dataset (Neuron_All vs. 447	

Age: β=-0.00497, p=2.27e-05; Neuron_Projection Neuron vs. Age: β=-0.00612, p=2.93e-13; 448	

Neuron_Interneuron vs. Age: β=-0.00591, p=2.10e-10). A similar decrease in predicted neuronal content 449	

was seen in all three of the smaller human post-mortem datasets (Neuron_All vs. Age (meta-analysis: b=-450	

0.00415, p=1.57e-03): GSE53987: β=-0.00722, p=0.0432, Neuron_Interneuron vs. Age (meta-analysis: 451	

b=-0.00335, p=2.91e-06): GSE21138: β=-0.00494, p=0.0173, GSE21935: β=-0.00506, p=0.0172, 452	

Neuron_Projection vs. Age (meta-analysis: b=-0.00449, p=1.61e-06): GSE53987: β=-0.0103, 453	

p=0.000497,  GSE21138: β=-0.00763, p=0.00386). This result mirrors known decreases in gray matter 454	

density in the frontal cortex in aging humans (47), as well as age-related sub-region specific decreases in 455	

frontal neuron numbers in primates (49) and rats (50).  456	
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There was a consistent decrease in the immature oligodendrocyte index in relationship to age across 457	

datasets (Oligodendrocyte_Immature vs. Age (meta-analysis: b=-0.00514, p=5.98e-11): Pritzker: β=-458	

0.00432, p=0.000354, GSE21138: β=-0.00721, p=5.73e-05, GSE53987: β=-0.00913, p=1.85e-05; CMC: 459	

β=-0.00621, p=3.32e-25), which seems intuitive, but actually contradicts animal studies on the topic (51). 460	

Since the validation of the immature oligodendrocyte index was relatively weak (Suppl. Section 7.2), this 461	

result should perhaps be considered with caution. 462	

In some datasets, there also appeared to be an increase in the oligodendrocyte index with age 463	

(Oligodendrocyte vs. Age (meta-analysis: b=0.00343, p=2.74e-03): GSE21138, β=0.00957, p=0.00349) 464	

which, at initial face value, seems to contrast with well-replicated observations that frontal white matter 465	

decreases with age in human imaging studies (47,52,53). However, it is worth noting that several 466	

histological studies in aging primates suggest that brain regions that are experiencing demyelination with 467	

age actually show an increasing number of oligodendrocytes due to repair (51,54).  468	

PMI: A prominent unexpected effect was a large decrease in the oligodendrocyte index with longer 469	

post-mortem interval (Oligodendrocyte vs. PMI (meta-analysis: b=-0.00764, p=2.23e-05): Pritzker: β=-470	

0.00749, p=0.000474, GSE53987: β=-0.0318, p=0.000749; CMC: β=-0.00759, p=4.70e-05). Upon further 471	

investigation, we found a publication documenting a 52% decrease in the fractional anisotropy of white 472	

matter with 24 hrs post-mortem interval as detected by neuroimaging (55), but to our knowledge the topic 473	

is otherwise not well studied. These changes were paralleled by a decrease in the endothelial index 474	

(CMC: β=-0.00542, p=1.32e-04) and microglial index (CMC: β=-0.00710, p=5.15e-04) and increase in 475	

the immature oligodendrocyte index (Oligodendrocyte_Immature vs. PMI (meta-analysis: b=0.00353, 476	

p=4.81e-03): Pritzker: β=0.00635, p=0.000683) and neuronal indices (Neuron_All vs. PMI: Pritzker: 477	

β=0.006997, p=0.000982; CMC: β=0.00386, p=0.0110;  Neuron_Projection vs. PMI (meta-analysis: 478	

b=0.00456, p=2.28e-03): Pritzker: β= 0.00708, p=1.64e-04; CMC: β=0.00331, p=0.00197). These results 479	

could arise from the zero-sum nature of transcriptomics analysis: due to the use of a standardized 480	

dissection size, RNA concentration, and data normalization, if there are large decreases in gene 481	
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expression for one common variety of cell type (oligodendrocytes), then gene expression related to other 482	

cell types may appear to increase. 483	

Psychiatric Diagnosis: Of most interest to us were potential changes in cell type balance in relation 484	

to psychiatric illness. In previous post-mortem morphometric studies, there was evidence of glial loss in 485	

the prefrontal cortex of subjects with Major Depressive Disorder, Bipolar Disorder, and Schizophrenia 486	

(reviewed in (56)). This decrease in glia, and particularly astrocytes, was replicated experimentally in 487	

animals exposed to chronic stress (57), and when induced pharmacologically, drove animals into a 488	

depressive-like condition (57). Replicating the results of (48), we observed a moderate decrease in 489	

astrocyte index in the prefrontal cortex of subjects with Major Depressive Disorder (meta-analysis: 490	

b=0.132, p=5.88e-03, Pritzker: β =-0.133, p=0.0118, Figure 4 F), but did not see similar changes in the 491	

brains of subjects with Bipolar Disorder or Schizophrenia.We also observed a decrease in red blood cell 492	

index in association with Schizophrenia (CMC: β=-0.104, p=0.0141) which is tempting to ascribe to 493	

reduced blood flow due to hypofrontality (58). This decrease in red blood cell content could also arise due 494	

to psychiatric subjects having an increased probability of dying a violent death, but the effect remained 495	

present when we controlled for exsanguination, and therefore is likely to be genuinely tied to the illness 496	

itself. 497	

General Discussion: Overall, these results indicate that statistical predictions of the cell content of 498	

samples effectively capture many known biological changes in cell type balance, and imply that within 499	

both chronic (age, diagnosis) and acute conditions (agonal, PMI, pH) there is substantial influences upon 500	

the relative representation of different cell types.  501	

The effect of hypoxia within our results is particularly worth discussing in greater depth. It has been 502	

acknowledged for a long time that exposure to a hypoxic environment prior to death has a huge impact on 503	

gene expression in human post-mortem brains (e.g., (28,29,59–61)). This impact on gene expression is so 504	

large that up until recently the primary principal component of variation (PC1) in our data was assumed to 505	

represent the degree of hypoxia, and was sometimes even removed before performing diagnosis-related 506	

analyses (e.g., (62)). These large effects of hypoxia on gene expression were hypothesized to be partially 507	
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mediated by neuronal necrosis (63) and lactic acidosis (60). However, the magnitude of the effect of 508	

hypoxia was still puzzling, especially when compared to the much more moderate effects of post-mortem 509	

interval (even when ranging from 8-40+ hrs). Our current analysis provides an explanation for this 510	

discrepancy, since it is clear from our results that the brains of our subjects are actively compensating for 511	

a hypoxic environment prior to death by altering the balance or overall transcriptional activity of support 512	

cells and neurons. The differential effects of hypoxia on neurons and glial cells have been studied since 513	

the 1960’s (64), but to our knowledge this is the first time that anyone has related the large effects of 514	

hypoxia in post-mortem transcriptomic data to a corresponding upregulation in the transcriptional activity 515	

of vascular cell types (45).  516	

This connection is important for understanding why results associating gene expression and 517	

psychiatric illness in human post-mortem tissue sometimes do not replicate. If a study contains mostly 518	

tissue from individuals who experienced greater hypoxia before death (e.g., hospital care with artificial 519	

respiration or coma), then differential expression analyses are likely to inadvertently focus on 520	

neuropsychiatric effects in support cell types, whereas a study that mostly contains tissue from individuals 521	

who died a fast death (e.g., myocardial infarction) will emphasize the neuropsychiatric effects in neurons. 522	

That said, although both indicators of perimortem hypoxia (agonal factor and pH) showed similar strong 523	

relationships with cell type balance, we recommend caution when interpreting the relationship between 524	

pH and cell type in tissue from psychiatric subjects, as pH can indicate other biological changes besides 525	

hypoxia. For example, there are small consistent decreases in pH associated with Bipolar Disorder even in 526	

live subjects (65–67) and metabolic changes associated with pH are theorized to play an important role in 527	

Schizophrenia (61). Therefore, the relationship between pH and cell type balance may be partially driven 528	

by a third variable (psychiatric illness or treatment). It is also possible that changes in tissue cell content 529	

could cause a change in pH (68).  530	

 531	
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3.10 It is Difficult to Discriminate Between Changes in Cell Type Balance and Cell-Type Specific 532	

Function 533	

Gray matter density has been shown to decrease in the frontal cortex in aging humans (47), and 534	

frontal neuron numbers decrease in specific subregions in aging primates (49) and rats (50). However, 535	

many scientists would argue that age-related decreases in gray matter are primarily driven by synaptic 536	

atrophy instead of decreased cell number (69). This raised the question of whether the decline that we saw 537	

in neuronal cell indices with age was being largely driven by the enrichment of genes related to synaptic 538	

function in the index. More generally, it raised the question of how well cell type indices could 539	

discriminate changes in cell number from changes in cell-type function. 540	

We examined this question using two methods. First, as a case study, we specifically examined the 541	

relationship between age and the functional annotation for genes found in the Neuron_All index in more 542	

depth. We found that transcripts from functional clusters that seemed distinctly unrelated to 543	

dendritic/axonal functions still showed an average decrease in expression with age (T(40)=-2.7566, 544	

p=0.008756), but this decrease was larger for transcripts clearly associated with dendritic/axonal-related 545	

functions (T(28)=-4.5612, p=9.197e-05; dendritic/axonal vs. non-dendritic/axonal: T(50.082)=2.3385, 546	

p=0.02339, Suppl. Figure 11). Based on this analysis, we conclude that synaptic atrophy could be 547	

partially driving age-related effects on neuronal cell type indices in the human prefrontal cortex dataset 548	

but are unlikely to fully explain the relationship. 549	

Next, we decided to make the process of differentiating between altered cell type-specific functions 550	

and relative cell type balance more efficient. We used our cell type specific gene lists to construct gene 551	

sets in a file format (.gmt) compatible with the popular tool Gene Set Enrichment Analysis (39,40). Then, 552	

for the results from each subject variable within the Pritzker dataset, we compared the enrichment of the 553	

effects within gene sets defined by brain cell type to the enrichment seen within gene sets for other 554	

functional categories. In general, we found that gene sets for brain cell types tended to be the top result 555	

(most extreme normalized enrichment score, NES) for each of the subject variables that showed a strong 556	

relationship with cell type in our previous analyses (Agonal Factor vs. 557	
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“Neuron_All_Cahoy_JNeuro_2008”: NES=-2.46, p=0.00098, q=0.012, Brain pH vs. 558	

“Astrocyte_All_Cahoy_JNeuro_2008”: NES=-2.48, p=0.0011, q=0.014, MDD vs. 559	

“Astrocyte_All_Cahoy_JNeuro_2008”: NES=-2.60, p=0.0010, q=0.017, PMI vs. 560	

“GO_OLIGODENDROCYTE_DIFFERENTIATION”: NES=-2.42, p=0.00078, q=0.027; Suppl. Table 561	

6). Similarly, the relationship between the effects of age and neuron-specific gene expression was ranked 562	

#4, following the gene sets “GO_SYNAPTIC_SIGNALING”, 563	

“REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES”, 564	

“REACTOME_OPIOID_SIGNALLING”, but each of them was assigned a similar p-value (p=0.001) and 565	

adjusted p-value (q=0.036). We conclude that it is important to consider cell type-specific expression 566	

during the analysis of macro-dissected brain microarray data above and beyond the consideration of 567	

specific functional pathways, and have submitted our .gmt files to the Broad Institute for addition to their 568	

curated gene sets in MSigDB to promote this form of analysis. 569	

 570	

3.11 Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit 571	

and Enhances the Detection of Diagnosis-Related Genes in Some Datasets 572	

 Over the years, many researchers have been concerned that transcriptomic analyses of 573	

neuropsychiatric illness often produce non-replicable or contradictory results and, perhaps more 574	

disturbingly, are typically unable to replicate well-documented effects detected by other methods. We 575	

posited that this lack of sensitivity and replicability might be partially due to cell type variability in the 576	

samples, especially since such a large percentage of the principal components of variation in our samples 577	

were explained by neuron to glia ratio. Within the Pritzker dataset, we were particularly interested in 578	

controlling for cell type variability, because dissection may have differed between technical batches that 579	

were unevenly distributed across diagnosis categories (Figure 5 A). There was a similarly uneven 580	

distribution of dissection methods across diagnosis categories within the large CMC RNA-Seq dataset. In 581	

this dataset, the majority of the bipolar samples (75%) were collected by a brain bank that performed gray 582	
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matter only dissections (PITT), whereas the control and schizophrenia samples were more evenly 583	

distributed across all three institutions (34).  584	

 We hypothesized that controlling for cell type while performing differential expression analyses 585	

in these datasets would improve our ability to detect previously-documented psychiatric effects on gene 586	

expression, especially psychiatric effects that were previously-identified within specific cell types, since 587	

these effects should not be mediated by psychiatric changes in overall cell type balance. To test the 588	

hypothesis, we first compiled a list of 130 strong, previously-documented relationships between 589	

Schizophrenia or Psychosis and gene expression in particular cell types in the human cortex, as detected 590	

by in situ hybridization or immunocytochemistry ((70–75) reviewed further in (19)) or by single-cell type 591	

laser capture microscopy (Suppl.	Figure	12, Suppl. Table 7 (1,76,77)). 592	

As a comparison, we also considered lists of transcripts strongly-associated with Schizophrenia 593	

(78) and Bipolar Disorder (79) in meta-analyses of microarray data derived from human frontal cortical 594	

tissue (Suppl.	Figure	12, Suppl. Table 7). The effects of psychiatric illness on the expression of these 595	

transcripts could be mediated by either psychiatric effects on cell type balance or by effects within 596	

individual cells. Therefore, controlling for cell type balance while performing differential expression 597	

analyses could detract from the detection of some psychiatric effects, but perhaps also enhance the 598	

detection of other psychiatric effects by controlling for large, confounding sources of noise (e.g., 599	

dissection variability).  600	

 Next, we examined our ability to detect these previously-documented psychiatric effects using 601	

regression models of increasing complexity (Figure 5 B), including a standard model controlling for 602	

traditional co-variates (Model 2) and models controlling for cell type co-variates (Models 3-5).  603	
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 604	
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Figure 5. Including Cell Content Predictions in the Analysis of Microarray Data Improves Model Fit 605	
and Enhances the Detection of Previously-Identified Diagnosis-Related Genes in Some Datasets. A. 606	
Diagnosis effects were likely to be partially confounded by dissection variability within the Pritzker and 607	
CMC datasets. B: We examined a series of differential expression models of increasing complexity, 608	
including a base model (M1), a standard model (M2), and three models that included cell type co-609	
variates (M3-M5). C-D. Model fit improved with the addition of cell type (M1/M2 vs. M3-M5) when 610	
examining either C. all expressed genes in the dataset (example from CMC: points= AVE +/-SE). D. 611	
genes with previously-documented relationships with psychiatric illness in particular cell types (example 612	
from Pritzker: BIC values for all models for each gene were centered prior to analysis. Boxes represent 613	
the median and interquartile range of the data). E. Evaluating the replication of previously-observed 614	
psychiatric effects (Suppl. Figure	12) in three datasets (Pritzker, CMC, and Barnes) using a standard 615	
differential expression model (M2) vs. models that include cell type co-variates (M3-5). Letters (a vs. b, c 616	
vs. d) denote significant model comparisons (Fisher’s exact test: p<0.05). Top graphs: The percentage of 617	
genes (y-axis: 0-1) replicating the direction of previously-documented psychiatric effects on cortical gene 618	
expression sometimes increases with the addition of cell type to the model (p<0.05: Barnes (effects of 619	
Schiz): M2 vs. M5, CMC (effects of Bipolar Disorder): M2 vs. M3). Middle graphs: The detection of 620	
previously-identified psychiatric effects on gene expression (p<0.05 & replicated direction of effect) 621	
increases with the addition of cell type to the model in some datasets (p<0.05, Barnes: M2 vs. M5, 622	
Pritzker: M2 vs. M5) but decreases in others (p<0.05, CMC: M2 vs. M5, M3 vs. M5). Bottom graphs: In 623	
some datasets we see an enrichment of psychiatric effects (*p<0.05) in previously-identified psychiatric 624	
gene sets only after controlling for cell type (Barnes: M3, M4, Pritzker: M5, M3). For the CMC dataset, 625	
we see an enrichment using all models (*p<0.05).  626	

 627	

We found that including predictions of cell type balance in our models assessing the effect of 628	

diagnosis on gene expression dramatically improved model fit as assessed by Akaike’s Information 629	

Criterion (AIC) or Bayesian Information Criterion (BIC). These improvements were largest with the 630	

addition of the five most prevalent cell types to the model (M3, M4); the addition of less common cell 631	

types produced smaller gains (M5). These improvements were clear whether we considered the average 632	

model fit for all expressed genes (e.g., Figure 5 C) or just genes with previously-identified psychiatric 633	

effects (e.g., Figure 5 D).  634	

However, models that included cell type were not necessarily superior at replicating previously-635	

observed psychiatric effects on gene expression, even when examining psychiatric effects that were likely 636	

to be independent of changes in cell type balance. For each model, we quantified the percentage of genes 637	

replicating the previously-observed direction of effect in relationship to psychiatric illness, as well as the 638	

percentage of genes that replicated the effect using a common threshold for detection (p<0.05). Finally, 639	

we also looked at the enrichment of psychiatric effects (p<0.05) in each of the previously-documented 640	
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psychiatric gene sets in comparison to the other genes in our datasets (genes universally represented in all 641	

three datasets- Pritzker, CMC, Barnes).  642	

In general, we found that the two datasets that had the most variability in gene expression related 643	

to cell type (Pritzker, Barnes) were more likely to replicate previously-documented psychiatric effects on 644	

gene expression when the differential expression model included cell type covariates. For example, in the 645	

Barnes dataset, adding cell type co-variates to the model increased our ability to detect effects of 646	

Schizophrenia that had been previously documented within particular cell types or macro-dissected tissue 647	

(Figure 5E, Fisher’s exact test: M2 vs. M5, p<0.05 in both gene sets) and revealed an enrichment of 648	

Schizophrenia effects in genes with previously-documented psychiatric effects in particular cell types 649	

(Fisher’s exact test p<0.05: M3 & M4). In the Pritzker dataset, adding cell type co-variates to the model 650	

increased our ability to detect previously-documented effects of Schizophrenia in macrodissected tissue 651	

(M2 vs. M5: p<0.05) and revealed a significant enrichment of Schizophrenia and Bipolar effects in genes 652	

with previously-documented psychiatric effects in macro-dissected tissue (Fisher’s exact test p<0.05: 653	

Schizophrenia: M5, Bipolar: M3). This mirrored the results of another analysis that we had conducted 654	

suggesting that controlling for cell type increased the overlap between the top diagnosis results in the 655	

Pritzker dataset and previous findings in the literature as a whole (Suppl. Section 7.3.4). 656	

In the large CMC RNA-Seq dataset, the rate of replication of previously-documented effects of 657	

Schizophrenia was already quite high using a standard differential expression model containing traditional 658	

co-variates (M2). Using a standard model, we could detect 27% of the previously-documented effects in 659	

cortical cell types and 55% of the previously-documented effects in macro-dissected tissue (with a 660	

replicated direction of effect and p<0.05). However, in contrast to what we had observed in the Pritzker 661	

and Barnes datasets, controlling for cell type diminished the ability to detect effects of Schizophrenia that 662	

had been previously-observed within particular cell types or macrodissected tissue in a manner that scaled 663	

with the number of co-variates included in the model (M2 or M3 vs. M5: p<0.05 for both gene sets), 664	

despite improvements in model fit parameters and a lack of significant relationship between 665	

Schizophrenia and any of the prevalent cell types. Including cell type co-variates in the model did not 666	
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improve our ability to observe an enrichment of Schizophrenia effects in genes with previously-667	

documented psychiatric effects in macro-dissected tissue (all models showed enrichment, M2-M5: 668	

Fisher’s exact test p<0.05). Controlling for cell type slightly improved the replication of the direction of 669	

previously-documented Bipolar Disorder effects (Fisher’s exact test: M2 vs. M3: p<0.05) in a manner that 670	

would seem appropriate due to the highly uneven distribution of bipolar samples across institutions and 671	

dissection methods, but even after this improvement the rate of replication was still no better than chance 672	

(48%), and, counterintuitively, the ability to successfully detect those effects still diminished in a manner 673	

that seemed to scale with the number of co-variates included in the model (Fisher’s exact test: M2 vs. M5, 674	

p<0.05). In a preliminary analysis of the two smaller human microarray datasets that were derived from 675	

gray-matter only dissections (GSE53987, GSE21138), the addition of cell type co-variates to differential 676	

expression models clearly diminished both the percentage of genes replicating the previously-documented 677	

direction of effect of Schizophrenia in particular cell types (Fisher’s exact test: GSE21138: M2 vs. M4 or 678	

M5: p<0.05, GSE53987: M2 vs. M4 or M5: p<0.05) and the ability to successfully detect previously-679	

documented effects (Fisher’s exact test: GSE21138: M2 vs. M4 or M5: p<0.05).  680	

 General Discussion: We found that including cell type indices as co-variates while running 681	

differential expression analyses helped improve our ability to detect previously-documented relationships 682	

between psychiatric illness and gene expression in human cortical datasets that were particularly affected 683	

by variability in cell type balance. This improvement was not seen in datasets that were less affected by 684	

variability in cell type balance, despite improvements in model fit and a lack of strong multicollinearity 685	

between diagnosis and the cell type indices. This finding was initially surprising to us, but upon further 686	

consideration makes sense, as the cell type indices are multi-parameter gene expression variables. 687	

Therefore, there is increased risk of overfitting when modeling the data for any particular gene. We 688	

conclude that the addition of cell type covariates to differential expression models is only recommended 689	

when there is a particularly large amount of variability in the dataset associated with cell type balance, or 690	

when there is strong reason to believe that technical variation associated with cell type (such as 691	

dissection) may be highly confounding in the result. We strongly recommend that model selection while 692	
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conducting differential expression analyses should be considered carefully, and evaluated not only in 693	

terms of fit parameters but also validity and interpretability.  694	

Regarding the importance of model selection for interpretability, it is worth noting that an 695	

important difference between our final analysis methods and those used by some previous researchers 696	

(e.g., 10–12) was the lack of cell type interaction terms included in our models (e.g., Diagnosis*Astrocyte 697	

Index). Theoretically, the addition of cell type interaction terms should allow the researcher to statistically 698	

interrogate cell-type differentiated diagnosis effects because samples that contain more of a particular cell 699	

type should exhibit more of that cell type’s respective diagnosis effect. Versions of this form of analysis 700	

have been successful in other investigations (e.g., (11,12,80)) but we were not able to validate the method 701	

using a variety of model specifications and our database of previously-documented relationships with 702	

diagnosis in prefrontal cell types. Upon consideration, we realized that these negative results were 703	

difficult to interpret because significant diagnosis*cell type interactions should only become evident if the 704	

effect of diagnosis in a particular cell type is different from what is occurring in all cell types on average. 705	

For genes with expression that is reasonably specific to a particular cell type (e.g., GAD1, PVALB), the 706	

overall average diagnosis effect may already largely reflect the effect within that cell type and the 707	

respective interaction term will not be significantly different, even though the disease effect is clearly 708	

tracking the balance of that cell population. In the end, we decided that the addition of interaction terms to 709	

our models was not demonstrably worth the associated decrease in overall model fit and statistical power. 710	

For public use we have released the full differential expression results for each dataset analyzed using the 711	

different models discussed above (Suppl. Table 8-Suppl. Table 12). 712	

4. Conclusion and Future Directions 713	

In this manuscript, we have demonstrated that the statistical cell type index is a relatively simple 714	

manner of interrogating cell-type specific expression in transcriptomic datasets from macro-dissected 715	

human brain tissue. We find that statistical estimations of cell type balance almost fully account for the 716	

top principal components of variation in microarray data derived from macro-dissected brain tissue 717	
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samples, far surpassing the effects of traditional subject variables (post-mortem interval, hypoxia, age, 718	

gender). Indeed, our results suggest that many variables of medical interest are themselves accompanied 719	

by strong changes in cell type specific gene expression in naturally-observed human brains. We find that 720	

within both chronic (age, sex, diagnosis) and acute conditions (agonal, PMI, pH) there may be substantial 721	

changes in the relative representation of different cell types. Thus, accounting for demography at the 722	

cellular population level can be as important for the interpretation of microarray data as cell-level 723	

functional regulation. This form of data deconvolution was useful for identifying the subtler effects of 724	

psychiatric illness within our samples, divulging the decrease in astrocytes that is known to occur in 725	

Major Depressive Disorder and the decrease in red blood cell content in the frontal cortex in 726	

Schizophrenia, resembling known fMRI hypofrontality. This form of data deconvolution may also aid in 727	

the detection of psychiatric effects while conducting differential expression analyses in datasets that have 728	

highly-variable cell content. 729	

These results touch upon the fundamental question as to whether organ-level function responds to 730	

challenge by changing the biological states of individual cells or the life and death of different cell 731	

populations. To reach such a sweeping perspective in human brain tissue using classic cell biology 732	

methods would require epic efforts in labeling, cell sorting, and counting. We have demonstrated that 733	

scientists can approximate this vantage point using an elegant, supervised signal decomposition exploiting 734	

increasingly available genomic data. However, it should be noted that, similar to other forms of functional 735	

annotation, cell type indices are best treated as a hypothesis-generation tool instead of a final conclusion 736	

regarding tissue cell content. We have demonstrated the utility of cell type indices for detecting large-737	

scale alterations in cell content in relationship with known subject variables in post-mortem tissue. We 738	

have not tested the sensitivity of the technique for detecting smaller effects or the validity under all 739	

circumstances or non-cortical tissue types. Likewise, while using this technique it is impossible to 740	

distinguish between alterations in cell type balance and cell-type specific transcriptional activity: when a 741	

sample shows a higher value of a particular cell type index, it could have a larger number of such cells, or 742	

each cell could have produced more of its unique group of transcripts, via a larger cell body, slower 743	
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mRNA degradation, or an overall change in transcription rate. In this regard, the index that we calculate 744	

does not have a specific interpretation; rather it is a holistic property of the cell populations, the “neuron-745	

ness” or “microglia-ness” of the sample. Such an abstract index represents the ecological shifts inferred 746	

from the pooled transcriptome. That said, our cell type indices do have real biological meaning - they can 747	

be interpreted in a known system of cell type taxonomy. When single-cell genomic data uncovers new 748	

cell types (e.g., the Allen Brain Atlas cellular taxonomy initiative (81)) or meta-analyses refine the list of 749	

genes defined that have cell-type specific expression (e.g., (82)), our indices will surely evolve with these 750	

new classification frameworks, but the power of the approach will remain, in that we can disentangle the 751	

intrinsic changes of individual genes from the population-level shifts of major cell types.  752	

Our work drives home the fact that any comprehensive theory of psychiatric illness needs to 753	

account for the dichotomy between the health of individual cells and that of their ecosystem. We found 754	

that the functional changes accompanying psychiatric illness in the cortex occurred both at the level of 755	

cell population shifts (decreased astrocytic presence and red blood cell count) and at the level of intrinsic 756	

gene regulation not explained by population shifts. A similar conclusion regarding the importance of cell 757	

type balance in association with psychiatric illness was recently drawn by our collaborators (e.g.,(83)) 758	

using a similar technique to analyze RNA-Seq data from the anterior cingulate cortex. In the future, we 759	

plan to use our technique to re-analyze many other large transcriptomic datasets with the hope of gaining 760	

better insight into psychiatric disease. This application of our technique seems particularly important in 761	

light of recent evidence linking disrupted neuroimmunity (84) and neuroglia (e.g., (48,57,85)) to 762	

psychiatric illness, as well as growing evidence that growth factors with cell type specific effects play an 763	

important role in depressive illness and emotional regulation (for a review see (23,86)).  764	

In conclusion, we have found this method to be a valuable addition to traditional functional 765	

ontology tools as a manner of improving the interpretation of transcriptomic results. For the benefit of 766	

other researchers, we have made our database of brain cell type specific genes (Suppl. Table 1, 767	

https://sites.google.com/a/umich.edu/megan-hastings-hagenauer/home/cell-type-analysis) and code for 768	

conducting cell type analyses publicly available in the form of a downloadable R package 769	
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(https://github.com/hagenaue/BrainInABlender) and we are happy to assist researchers in their usage for 770	

pursuing better insight into psychiatric illness and neurological disease. 771	
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