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Summary 

 

Cognitive processing requires the ability to flexibly adjust and integrate information across large brain              

networks. More information is needed on how brain networks dynamically reorganize to allow such              

broad communication across many different brain regions in order to integrate the necessary             

information. Here, we use intracranial EEG to record neural activity from 12 epileptic patients while they                

perform a cognitive task in order to study how the broadness of communication changes across the                

underlying network spanning many different brain regions. The broadness of communication is            

characterized by functional measures of integration and segregation. Across all patients, we found             

significant increases in integration and decreases in segregation during cognitive processing, especially in             

the gamma band (50-90 Hz). Accordingly, we also found significantly higher level of global              

synchronization and functional connectivity during the execution of the cognitive task, again particularly             

in the gamma band. Furthermore, we demonstrate that these modulations in the level of communication               

across the network were not caused by changes in the level of the underlying oscillations as reflected by                  

the corresponding power spectra. 
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Introduction 

 

Intracranial electroencephalography (iEEG) recordings from the human brain provide a unique           

opportunity to study cognitive functions at the microscopic level directly measuring neural activity.             

Beyond the high level of temporal resolution intrinsic in EEG measurements, the proximity of the               

recording electrodes to the neural elements allows also higher levels of spatial resolution and enhanced               

signal-to-noise ratio ( ​Lachaux ​et al.,​ 2003 ​; ​Engel ​et al​ ., 2005 ​). These advantages have led to novel studies                 

in cognitive neuroscience ​( ​Lachaux ​et al.,​ 2012 ​) tackling cognitive processes such as attention ( ​Müsch ​et               

al.,​ 2014​), visual perception ( ​Ossandón ​et al., 2012 ​; ​Bertrand ​et al.,​ 2014​), language ( ​Sahin ​et al.​ , 2009 ​; ​Chan                  

et al., 2011​; ​Hamamé ​et al., 2014​ ), memory ( ​Kucewicz ​et al., 2014​; ​Greenberg ​et al., 2015​, ​Haque ​et al., 2015​),                    

decision making ( ​Pérez ​et al., 2015​), emotion ( ​Murray ​et al.,​ 2014​; ​Boucher ​et al.,​ 2015​) and consciousness                 

( ​Gaillard et al., 2009 ​). However, most of this research has attempted to correlate task-performance with               

these measurements of neural activity to assign functions to specific local brain areas. Furthermore, most               

studies using iEEG have focused mainly on single-electrodes analysis, using predominantly event-related            

potentials (see ​Lachaux ​et al.,​  2003​ for review) or spectral analysis (see ​Kahana, 2006 ​ for review).  

 

In contrast to this regional view of brain function, growing evidence reveals that human cognition relies                

on the flexible integration of information widely distributed across different brain regions ( ​Bressler and              

Menon, 2010 ​; ​Deco ​et al., 2015​). Many studies have investigated the properties of the brain networks                

underlying cognitive processing using many different functional brain imaging techniques such as EEG             

( ​Fallani ​et al., 2008​ ;​ Wang ​et al.,​ 2015​), MEG ( ​Valencia ​et al.,​ 2008 ​; ​Palva ​et al.,​ 2010 ​; ​Kitzbichler ​et al​ ., 2011​)                     

and fMRI ​( ​Bassett ​et al.,​ 2011​; Ekman ​et al.,​ 2012 ​; ​Kinnison ​et al.,​ 2012 ​; ​Chai ​et al.,​ 2016 ​, ​Wang ​et al.,​ 2016 ​).                      

Despite the diversity in tasks and techniques, these studies concur in that cognitive processing appears               

to increase the global integration of information across neural networks, while at the same time leads to                 

a decrease in the modularity of those networks ( ​Kitzbichler ​et al.​ , 2011​; ​Kinnison ​et al.​ , 2012 ​; ​Ekman ​et al.​ ,                   

2012 ​, ​Bola and Sabel, 2015​; ​Vatansever ​et al., 2015​; ​Godwin ​et al​ ., 2015​, ​Liang ​et al., 2016​ ). However, these                   

consistent findings associated to human cognition have not been validated in iEEG studies. 

 

Here, we explored how cognitive processing modulates the level of integration and segregation of              

information in human brain networks. More specifically, we recorded iEEG data from depth electrodes              

stereotactically implanted for presurgical diagnosis in 12 epileptic patients performing a picture-naming            

task. The iEEG electrodes used a stereoelectroencephalography (SEEG) implantation methodology and           

covered broad regions of the brain including cortical as well subcortical regions, so that we were able to                  

assess the global changes at the level of a broad extended network. This allowed us to investigate the                  

network properties of the brain ​underlying cognitive processing ​using our operationally defined concepts             

of segregation and integration​ ​ ( ​Deco ​et​  al., 2015 ​) as global network measures of brain function. 
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Materials and Methods 

 

Ethics Statement  

This study was approved by The Clinical Research Ethical Committee of the Municipal Institute of Health                

Care (CEIC-IMAS). Following the Declaration of Helsinki, patients were informed about the procedure             

and they gave their written consent before the experiment. 

 

Participants  

Twelve participants (3 women; all right-handed; mean age 36.4±10.1 years-old), evaluated for presurgical             

diagnosis in ​the Epilepsy Monitoring Unit of the Hospital del Mar (Barcelona, Spain), participated in the                

study. All patients were ​stereotactically implanted with depth ​electrodes for invasive presurgical            

diagnosis using a stereotactic ROSA robotic device (Medtech, France). The location of the electrodes was               

established only for clinical reasons using a SEEG approach. The implantation schemas were similar              

between all patients given that they were all under investigation for temporal lobe epilepsy. The number                

of electrodes used varied among 8 to 16 for patient with 5 to 15 contacts each (diameter: 0.8 mm ​;                   

contacts 2 mm long, 1.5 mm apart) (Dixi Médical, France). All patients underwent an extensive               

neuropsychological evaluation, and normal or corrected-to-normal vision. They were within the normal            

range of education having completed from primary to high academic level. Table 1 summarizes personal               

data, pathological information and overview of implanted electrodes for each patient. Since the study              

aims to study the network dynamics supporting cognitive processes under normal circumstances,            

patients were assessed in absence of pharmacological treatment. 

 

Cognitive Task 

In the picture-naming task, participants were asked to name 128 pictures presented in three different               

blocks. Pictures were black & white line drawings of familiar objects from a wide range of semantic                 

categories selected from the Snodgrass and Vanderwart (1980) set. Each picture appeared once centrally              

and sequentially on the computer screen in a pseudo-random order for 2000 ms followed by a fixation                 

cross for 1000 ms (see Figure 1). Participants were instructed to overtly name every item as fast and                  

accurately as possible in Spanish. The task was presented using the software Sketchbook Processing 2.2.1               

(Programming Software, 2001 ​https://processing.org/​) on a laptop computer located approximately 60           

cm away from the patient. The accuracy of the responses was scored manually by the experimenter. An                 

electronic processor “Arduino; UNO” was used to connect and synchronize both hardware, the XLTEK              

system with the computer (MacBook Pro). ​The application interfaced with an Arduino board that in turn                

was connected to the EEG amplifier, and at each trial a signal was sent through the Arduino to the EEG. 
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iEEG Data Acquisition and Preprocessing 

Neurophysiological responses were registered by the iEEG system from deep multichannel electrodes            

(DIXI Microtechniques, Besançon, France, 5–18 contacts; length, 2 mm, diameter, 0.8 mm; 1.5 mm apart)               

placed in both cortex and subcortical structures. On average, each patient had 13±2 electrodes implanted               

(range 8-16) with a total of 120 13 recording contacts (range 85-127). The data were acquired      ±          

continuously by the Neuroworks XLTEK system (version 6.3.0, build 636) at 32 kHz with a headbox of 128                  

channels recorded at a sampling frequency of 500 Hz per channel.  

 

A bipolar montage was constituted offline to increase spatial resolution by removing any confounds from               

the common reference signal ( ​Jerbi ​et al.,​ 2009 ​; ​Lachaux ​et al., 2003 ​). Bipolar signals were derived by                 

differentiating neighbouring electrode pairs of recorded and not rejected consecutive channels within            

the same electrode array ( ​Gaillard ​et al., 2009 ​; ​Lachaux ​et al., 2012​ ;​ Burke ​et al., 2013 ​; ​Boucher ​et al., 2015​).                    

The continuous iEEG data was first high-pass filtered at 1 Hz and low-pass filtered at 150 Hz. To remove                   

common line contamination an extra notch filter was applied at 50 and 100 Hz. In order, to have specific                   

spectral information we analyze the spatio-temporal correlations of the Band Limited Power (BLP) at a               

given carrier frequency. For that, the analysis at a given carrier frequency ​f​ carrier (we consider here ​f​ carrier​ =                 

1 to 130 Hz in steps of 4 Hz) requires first that the iEEG signals are bandpass filtered within the narrow                     

band [​f​ carrier​ -2, ​f​ carrier​ +2 Hz] and computed the corresponding envelope of each narrowband signal using              

the Hilbert transform ( ​Brookes et al., 2011​; ​Cabral et al., 2014​). The Hilbert transform yields the associated                 

analytical signals. The analytic signal represents a narrowband signal, s(t), in the time domain as a                

rotating vector with an instantaneous phase, φ(t), and an instantaneous amplitude, A(t), i.e.,             

s(t)=A(t)cos ⁡(φ(t) ). The phase and the amplitude (envelope of that carrier frequency) are given by the                

argument and the modulus, respectively, of the complex signal z(t), given by z(t)=s(t)+​i​ .H [s(t)], where ​i is                 

the imaginary unit and H[s(t)] is the Hilbert transform of s(t). We further consider only the slow                 

components of the envelope A(t) by filtering the amplitudes again below 12 Hz ( ​Nir ​et al. 2008 ​). Finally, the                   

slow component of the envelope of each brain node at a given carrier frequency was used to calculate the                   

envelope FC. 

 

Data Analysis 
Envelope Functional Connectivity (FC) 

The data was segmented into two windows around stimulus presentation: the first one spanning from               

-500 ms to 0 (pre-task condition) from the stimulus presentation, and the second one spanning from 0 to                  

500 ms (task condition) from the stimulus presentation. Each trial was identified as an error or a hit and                   

error trials were excluded from the analysis. We defined an Envelope FC for task and pre-task segments                 

as a matrix of Pearson’s correlations of the corresponding amplitude envelopes, i.e. the slow components               

of the BLP of iEEG signals at a given carrier frequency between two brain areas over the whole time                   

window for a given condition (pre-task and task). 
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Integration 

We used the measure of ​integration​ introduced by ​Deco et al. (2015) ​, defined at the network level, to                  

characterize the level of broadness of communication between regions across the whole brain. First, we               

filtered the data, and then we calculated the envelope FC as explained above for both pre-task and task                  

conditions. We define integration as the size of the largest connected component in the FC matrix. More                 

specifically, for a given absolute threshold θ between 0 and 1 (scanning the whole range), the FC (using                  

the criteria |FC ​ij​ |<θ, ie a value of 0 and 1 otherwise) can be binarized and the largest subcomponent                   

extracted as a measure of integration. In graph-theoretical terms, subcomponents are extracted from the              

undirected graph defined by the binarized matrix considered as an adjacency matrix. More precisely, a               

subcomponent is a subgraph in which any two vertices are connected to each other by paths, and which                  

connects to no additional vertices in the super-graph (see ​Deco ​et al.​ , 2015 ​ for details). 

Segregation 

As a complement of the​ integration, we used a modularity​ measure ( ​Rubinov and Sporns, 2011​) as a                 

measure of segregation. Following ​Rubinov and Sporns (2011) ​, we define modularity as a measure that               

quantify the goodness of a modularity partition ​(Newman, 2004) ​, i.e. a complete subdivision of the               

network into non overlapping modules. We consider the modularity of our envelope FC matrix. This               

matrix contains positive and negative weights, namely the corresponding correlation between two nodes.             

Our measure of modularity is given by, 

[(w ) w e )] δQGJA = 1
v +v+ − ∑

 

ij
 +

ij− e
+
ij − ( −

ij−  −
ij M Mi j

 

Where the total weight, v​± = ∑​ij​w​ij​± ​, is the sum of all positive or negative connection weights (counted                  

twice for each connection), being w​ij​+ ∈ (0,1] the weighted connection between nodes i and j. The                 

chance-expected within-module connection weights , where the strength of node i, s​i​± = ∑​j​w​ij​± ​,     e±
ij =  v±

s si± j
±

           

is the sum of positive or negative connection weights of i. The delta δ​MiMj = 1 when i and j are in the same                        

module and δ​MiMj = 0 otherwise ( ​Newman, 2006 ​). This definition is a generalisation of the standard                

measure of modularity for matrices with nonnegative weights, which is given by the average difference               

between present within-module connection weights w​ij​+ and chance-expected within-module connection          

weights e​ij​+ ​. As mentioned above, here we consider both positively and negatively weighted connections              

(envelope FC matrix). The positively weighted connections represents correlated activation patterns and            

hence to reinforce the placement of positively connected pairs of nodes in the same module. On the                 

other hand, the negatively weighted connections represent anti-correlated activation patterns and           

reinforcing the placement of negatively connected pairs of nodes in distinct modules.  

Synchronization 

We measure the global mean level of synchronization as the mean value of the Kuramoto order                

parameter across time. The Kuramoto order parameter is defined by following equation: 

(t) nR = e
|
|
|
|
∑
n

k=1
 

(iφ (t)) |
|
|
|
/  
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where φ​k ​(t) is the instantaneous phase of each narrowband signal at node k. The Kuramoto order                

parameter measures the global level of synchronization of the n oscillating signals. Under complete              

independence, the ​n phases are uniformly distributed and thus ​R is nearly zero, whereas for R=1 all                 

phases are equal (full synchronization). We compute the global mean level of synchronization of the               

empirical iEEG signals at a given carrier frequency by using the Hilbert derived phases of the slow                 

component of the Band Limited Power (BLP) signals. 

 

Results 

In the present study we exploited the good spatiotemporal resolution of intracranial            

electroencephalography (iEEG) recordings to investigate the reorganization of brain networks driven by a             

cognitive task. This technique is usually employed in pharmacologically resistant epileptic patients            

( ​Sperling, 1997​; ​Serletis ​et al.,​ 2014​) who require brain mapping before surgery. In addition to the                

invaluable clinical utility and especially for the high functional, spatial and temporal specificity, iEEG              

recordings in epileptic patients have been increasingly used in cognitive neuroscience ( ​Lachaux ​et al​ .,              

2012 ​).  

 

We recorded iEEG data in twelve patients while performing a picture-naming task (Figure 1A). This task                

was used to drive the modulation of the underlying brain networks related to the integration of                

task-related information. It is known that language is supported by a widespread large-scale network              

distributed across frontal, temporal, parietal and occipital lobes in the dominant hemisphere ( ​Ferstl et al.,               

2008 ​; ​Price, 2000 ​; ​Chai et al., 2016 ​). During the task patients had to overtly name each picture as fast as                    

they could in Spanish (see Materials and Methods). ​The picture naming accuracy was high (85.3 ​± 11.0%)                 

(Figure 1B). ​All channels recording from grey matter and subcortical structures were considered for the               

analysis. Although neural activity signal was recorded from all lobes in both hemispheres, most of the                

recordings were obtained from the left temporal lobe (see an example of implantation scheme in Figure                

1C). After preprocessing the data, we analyzed the Band Limited Power (BLP) at a given carrier frequency                 

( ​f​ carrier​ ) in order to have specific spectral information. We bandpass filtered the iEEG signals within the                

narrow band [​f​ carrier​ -2, ​f​ carrier​ +2 Hz] and considered a range ​f​ carrier​ = 1:4:130 Hz. In order to compute the                  

envelope FC, we further computed the Hilbert transform (Figure 2). In order to study the global                

communication characteristics of the network states processing during the execution of a cognitive task,              

we contrasted two situations, namely: a pre-stimulus window of 500 ms before stimulus onset (pre-task               

condition), and a post-stimulus window of 500 ms following stimulus onset (task-condition). In order to               

characterize the organization of the network under both conditions, we used integration and segregation              

measures of global brain function (see Materials and Methods). Both measures characterize the             

broadness of functional communication across the different nodes of the underlying brain network. 

 

The main results come from a comparison of the integration and segregation measures during the task                

and pre-task conditions. Here, we first focus on a single patient to demonstrate the main results (Figure                 
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3). The neural integration significantly increases during cognitive processing (Figure 3A). Complementary            

to this measure, we observed a consistent decrease in segregation (as measured by the modularity               

measure, see Methods) during cognitive processing (Figure 3B). The greatest modulation appeared            

particularly in the gamma band (around 50 to 90 Hz). Paired ​t-test​ between task and pre-task conditions                 

showed a significant modulation in all frequency bands ( ​p < 0.05​ ) for both measures.  

 

Having found an increase in the integration consistently associated with a decrease in the segregation,               

we examined whether these changes could be explained by changes in the power spectrum. For this                

purpose, we calculated the power spectrum by Fast Fourier Transformations (FFT) methods. ​The results              

indicated that there were no iEEG power spectrum changes in any frequency induced by the task (Figure                 

3C) that could explain the increase of integration and decrease of modularity. Thus, the results suggest                

that the modulation of the integration and segregation during cognitive processing is positively             

associated with a global increase of broadcasting of communication, especially in the gamma band, by not                

modulating the level of oscillations but rather reorganizing probably the level of synchronization as              

suggested by the ​Communication Through Coherence ​Theory (CTC) ( ​Fries, 2005 ​; ​2015​). Furthermore, to             

check that this was not modulated by oscillations, we also computed the amplitude of the power                

spectrum at 60 Hz (with the maximal modulation of the integration measure) for each bipolar channel                

and for each condition. The strong overlap of the power across electrodes between pre-task and task                

conditions confirms that the level of oscillations are not responsible for the observed large changes in                

integration and segregation (Figure 3F). 

 

Thus, we analyzed the level of global synchronization to test whether the increase of integration during                

cognitive processing is due to an increase of the coherence. To test this hypothesis, we used the                 

Kuramoto Order Parameter (see Materials and Methods) to measure the mean level of synchronization of               

cortical activity under both conditions. We observed that, in fact, there is an increase of mean                

synchronization over a broad range of frequencies which is more conspicuous in the gamma band range                

(50 to 90 Hz) for the task condition (Figure 3D). This finding suggests a global functional network                 

interaction linked to the inter-electrode communication.  

 

Furthermore, we computed the Functional Connectivity between electrodes to see whether it behaves             

coherently with the other results. We calculated it through the instant amplitude envelopes of the given                

carrier frequencies ( ​f​ carrier​ = 1:4:130 Hz). The analysis revealed that the Functional Connectivity is enhanced              

during task performance, in particular in the gamma range (50 to 90 Hz) (Figure 3E). 

 

Interestingly, both the integration and segregation modulations with task were consistently found in             

every patient despite the heterogeneity of the recording sites. Figures 4 and 5 plot for each single patient                  

across conditions, the cognitive modulation of integration and segregation, respectively. As shown in             

those figures, the increase of integration and decrease of segregation relative to cognitive processing was               
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found at the individual level. It is clear that despite the heterogeneity of the recording sites, all of them                   

show consistently the same pattern of modulation. Figure 6 plots the amplitude of the power spectrum                

at 60 Hz for each bipolar channel and for each patient. In all cases, the amplitude of the power spectrum                    

across electrodes does not differ between pre-task and task conditions. Indeed, the majority of the               

electrodes (over 98.6%) do not show statistically significant differences in power modulation. Moreover,             

the minority of electrodes showing significant differences are only slightly modulated. 

 

Discussion 

We used intracranial EEG (iEEG) to record human neural activity from 12 epileptic patients while they                

were performing a picture-naming task in order to study how cognition modulates global functional              

network measurements, namely the integration and segregation. Across all patients, we found significant             

increases in integration and decreases in segregation during cognitive processing (p<0.05), especially in             

the gamma band (50-90 Hz). This was not driven by changes in the underlying level of oscillations given                  

that the power spectra of task and pre-task conditions were indeed not significantly different. In contrast                

we found significantly higher level of synchronisation (as measured using the Kuramoto order parameter)              

and functional connectivity during the task, again particularly in the gamma band. Thus, the cognitive               

modulation of the broadness of communication across the entire extended network is putatively due to a                

rearrangement of the coherence level between the nodes, thus confirming the prediction of the CTC               

theory ( ​Fries, 2005​; ​2015​) but on a whole-brain level (​Deco and Kringelbach, 2016 ​).  

 

Our results support the view of the brain as a complex system organized into large-scale networks. In                 

order to support cognitive functions, the networks need to flexibly adjust their functional connectivity in               

order to integrate relevant information to support goal-directed behavior. Graph and information            

theoretical approaches have helped to characterize the global network connectivity in terms of             

segregation​ and ​integration​ ( ​Tononi ​et al.,​ 1994 ​; ​Fox & Friston, 2012 ​; ​Deco ​et al., 2015​). Here, segregation                 

refers to the relative statistical independence of subsets of neurons or brain regions to compute               

information ( ​Tononi ​et al.,​ 1994 ​; ​Sporns, 2013 ​); while​ integration is a complementary concept quantifying              

the level of broadcasting communication across the whole-brain ( ​Sporns, 2013 ​; ​Deco ​et al., 2015​). In               

particular, we used a measure of integration based on the largest component present in the whole-brain                

connectivity matrix ( ​Deco ​et al., 2015​), while for the segregation we used the concept of modularity                

( ​Rubinov and Sporns, 2011 ​).  

 

Our findings are in line with previous neuroimaging studies finding increases of the integration across               

brain networks as evidenced by MEG during working memory processing ( ​Kitzbichler et al.​ , 2011​; ​Liang ​et                

al., 2016​ ), or by MRI during emotional and motivational stimulus processing ( ​Kinnison ​et al.,​ 2012 ​) and                

fMRI for selective attention ( ​Elton and Gao, 2015​). Moreover, our findings are also consistent with               

evidence supporting an increase of gamma-oscillations underlying language processing ( ​Fukuda ​et al​ ,.            

2010 ​; ​Wu ​et al​ ., 2011​; ​Vidal ​et al.​ , 2012 ​; see ​Jerbi ​et al.​ , 2009​ ​for review) 
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More generally, our results provide support for the communication through coherence (CTC) mechanism             

for cognitive dynamics ( ​Fries, 2005 ​; ​2015​) at the whole brain network level. CTC hypothesis posits that the                 

mechanism through which information is transmitted is by the synchronization of distinct neuronal             

populations, mainly in the gamma and beta-band (30-90 Hz) ( ​Deco and Kringelbach, 2016 ​).  

 

It would be interesting to examine in future investigations how the integration and segregation measures               

are differently modulated under different cognitive load and as a function of the task were performed                

correctly or erroneously. An important future goal would be to go beyond global measures to determine                

specifically which brain areas or ​local networks ​shows the highest degree of task-driven effective              

connectivity and therefore are mostly involved in information processing. In this context, future studies              

would be greatly benefited from diffusion tensor imaging in twofold ways: to visualize and describe the                

precise location of the electrodes in the brain, as well as the basis of whole-brain models considering the                  

connectivity and continuity of neural pathways in the patients. 

 

There are certain methodological limitations due to the fact that iEEG in humans is always obtained from                 

epileptic patients who, besides having epileptogenic neural activity, may have also differences in the              

structural connectivity (SC). On the other hand, the lack of whole-brain coverage with this technique               

means that we have to care when making assumptions of global network connectivity because of the                

restriction of the spatial coverage that can be simultaneously sampled. 

 

In conclusion, we show that cognitive processing drives a global increase of integration and decrease of                

segregation, especially in the gamma band (50-90 Hz), related to broadcasting of communication. 
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Figures 
 

Table 1. ​ Demographics and clinical characteristics of each patient. 

Patient Gender Age 
(years) 

Epileptogenic 
zone 

laterality 

Seizure onset 
zone 

Implanted Regions 
Nº of 

electrodes 
implanted 

Nº 
unipolar 
channels 

Nº of 
bipolar 

channels 
for analysis 

A Male 38 Left 
Mesial temporal & 

amygdala L (F-T-I-P) 8 85 76 

B Male 21 Left Anterior temporal L (F-T-I-P-O) & R (F-T) 15 125 95 

C Male 44 Right Anterior temporal L (T) & R (F-T-P) 12 125 104 

D Male 44 Right Temporo parietal L (T) & R (F-T-I-P) 16 127 101 

E Female 43 Left 
Anterior medial 

temporal L (F-T-I-P-O) 11 127 112 

F M​ale 25 Right 
Temporo parieto 

occipital R (F-T-I-P-O) 14 127 105 

G M​ale 23 Left Temporal L (F-T-I-P) 13 125 102 

H Female 43 Left Posterior Temporal L (F-T-I-P) 14 125 103 

I Male 44 Left Mesial Temporal L (F-T-I-P) 12 123 105 

J Female 46 Left 
Anterior medial 

temporal L (F-T-I-P-O) 11 124 107 

K Male 43 Left Mesial Temporal L (F-T-P) 9 103 94 

L Male 23 Right Anterior temporal R (F-T-P) 15 125 96 

R: Right; L: Left; F: Frontal; T: Temporal; P: Parietal; O: Occipital; I: Insula 
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Figure 1. Paradigm, behavioral performance and implantation scheme.​ A)​ Schematic example of the experimental              

paradigm. After an interval of 1000 ms for preparation, each target picture was presented and remained on the                  

screen for 2000 ms. B)​ Picture naming accuracy for each patient. On average, patients achieved 85.3±11.0% accuracy                 

on test items. C)​ Example of the intracerebral implantation scheme for iEEG recordings in patient E. Eleven electrodes                  

were implanted in the left hemisphere. 

 

 

Figure 2. Data processing flow chart. The iEEG data is recorded from 85 up to 127 unipolar channels on each patient.                     

The bipolar montage is constituted offline by subtracting the neural activity recorded by neighbouring contacts within                

the same electrode array. The data is first bandpass filtered at 1 to 150 Hz, and further bandpass filtered into narrow                     

frequency bands ​[f​ carrier​ -2​ , f​ carrier​ +2 Hz​ ] ​(we consider here carrier frequencies f​ carrier​ = 1 to 130 Hz in steps of 4 Hz). By                     

the Hilbert transform the corresponding amplitude envelopes are computed to further compute the envelope FC               

matrix. The continuous data is segmented into windows of -500 to 0 (pre-task condition) and 0 to 500 ms (task                    

condition), around stimulus presentation. In order to characterize the organization of the network under both               

conditions, we used integration and segregation measures of global brain function.  
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Figure 3. Results analysis patient K. Panel A shows a significant increase in the integration during cognitive                 

processing for all carrier frequencies, although it is clear that the greatest effect is observed in the gamma range (50                    

to 90 Hz) (p<0.05). The red line corresponds to pre-task condition, the blue line corresponds to task condition and                   

green dots indicates an statistical significance of p<0.05. Complementary to the integration, panel B shows a                

decrease of the modularity in the same frequency range. Panel C shows that there are no iEEG power spectrum                   

changes in any frequency induced by the task. This result indicates that the increase of integration and decrease of                   

modularity could not be explain by changes in the power spectrum. Panel D shows an increase of mean                  

synchronization over a broad range of frequencies which is more conspicuous in the gamma band range (50 to 90 Hz)                    

for the task condition. Panel E shows that the functional connectivity behaves coherently with the other results as it                   

increases as a function of the task load particularly in the gamma range (50 to 90 Hz). Panel F plots the amplitude of                       

the power spectrum at 60 Hz for each bipolar channel and both pre-task and task conditions. There is no noticeable                    

modulations across across single bipolar channels between pre-task and task conditions. 
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Figure 4. Integration measure results for each patient.​ The panels shows the results for every single patient. As can be                    

seen, despite the heterogeneity of the recording sites, all patients shows a significant increase of the integration                 

related to cognitive processing (p<0.05). For all, the greatest effect was found in the gamma range. The red line                   

corresponds to pre-task condition, the blue line corresponds to task condition and green dots indicates an statistical                 

significance of p<0.05.  
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Figure 5. ​Segregation measure results for each patient.​ The panels shows the results of segregation (measured by the                  

modularity) during task and pre-task conditions. For all patients there is a significant decrease of the segregation                 

during cognitive processing and the greatest effect can be seen in the gamma range (50 to 90 Hz) (p<0.05). The red                     

line corresponds to pre-task condition, the blue line corresponds to task condition and green dots indicates an                 

statistical significance of p<0.05.  

 

 

Figure 6. Amplitude of the Power Spectrum at 60 Hz across electrodes for each patient.​ The panel shows the results                    

of the amplitude of the power spectrum at 60 Hz for each bipolar channel and both pre-task and task conditions. For                     

all patients there is no noticeable modulations across single bipolar channels between pre-task and task conditions.                

The red line corresponds to pre-task condition and the blue line corresponds to task condition.  
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