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ABSTRACT 

The high computational cost of current assembly methods for the long, noisy single 

molecular sequencing (SMS) reads has prevented them from assembling large 

genomes. We introduce an ultra-fast alignment method based on a novel global 

alignment score. For large human SMS data, our method is 7X faster than MHAP for 

pairwise alignment and 15X faster than BLASR for reference mapping. We develop a 

Mapping, Error Correction and de novo Assembly Tool (MECAT) by integrating our 

new alignment and error correction methods, with the Celera Assembler. MECAT is 

capable of producing high quality de novo assembly of large genome from SMS reads 

with low computational cost. MECAT produces reference-quality assemblies of 

Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and 

reconstructs the human CHM1 genome with 15% longer NG50 in only 7600 CPU 

core hours using 54X SMS reads and a Chinese Han genome in 19200 CPU core 

hours using 102X SMS reads.   
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INTRODUCTION 

         Determining the genome sequence of a species or an individual in a population 

is one of the most important tasks in genomics1-6. De novo assembly is a process that 

reconstructs the genome from sequencing reads without a reference genome7-10. While 

technical advances in next generation sequencing (NGS) have enabled to assemble a 

genome in significantly lower cost and higher throughput comparing to the first-

generation Sanger sequencing11, two inherited drawbacks make assembly of a genome 

from NGS short reads difficult12-14. First, NGS reads are only few hundreds base pair 

in length, which are shorter than the lengths of most repetitive sequences in either 

microbial or eukaryotic genomes15-17. Second, PCR amplification in library 

preparation causes sequencing biases, resulting in some sequence contexts, such as 

GC-rich regions, not being sequenced12,17. Both drawbacks lead to incomplete, 

fragmented assemblies18. The recently emerged third generation single molecular 

sequencing (SMS) technologies19, such as PacBio single molecule real time 

(SMRT)20,21 and Oxford Nanopore21-26, posses two distinguishing characteristics, 

namely, the long read length and the unbiased sequencing17,27-29, which can overcome 

the deficiencies of NGS17,27-29. These two properties together may help better resolve 

repeats and biased region, and thus obtain high-quality de novo genome 

assemblies21,30-33.  

The SMRT and Nanopore reads usually have high error rates34-37. For example, 

the error rate of PacBio SMRT reads is generally 13-18%35,38. However the errors of 

SMRT are random and dominated by point insertions and deletions34 with no 

preference on particular genome regions29. Both theoretical and practical studies have 

shown that the SMRT reads can be corrected with high accuracy provided the 

sequencing coverage is high enough21.  Therefore, a “correction then assembly” 
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approach has been used by assemble pipelines, such as PBcR35, FALCON39 and 

HGAP21, for single molecular sequencing reads. In those pipelines, raw noisy reads 

are first corrected and then fed into an overlap graph based assembler, such as the 

Celera Assembler3,35.  Previous practices have demonstrated that the “correction then 

assembly” approach can reconstruct highly continuous and accurate genome 

assemblies35,39.  

 Although SMRT sequencing have already been widely used to reconstruct 

small bacteria and archaea genomes, assembling middle or large size genomes from 

SMRT reads have suffered from high computational cost in the correction step of 

“correction then assembly” pipelines3,38-40. In PBcR-MHAP pipeline, about 84% 

computational time is used in read correction step. Recently, with new algorithm 

advancing, the assembly of D. melanogaster from SMRT reads  takes only 1060 CPU 

core hours using PBcR-MHAP, which is dramatically reduced from 631, 000 CPU 

hours using original PBcR3,41. However, it still take a very long time for pipelines, 

such as PBcR-MHAP and FALCON, to assemble large genomes42. For example, it 

costs 260, 000 CPU core hours for PBcR-MHAP and FALCON to complete a human 

genome from 54X raw SMRT sequences3,42,43.  

 The high computational cost of SMRT assemble pipelines is mainly due to the 

all-pair alignment step to determine overlaps between read pairs for the correction. 

There are two sub-steps in the all-pair alignment step. First, the k-mer mapping based 

approach is used to identify candidate matched read pair. Then, local alignment is 

used to determine final matched read pair. Due to highly repetitive nature of biology 

genomes44,45, reads sampled from repetitive regions can lead to a high number of k-

mer matches42-44, which lead to a lot of excessive44 candidate pairs. Meanwhile, the 

local alignment of two long noisy reads is also slow, even with linear local alignment 
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program, like diff46. The local alignment of excessive candidate pairs is the major 

computational time waste in read correction.   

 To reduce the excessive matched reads after k-mer mapping, and then reduce 

the total computational time, we present a novel alignment filtering algorithm based 

on fast global k-mer scoring. Our filtering algorithm is inspired by the observation 

that the frequency of repeat subsequences decreases dramatically with their size. Thus, 

if we can find long matched read pairs, then these alignments can be non-repetitive 

matches with high confidence. We develop a novel k-mer seed score that is correlated 

with the overlap size between two reads, and then is able to represent the global 

matching information. For each read, we can select top matched reads according to 

their k-mer seed score for the further read correction. Noted, selecting top matched 

reads based on number of matched k-mers may lead to many non-informative matches 

since the repetitive region has more matched k-mers.  Our global k-mer scoring 

algorithm allows us to dramatically reduce the number of non-informative matched 

read pairs, as well as selecting smaller number of informative matched reads for the 

read correction; both can lead to the significantly reducing of computational cost.  

 We have also presented a new SMS read error correction method by 

combining counting-based method and local partial order graph, which can achieve 

high correction accuracy and high correction speed simultaneously. With those new 

algorithms, we develop an ultra-fast Mapping, Error Correction and de novo 

Assembly Tool (MECAT) for SMRT reads. MECAT achieves superior computing 

efficiency to current assembly pipelines. In particular, MECAT takes only about 7600 

CPU core hours to assemble a high quality human CHM1 genome using 54x SMRT 

data47 (CHM1) on a single 32-threads computing node with 2.0 GHz CPU, which is 

34 times faster than the current PBcR-MHAP pipeline3. The MECAT makes it 
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possible to de novo assemble large genome using SMRT reads with the similar 

computational cost as that the assembling of NGS reads needs. 

 

RESULTS 

Alignment filtering in MECAT  

The initial step of our alignment is also finding the candidate alignments by 

mapping the k-mers of two blocks3,40,48 with size of 1,000 to 2,000 bp. Two blocks are 

considered matched if the number of matched k-mer beyond a predefined threshold. 

We find a candidate alignment between two SMS reads or between a SMS read and 

reference genome if there is at least one block pair between them matched. The k-mer 

matching based method can filter out random pairs and quickly find seed alignments 

with high sensitivity40. However, a read often aligns to many other reads or many 

locations in the genome due to highly repetitive nature of genomes42,44. Local 

alignments are needed to find the good matched reads or best matched genome 

locations48. However, the computational cost for local alignments between two long 

SMS reads or between a SMS read and reference genome is high40,46. Meanwhile, 

most of SMS applications, such as SMS read correction and reference genome 

mapping, only need limited number of matches48-50. To quickly select high quality 

candidate alignments for the further local alignments, we develop a new pseudo linear 

global scoring algorithm to filter candidate alignments (Figure 1). Our algorithm 

works by scoring matched k-mer pair in two steps using distance difference factors 

(DDF). First, we mutually score the k-mer pair in a selected matched block pair. The 

k-mer pair with max score is selected as the seed, and then the seed k-mer pair is 

scored by the matched k-mer pairs in other matched block pairs. The score of the seed 

k-mer pair is supported by all informative matched k-mer pairs and their interval 
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distance when there is a good alignment between them. Thus, our scoring algorithm 

integrates the global matching information between two SMS reads or between a SMS 

read and reference genome. Figure 2a shows that the scores of seed k-mer pairs 

between SMS pairs grow linearly with their overlapping lengths in four SMS data sets. 

Therefore, by selecting SMS read pairs with high scores, we can filter out the non-

informative candidate alignments. After filtering by global scoring, we have reduced 

50% to 70% candidate alignments for further local alignment (Figure 2b). And this 

makes the alignment tool 2-3 times faster than those without global scoring filtering. 

The candidate alignments are then further filtered by local alignment using diff 

program40,46.               

 

Figure 1. Principle of global scoring algorithm in MECAT alignment.  (A) 

Alignment of k-mers between blocks of two SMS reads. (B) Pairwise scoring using 
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DDF between k-mer pairs in each block pair (Block2 in A as an example). (C) 

Selecting the seed k-mer pair with the highest score. Random selecting one if multiple 

k-mer pairs have the same scores. (D)  Scoring the seed k-mer pair using k-mer pairs 

in other block pairs. (E) Aligning two reads from the seed k-mer pair.    

 

 
 

a. b. 

 

Figure 2. The global scores between SMS read of four model organisms.  (a) The 

relationship between the overlap length of two reads and their global scores. We first 

extract long reads (length >= 5000bp) from four SMS data sets (E coli, Yeast, A. 

Thaliana and D. Melanogaster)47. We perform pairwise alignment of reads in each 

data set using MECAT and record the overlap size and its corresponding global 

voting score of each alignment. (b) Comparison of the numbers of alignment 

candidates before and after global scoring filtering.  

 

Pairwise alignment performance of MECAT 

To evaluate the performance of MECAT in pairwise alignment of SMS reads, we 

first compare memory usage and computational time cost of MECAT to those of three 

widely used SMS read alignment tools, MHAP3, BLASR48 and DALIGN40. We 
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evaluate the alignment tools using five real datasets47. As shown in Table 1, the 

MECAT is faster than all other aligners, except it is slightly slower than 

DALIGNER40 on the E. coli dataset, which is due to computation cost of pre-

processing procedure in MECAT. For large human genome, MECAT is 7 times faster 

than the second best aligner, MHAP-fast, and 15 times faster than DALIGNER. 

Meanwhile, MECAT uses similar amount of memory that DALIGNER uses, which is 

only about 1/10 of the amount of memory used by MHAP. Thus, MECAT has used 

only small amount of memory to achieve fast pairwise alignment.      

 

Table 1. Computing performance of pairwise alignment of SMS reads.  

Dataset Consuming source 
MHAP 
(Fast) 

MHAP 
(Sensitive) 

Daligner 
BLASR 
(Fast) 

BLASR 
(Sensitive) 

MECAT 

E.coli 
CPU core time(h) 1.3 1.7 1.0 9.9 21.4 1.1 

Max.Memory(G) 32.5 34.7 20.1 3.9 3.9 3.1 

Yeast 
CPU core time(h) 2.5 2.9 2.9 8.1 12.1 1.0 

Max.Memory(G) 38.3 42.6 3.1 4.6 4.7 3.6 

A.Thaliana 
CPU core time(h) 1.7 2.3 3.2 5.7 6.7 0.9 

Max.Memory(G) 36.5 38.8 3.7 13.7 4.6 3.6 

D.Melanogaster 
CPU core time(h) 1.5 2.1 5.0 32.4 39.6 0.7 

Max.Memory(G) 36.4 38.6 3.1 15.6 8.1 3.6 

Human 
CPU core time(h) 2.2 3.7 4.6 6.7 6.9 0.3 

Max.Memory(G) 38.6 41.7 3.2 7.7 5.1 3.6 

The running time and memory-consuming are calculated using five real datasets. The detail parameter setting and statistical 
program are described in supplementary note 7. 

 

Next, we evaluate the sensitivity and precision of aligners on three simulated 

datasets, including a 20x coverage E. coli, a 20x coverage yeast and a 5x coverage 

human chr1 datasets (Table 2). Since we knew the beginning and ending position of 

each read in reference genome in the simulated datasets, we can calculate the true 

pairwise overlap relationships between all reads. The sensitivity of an aligner 

indicates its ability to identify true overlaps and the precision of an aligner indicates 

the correctness of identified overlaps. The sensitivities of DALIGNER40 are the best 

among four aligners, but its precisions are the lowest. On the other hand, the 
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BLASR48 and MHAP3 have high precisions, but low sensitivities. Meanwhile, 

MECAT maintains high precision as well as high sensitivity at the same time. The 

sensitivities of MECAT are consistently higher than those of both BLASR and MHAP 

while maintaining similar precisions. Comparing to DALIGNER, MECAT has higher 

precisions, but lower sensitivities. The precision and sensitivity of DALIGNER 

become extremely unbalanced for human chr1 data, with only 9.1% precision. These 

results show that MECAT has achieved a good balance between sensitivity and 

precision for both small and large genomes.  

Table 2. Pairwise alignment sensitivity and precision comparison of different 

aligners. 

Dataset properties 
MHAP 
(Fast) 

MHAP 
(Sensitive) 

Daligner 
BLASR 
(Fast) 

BLASR 
(Sensitive) 

MECAT 

E.coli 
Sensitivity (%) 29.7 54.4 93.7 44.5 45.1 80.3 

Precision (%) 99.3 98.1 90.0 98.1 89.9 96.2 

Yeast 
Sensitivity (%) 34.5 60.8 93.9 45.4 46.2 80.2 

Precision (%) 92.2 90.2 53.9 94.9 71.7 87.6 

Human 
Chr1 

Sensitivity (%) 37.0 63.8 93.8 41.8 46.0 66.2 

Precision (%) 88.9 82.6 9.1 94.6 77.1 91.6 

We define that two read has the correct pairwise relationship if they overlap in reference genome for more than 2k pb. The 
alignments of each tool result in following three cases: (1) correctly identify the pairwise relationship (C); (2) identify wrong 
pairwise relationship (I); (3) fail to find the pairwise relationship (U). Then, the sensitivity of the tool is defined as C/(C+U+I), 
and the precision of the tool is defined as C/(C+I). 

Reference genome alignment performance of MECAT 

The MECAT can also be used to align SMS reads to the reference genome. We 

evaluate MECAT with two popular SMS reads reference genome aligners, BLASR48 

and BWA-mem49. We have first compared the aligning time cost using five real 

datasets (Table 3). For four small genomes (E.coli, Yeast, Arabidopsis, fly)47, 

MECAT is 40 to 85 times faster than BLASR and 20 to 83 faster than BWA-mem. 

For human genome, MECAT is 15 times faster than BLASR and 5 times faster than 

BWA-mem. Then, we have compared the sensitivities, precisions and coverages of 

aligners using 20X simulated SMS data of E. coli, yeast and human genomes (Table 

4)51, in which we know the read positions on the genomes. Comparing to BLASR48 
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and BWA-mem49, MECAT maps slightly less amount of reads to the reference 

genome, but it map more reads correctly for all three data sets. As a result, MECAT 

has higher sensitivities, precisions as well as coverages for all three data sets. The 

results show that MECAT can align SMS reads to the reference genome ultra-fast and 

maintain high sensitivity and precision. In five real datasets, the mapping overlap 

rates of three algorithms are as high as 95-99% of the same alignment positions 

(Supplementary Note 6 and Supplementary Figure 1-5), showing high confidence of 

MECAT alignment. 

Table 3. Reference genome alignment speed comparison among MECAT, 
BLASR and BWA-mem.  

Dataset Data size Time (min)/BLASR Time (min)/BWA-mem Time (min)/MECAT 

E.coli 649.4M 162.2 93.7 1.9 

Yeast 5.6G 756.7 408.65 18.1 

A.Thaliana 36.1G 2511.7 2323.4 30.8 

D.Melanogaster 29.3G 2406.3 3244.5 38.8 

Human 389.2G 26940.0 9417.5 1747.2 

The running time and memory-consuming are calculated using five real datasets. The detail parameter setting and statistical 
program are described in supplementary note 6. 

 

Table 4. Reference genome alignment sensitivity and precision comparison of 

different aligners. 

Dataset Method 
SMS reads 

count 
Mapped 

count 
Correct 
count 

Correct mapped 
length 

Precision Sensitivity Coverage 

Ecoli 

BLASR 6,634 6,634 6,606 88,207,198 99.58% 99.58% 99.53% 

BWA-mem 6,634 6,634 6,511 86,980,847 98.15% 98.15% 98.15% 

MECAT 6,634 6,634 6,633 88,592,740 99.98% 99.98% 99.97% 

Yeast 

BLASR 17,386 17,386 17,315 231,112,187 99.59% 99.59% 99.55% 

BWA-mem 17,386 17,386 16,921 225,918,564 97.33% 97.33% 97.32% 

MECAT 17,386 17,384 17,367 231,880,652 99.90% 99.89% 99.89% 

Human 

BLASR 4,422,350 4,079,186 4,040,515 53,969,578,429 99.05% 91.37% 91.31% 

BWA-mem 4,422,350 4,079,186 3,925,313 52,454,109,629 96.23% 88.76% 88.74% 

MECAT 4,422,350 4,079,021 4,046,195 54,073,550,527 99.20% 91.49% 91.48% 

The aligned positions have one of following three situations, C, I or U, where C indicates alignment to its correct position when 

the absolute distance of the aligned position and the reference position from pbsim is less than 100bps; I indicates alignment to a 

wrong position and U indicates fail to be aligned to reference genome. Therefore, sensitivity is defined as C/(C+I+U), and 

precision is defined as C/(C+I). Coverage is defined as the mapped  base length / total base length. 
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Error Correction Performance of MECAT 

Due to high error rates of SMS reads, error correction is an indispensable step 

when they are used for genome assembly34-37. Currently, FC_Consensus, DAGCon35 

and FalconSense3 are three most widely used SMS read error correction methods. 

DAGCon35 represents a multiple read alignment for each read to be corrected as a 

partial order graph (POG) and find the correct consensus sequence using dynamic 

programming. DAGCon is accurate but very slow. On the other hand, FalconSense 

simply corrects the template sequence by counting consistent base alignments. 

FalconSense is fast but less accuracy. The accuracy of SMS reads is important for 

genome assembly35,38. Here, we develop a new SMS read error correction method by 

combining the principles from both DAGCon and FalconSense. For regions with 

consistent matches/deletions without insertion (trivial regions), we use counting-based 

method. And for other complicate regions, we construct a local POG and solve it with 

dynamic programming. As the complicate regions are generally less than 10 bases, the 

local POGs are very small and can be solved very fast.  

The first step of read correction is to perform the alignments between the 

template and the relative reads, which need random access the storage that stores the 

reads. Both DAGCon and FalconSense store the read in hard driver, which does not 

support random access. The slow read loading process in DAGCon and FalconSense 

lead to only 20% CPU usage. To accelerate the correcting process, we load all reads 

into memory, which supports random access. We encode each base using 2 bits. Thus, 

the memory occupation of MECAT is about 1/4 of the total read size. Loading reads 

to memory makes the CPU usage of MECAT over 96%. 

We have compared MECAT error correction to FalconSense in PBcR-MHAP3 

and Canu, as well as FC_Consenses in FALCON using four real datasets. Table 5 
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shows that the correction running speed from MECAT error correction is 5~20 times 

faster than FalconSense and 3~10 times faster than FC_Consense for four datasets. To 

evaluating the accuracy of corrected long reads, all corrected long reads were 

mapping into reference genome by dnadiff program52 (Table 5 and Supplementary 

Note 8). The mapping results show that the accuracies of reads corrected by MECAT 

are always higher than 99% and are the best in three of four datasets. Specially, for D. 

melanogaster dataset, the accuracies of other tree method are less than 99%, while the 

accuracy of MECAT is as high as 99.26% (Table 6 and Supplementary Note 8). 

 

Table 5. Comparison of speeds of SMS read correction methods.  

Dataset 
FC_Consense from 

FALCON 
FalconSense from 

PBcR-MHAP 
FalconSense from 

Canu(v1.3) 
MECAT  

Time(h)/Size/Speed(g/h) Time(h)/Size/Speed(h/g) Time(h)/Size/Speed(h/g) Time(h)/Size/Speed(h/g) 

E.coli 0.83/246m/0.29 0.36/197m/0.53 0.34/158m/0.45 0.13/282m/2.13 

Yeast 1.06/603m/0.56 1.90/236m/0.12 3.22/388m/0.12 0.58/716m/1.21 

A.thaliana 59.21/12.1g/0.20 41.37/3.10g/0.11 30.67/4.09g/0.13 4.23/10.05g/2.38 

D.melanogaster 45.21/10.26g/0.23 28.57/3.40g/0.12 28.37/4.01g/0.14 5.75/10.29g/1.79 

Three algorithms from different pipelines have been tested on the same computer with 2.0 GHz CPU and 512 GB RAM memory 
by running whole pipeline. Here, Time is the running time of correction process and Size is the corrected sequence size of output 
result. Speed is the correction speed of correction algorithm and it is defined as Size /Time. 

 

 

 

Table 6. Comparison of accuracy of corrected reads from of SMS read 

correction methods. 

 
 Raw data 

accuracy 
 

FC_Consenses  

from FALCON 

FalconSense  

from PBcR-MHAP 

FalconSense  

from Canu(v1.3) 
MECAT 

E.coli 90.98  99.78 99.23 99.72 99.80 

Yeast 92.70  99.55 99.01 99.48 99.57 

A.thaliana 88.24  99.57 98.60 98.79 99.36 

D.melanogaster 87.73  98.39 97.83 98.21 99.26 

100M of raw and corrected reads of each datasets are randomly selected to evaluate raw read quality and corrected read quality. 
Raw reads and corrected reads were mapped on the reference genome by dnadiff software. The mean sequencing error of 100M 
data was estimated by the in-house R script.. 
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Assembly performance of MECAT 

Generally, there are three steps in the assembly of genome using SMS reads: 

overlapping SMS reads to selected template reads; correcting the selected reads and 

constructing the contig using corrected reads3,35,38. To test the efficiency and 

effectiveness of MECAT aligner and error correction in genome assembly, we 

develop two genome assembly pipelines. In first pipeline, the SMS reads are 

overlapped and corrected by MECAT, and then fed into Celera Assembler (CA). We 

call the first pipeline MECAT-CA. In the second pipeline, which is called the 

MECAT, the SMS reads are also first overlapped and corrected by MECAT. Then, 

the corrected reads are overlapped by MECAT aligner again and the overlap graph is 

fed into the “Unitig Construction” module of Canu42 (v1.0) to construct the contigs. In 

both pipelines, we do not perform local alignment using diff program during SMS 

reads overlapping. We only select the top mapped reads using global scores and feed 

the mapping information to error correction step. We compare two pipelines to other 

three SMS assembly pipelines, PBcR-MHAP3, FALCON and Canu. We evaluate 

assembly pipelines using previously released whole genome SMRT reads of five 

genomes: E. coli K12, S. cerevisiae W303, D. melanogaster ISO1, Arabidopsis 

thaliana Ler-0 and the complete hydatidiform mole CHM147. All the genome 

assemblies are polished by Quiver53 to correct sequencing errors. 

Table 7 lists the running time of five pipelines on the same computer. We 

evaluate total assembly time as well as the running time for read overlap, error 

correction and contig construction separately. For small E. coli K12 genome, the 

MECAT-CA and MECAT are 3.7 to 5.0, 3.9 to 5.4 and 2.2 to 2.9 times faster than 

FALCON, PBcR-MHAP and Canu, respectively. For another small S. cerevisiae 

W303 genome, the MECAT-CA and MECAT are 1.5 to 2.1,  3.2 to 4.3 and 3.9 to 5.3 
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times faster than FALCON, PBcR-MHAP and Canu, respectively. For medium D. 

melanogaster ISO1, the MECAT-CA and MECAT are 7.32 to 14.7, 5.3 to 10.5 and 

3.6 to 7.2  times faster than FALCON, PBcR-MHAP and Canu, respectively. For 

another medium Arabidopsis thaliana Ler-0 genome, the MECAT-CA and MECAT 

are 15.5  to 20.9, 13.1 to 17.6  and 8.2 to 11.1  times faster than FALCON,  PBcR-

MHAP and Canu, respectively. For large human genome, we are not able to run other 

assembly pipelines on our single computer, thus we compare our running time to the 

results of previous paper3. Our MECAT-CA is 5.2 and 12 times faster than PBcR-

MHAP-fast and PBcR-MHAP-sensitive, and MECAT shows remarkable 24.9 times 

speedup than PBcR-MHAP-fast and 56.4 times speedup than PBcR-MHAP-sensitive. 

The larger the size of genome is, the greater the speedups of MECAT are.  

As shown in Table 7, the overlapping and correcting steps are the most time 

consuming steps among the three assembly steps of PBcR-MHAP, FALCON and 

Canu. And the speedups of MECAT-CA and MECAT are mostly coming from the 

efficient of MECAT aligner and error correction in these two steps. For small or 

medium size genomes, the running times of three steps in MECAT-CA pipeline are 

similar. However, the running time of contig construction became the bottleneck 

comparing to other two steps for large genome. For human genome, the running time 

of contig construction step are 3.5 and 39 times longer than those of overlapping and 

correcting steps in MECAT-CA pipeline. Meanwhile, for human genome, the running 

time of contig construction of MECAT is only 7.5% of that of MECAT-CA, which 

make contig construction step not a bottleneck in MECAT, in which MECAT 

pairwise alignment replaces OverlapIncore program in CA.  

Table 7. The computational time comparison of different assembly pipelines. 

Genome Pipeline threads 
overlap 
time(h) 

correct 
time(h) 

correction 
size 

Contig 
time(h) 

Total 
time(h) 

E.coli FALCON 16 0.22 0.83 246M 0.15 1.21 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 15, 2016. ; https://doi.org/10.1101/089250doi: bioRxiv preprint 

https://doi.org/10.1101/089250


 

 16

PBcR-MHAP 16 0.74 0.36 197M 0.15 1.29 

Canu 16 0.20 0.34 158M 0.15 0.71 

MECAT-CA 16 0.05 0.13 282M 0.15 0.33 

MECAT 16 0.05 0.13 282M 0.05 0.24 

Yeast 

FALCON 16 0.72 1.06 603M 0.28 2.06 

PBcR-MHAP 16 1.47 1.9 236M 0.45 4.2 

Canu 16 1.15 3.22 388M 0.67 5.11 

MECAT-CA 16 0.12 0.58 716M 0.63 1.33 

MECAT 16 0.12 0.58 716M 0.25 0.97 

A.thalian
a 

FALCON 16 132.52 59.21 12.1G 32.11 223.84 

PBcR-MHAP 16 132.76 41.37 3.1G 11.7 188.7 

Canu 16 24.58 30.67 4.09G 37.58 118.57 

MECAT-CA 16 4.36 4.23 10.05G 5.87 14.46 

MECAT 16 4.36 4.23 10.05G 2.01 10.73 

D.melano
gaster 

FALCON 16 64.20 45.21 10.26G 31.31 140.72 

PBcR-MHAP 16 62.09 28.57 3.40G 9.5 101.22 

Canu 16 12.70 28.37 4.01G 27.01 69.34 

MECAT-CA 16 2.98 5.75 10.29G 10.47 19.20 

MECAT 16 2.98 5.75 10.29G 0.80 9.58 

Human 

PBcR-MHAP(f) 32 82000/32*1.6 —— 33000 5750 

PBcR-MHAP(s) 32 220000/32*1.6 —— 40000 13000 

MECAT-CA 32 231.11 24.12 80.77G 817.75   1087.96 

MECAT 32 231.11 24.12  80.77G 60.93     230.54 

All pipelines have been tested on the same computer with 2.0 GHz CPU and 512 GB RAM memory. For Human datasets, we 
cannot run PBcR-MHAP on our computer with 32 threads. Our computer is 1.6 times slower than the one used by Berlin et al. 
based on the running time of PBcR-MHAP using other data sets3. The running time of PBcR-MHAP is indirectly converted from 
those of Berlin et al3.  

 

We further examine the quality of assemblies of five pipelines using four 

measures: assembly size, NG503,36, number of contigs and the average number of 

contigs >200 bps per chromosome (ctg/chr) 3,36 (Table 8).  In all five compared 

genomes, MECAT-CA and MECAT obtain comparable or improved assemblies. For 

E. coli K12, both MECAT-CA and MECAT recover the complete genome with just 1 

contig. For S. cerevisiae W30354, both MECAT-CA and MECAT report close to 

perfect continuity with only 22 and 21 contigs, respectively. However, the MECAT 

obtain best NG50s with 100% assembly performance (even better than that of 

reference assembly S228C55), while MECAT-CA only report 89% assembly 

performance, which is similar to the results of PBcR-MHAP and Canu and better than 

the result of FALCON. For Arabidopsis thaliana Ler-0, MECAT reports only 56 

contigs with better than reference assembly NG50 (100% assembly performance), 
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which is much higher than those NG50 reported by other four pipelines with assembly 

performance from 68% of FALCON to 85% of PBcR-MHAP. For D. melanogaster, 

the MECAT also reports the highest NG50 with 82% assembly performance while it 

reports less total assembly size. For human CHM1, the assembly size reported by 

MECAT-CA is the closest to the size of human Ref 38 genome56, but it reported the 

largest number of contigs and largest ctg/chr ratio. Meanwhile, MECAT reported 

slightly better assembly size than those of PBcR-MHAP, but less than that of 

MECAT-CA. The NG50 reported by MECAT is 15% longer than those of PBcR-

MHAP sensitive and MECAT-CA. And the number of contigs and ctg/chr reported by 

MECAT is similar to those of PBcR-MHAP sensitive, much less than those of 

MECAT-CA and PBcR-MHAP fast. Given its ability that MECAT can assemble the 

human CHM117 genome in less than 10 days on a single 32-thread computer with 

comparable assembly quality, it can be an ultra-fast tool to assemble large genomes 

using SMS reads.  

           

Table 8. The assembly quality analysis of MECAT-Canu and MECAT. 

Genome Pipeline Assembly Size Contigs NG50(AP) ctg/chr 

Ecoli 

SPAdes Illumina 4,596,097 166 133,063 (3%) 166 

SPAdes60 Hybrid 4,664,071 63 1,443,745 (31%) 63 

FALCON 4,635,129 1 4,635,129 (100%) 1 

PBcR-MHAP 4,652,272 1 4,652,272 (100%) 1 

Canu 4,648,002 1 4,648,002(100%) 1 

MECAT-CA 4655543 1 4,655,543(100%) 1 

 MECAT 4,649,626 1 4,649,626(100%) 1 

Yeast 

S228C 12,157,105 17 924,431 (100%) 1 

FALCON 12,383,674 68 587,169 (64%) 3 

PBcR-MHAP 12,470,948 37 818,229 (89%) 2 

Canu 12,395,539 29 739,902(80%) 2 

MECAT-CA 12,207,829 22 818,328(89%) 2 

 MECAT 12,190,634 21 929,350(100%) 2 

A.thaliana 

TAIR10 119,482,035 102 11,194,537(100%) 15 

FALCON 127,238,103 694 7,583,032 (68%) 19 

PBcR-MHAP 126,245,692 338 9,610,192 (85%) 12 

Canu 121,736,829 87 8,315,338(74%) 11 

MECAT-CA 122,034,040 95 9,071,364(81%) 11 

 MECAT 120,899,877 56 12600961(100%) 10 
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D.melanogaster 

dm5  162,469,346 37,647 21,485,538 (100%) 2 

FALCON 160,933,744 746 15,664,372(73%) 7 

PBcR-MHAP 162,057,640 723 13,627,256 (63%) 11 

Canu 154,844,035 315 14,179,324(66%) 6 

MECAT-CA 154,616,713 465 12,069,556(56%) 13 

 MECAT 146,488,518 309 18,111,159(82%) 11 

Human 

 

Ref38 3,049,316,025 1,386 56,413,054 (100%) 30 

PBcR-MHAP(F) 2,816,715,694 5,202 1,857,788 (3%) 165 

PBcR-MHAP (s) 2,828,300,545 3,434 4,320,471 (8%) 88 

MECAT-CA 3,003,472,845 14,258 4,344,820 (8%) 421 

MECAT  2,830,669,055  3,822  4,878,957 (9%)  78 

Assembly size is the total number of base pairs in all contigs generated by assemblers.N50 indicates that 50% of the reference 
genome size is contained in contigs of length ≥N. The assembly performance (AP) is defined as the obtained contig NG50 
divided by the NG50 of the reference assembly. The genome sizes of S. cerevisiae W303, A. thaliana Ler-0, D. melanogaster 
ISO1 and human are 12,157,105, 119,482,035, 129,663,327, and 3,101,804,741, respectively. Ctg/Chr is average number of 
contigs per chromosome in the assembly.  

 

Validation analysis of assembly 

We further validate the assemblies by comparing them to the reference genomes. 

Since MECAT is always faster and obtain better or comparable assembly 

performance, we only compared the assembled results of MECAT to those of PBcR-

MHAH, Canu and FALCON. We first map the assemblies of E coli, Yeast, 

Arabidopsis thaliana and D. melanogaster to reference genomes using Nucmer57 

(Supplementary Note 10), and then evaluate the mapping results using GAGE scripts 

58. Among four assemblies, only assemblies of E coli and D. melanogaster are 

generated from SMS read sampled from the same strains of reference genomes. All 

four assemblies are structurally consistent with reference genomes except some minor 

structural variation (Supplementary Figs. 6-22). Supplementary Table 3 provides 

GAGE58 accuracy metrics for these assemblies. With all discrepancies between 

assembly and reference genome sequence being counted as error, the assemblies 

reported by MECAT are still at least 99.99% accuracy (QV=403) compared to the 

reference genomes. We also align four assemblies before and after Quiver53 polishing 

onto reference genome using dnadiff program52, and count the single-nucleotide 

polymorphisms (SNPs) and big indels (>10bps). The numbers of SNP and indels in 

assemblies reported by all four pipelines are similar, especially after Quiver polishing 

(Supplemental Table 3). We further map all 17294 annotated genes of D. 

melanogaster59,60 onto the assemblies.  We identify a total of 16972, 17044, 17055 

and 16839 genes mapped to a single contig in a single alignment from assemblies of 

PBcR-MHAP, FALCON, Canu and MECAT, respectively, while 16944, 17020, 
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17037 and 16812 genes of these have over 99% identity. The results show that the 

qualities of assemblies from MECAT are comparable to those from other pipelines. 

Solving the repeat regions is the most import task in genome assembly. We 

evaluate four assemblies of D. melanogaster by comparing the completeness of 

transposable element (TE) families61 (Supplementary Note 12 and Supplemental 

Table 4). In all 5,433 annotated TEs from the flybase3. MECAT assembly contains 

5301 (97.6%) TEs, in which 5141 (94.6%) aligned perfectly to the reference. 

Meanwhile, PBcR-MHAP, FALCON, Canu assemblies contain 5274, 5306 and 5319, 

respectively. And 4984, 5190 and 5165 of them are aligned perfectly. We have 

examined two TE families, roo and juan, in detail. In MECAT assembly, 131 of 138 

copies in roo TE family are aligned. Of these, 123 are perfectly aligned. For 11 

elements of the juan family, all are perfectly confirmed. Those results are similar to 

the assemblies of other three pipelines (Supplementary Table 4). The TE analysis in D. 

melanogaster demonstrates that MECAT is capable of reconstructing TE repeats 

sequences accurately. 

To further evaluate the ability of MECAT that reconstructs the repeat regions of 

genomes, we have examined the telomeric repeats in S. cerevisiae assembly of 

MECAT (Supplementary Note 13 and Supplementary Table 5). We are able to map 

telomeric repeats of 15 chromosomes to assembled contigs. Among them, seven 

chromosomes assembled in a single contig have at least 50% of terminal telomeric 

repeats mapped on both ends.  For chromosomes contains more than one contig, we 

have mapped the two end telomeric repeats onto two contigs of six chromosomes and 

one end telomeric repeats onto one contig of one chromosome. There are telomeric 

repeats of two chromosomes cannot be mapped onto any contig, which may due to 

either assembly error or different strains. Our results are similar to those obtained 

from assemblies of PBcR-MHAP, FALCON and Canu (Supplemental Table 3-5). 

De novo assembly of a human diploid genome  

     Finally, to demonstrate MECAT in de novo assembly of large genome, we have 

assembled 102x SMRT sequencing reads from a diploid Han Chinese genome using 

MECAT on a 32-core computer. It takes only 25 days to finish the whole assembly. 

The Han assembly is submitted and assessed by NCBI 

(https://www.ncbi.nlm.nih.gov/assembly/GCA_001856745.1/). We compare our Han 
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assembly to another Han Chinese genome assembly from BGI, YH1, which is 

assembled from Illumina data (http://yh.genomics.org.cn/). The total size of our Han 

assembly is 2,908,568,123bp, which is much longer than the 2.2G bp of YH1. The 

NG50 of Han assembly is 8,583,694 and is 2263 times longer than NG50 of YH1. 

The Han assembly only has 4456 contigs and is only 0.6% of total number of contigs 

of YH1.  Furthermore, the Han assembly has six contigs with size greater than 40M. 

The length of longest contig of Han is 66M and is much greater than the 0.9M of YH1. 

Moreover, the Han assembly shows much better continuity of genome comparing to 

the YH1 assembly (Figure 3). Thus, our assembly can be a better reference genome 

for Han Chinese and it also show that SMRT sequencing can significantly improve de 

novo assembly quality and integrity.  

 
 

a. YH1 genome assembly from BGI  b. Chinese Han gemome assembly of 

LRs 

Figure 3.  Comparison of the continuity of two Chinese assemblies. We paint the assembled 
contigs on human chromosomes using the colored Chromosomes package. The black and gray 
shades indicate contigs and transitions between shades indicate contig boundary or alignment 
breakpoint. White regions indicate missing assembly sequence or uncharacterized reference 
sequence with no contig mapped. A) the Illumina-based YH1 assembly from BGI. B) the Han 
assembly by MECAT. 

 
 

We also map the Han assembly onto hg19 human reference genome using 

Nummer software and the dotplot figure (Supplementary Note 14 and Supplementary 

Fig. 25) shows that our assembly is structurally consistent with hg19 genome except 

for some minor structural variation. Furthermore, we have aligned the Illumina 

datasets from YH1 onto Han, YH1 assemblies and hg19 human reference genome 
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using bowtie250 (Supplementary Note 14 and Supplementary Fig. 24). The Han 

assembly gains the best mapping rate (83.81%) comparing to the mapping rates to 

YH1 (73.06%) and hg19 (82.05%). This result validates that Han assembly is a better 

reference genome. 

         To find structural variations between Han Chinese genome and European 

genome, we have mapped both Han and YH1 assemblies onto hg19 human reference 

genome.  We find 29836 structural different genome region (≥ 20bp) in Han 

assembly and most of them (65%) can also be identified in YH1 assembly 

(Supplementary Table 6). We have also compared Han assembly to the Korean 

genome62. The result shows that the Han assembly is structurally consistent with 

Korean genome except minor structural variants (Supplementary Figs. 28). We have 

further compared MHC region of Han assembly with those of Korean and hg19 

genomes. The result (Supplementary table 6) shows that Han and Korean assemblies 

have 157 and 147  variants (>10bp) comparing to hg19 and 50 of them are the same 

site. Among two recently validated max. variants (54896bp and 10286bp) in MHC 

region of Korean 62, only one variant (10286bp) has been found in Han assembly. 

This results show that there are structural different between the MHC regions in Han 

Chinese and Korean although 33% of those regions are the same.  

 

DISCUSSION 

The repeat regions in the genome lead to the higher frequency of k-mer 

mapping between SMS reads. When k-mer matching is used to filter random pairs, 

all-pair alignment may produce excessive candidate pairs, and local alignment of 

excessive candidate pairs consume the major computational time in SMS read 

correction. Thus, reducing the redundant repetitive k-mer matches is the key to reduce 

excessive candidate pairs, and then computational cost. However, completely masking 

low-complexisty sequence or ignoring highly repetitive k-mer may lead to the lost of 

some correct overlaps42. Recently, the Canu pipeline employed a tf-idf k-mer 

weighting method to reduce the effects of repetitive k-mer matches. However, even 

with k-mer weighting, the MinHap algorithm in Canu only report the local matched k-
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mers pairs without considering the arrangement of k-mer pairs, which may still lead to 

excessive matches. In BLASR, the best arrangement of k-mer pairs is solved by slow 

sparse dynamic programing. Here, our scoring algorithm considers matched k-mer 

pairs between two reads as well as intervals between matched k-mer pairs. 

Furthermore, the repetitive matched k-mer pairs are removed from scoring, which 

reduces the effect of small repetitive region in read overlapping. Our algorithm 

provides a heuristic global alignment score between two reads, which is more 

sensitive to the true overlap. One proven of this is that the MECAT can be used to 

align SMS reads to reference genome with high sensitivity and precision similar to 

BLASR  

Another benefit of our global alignment score is selecting the top informative 

matched reads for a give read template. Since the top informative matched reads 

selected by the global score are so reliable, we even do not need to perform local 

alignment using diff program46 to further filter them, which has reduced the 

computational cost for the whole read correction step.   

The alignment tool in MECAT can also be plugged into other pipelines. For 

example, the Celera Assembler (CA35), an overlap-layout-consensus (OLC) based 

assembler, need the overlap length between the reads to obtain high quality 

assemblies. Since our alignment score is correlated with the overlap size between two 

reads. Thus, we can replace the overlapInCore in Canu42 (v1.0) (a new version of CA 

for SMS reads), which uses a slow blast-like algorithm for computing overlaps of 

corrected reads, with alignment tool in MECAT. This allows us to dramatically 

reduce the computational time for contig construction.  

With the new alignment algorithm as well as the improved read correction 

method, we are able to develop a new assembler pipeline, MECAT, which is capable 
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to produce high quality de novo assembly of large genome from long noisy SMRT 

reads with low computational cost. Our experimental results show that MECAT can 

assemble a high quality human genome assembly using 54X SMRT reads in only 

7600 CPU core hours and a high quality Chinese Han human assembly using 102X 

SMRT reads in 19200 CPU core hours, which is ten times faster than current fastest 

assembler. The MECAT makes it possible to assembly large genomes on a single 

server computer and small clusters using SMRT reads.   

Currently, the structurally divergent alleles are not considered in the MECAT 

pipeline. One of our future works to improve MECAT is designing new algorithm to 

distinguish structurally divergent alleles, and then make MECAT able to assemble 

polyploidy genomes. In this paper, we focus on assembling genomes using PacBio 

SMRT reads. Since Oxford Nanopore reads have similar characteristics as SMRT 

reads, we will evaluate the applicability of MECAT to Nanopore reads in the future.   

 

METHODS 

Indexing and matching of reads. The finding of potential matching between reads is 

based on the matching of k-mers (substrings with length of k) in the reads. A read r of 

length L has total L-k+1 k-mers. We first index the reads using a hash table with the 

k-mers as key. We consider the overlapping k-mers between the blocks of reads. For 

each read, we break it into multiple blocks with each block of length B, which is 

usually be 1,000 bp or 2,000 bp. The values in the hash table are the position of k-

mers in the blocks of reads.  

To search for the matching reads, we scan the k-mers in blocks of reads and 

look up the matchings in the hash table. We break the reads into blocks of same 

length B. In order to reduce the computer time, we only sample the k-mers in each 
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searching block. We slide a k-sized window along each block with a step length of sl. 

Thus, the number of k-mers in the search is only about 1/sl of the number of total k-

mers from reads. A typical value of sl is 10. A searching block is matched to an 

indexing block if the number of their overlapping k-mers is greater than a predefined 

threshold m. Two reads are considered as matched if at least a pair of blocks is 

matched between them.  

Given two read blocks of length B, the number of k-mers sampled from the 

search block is (B/sl-1). Let O be the overlapping length of a pair of matched blocks, 

O≤B. The expected number of matched k-mers in O is3   

�[������] = (������ + ������� − �������������) �
�

��
− 1� + �������[

� − �

��
− 1] 

where, Prandom is the probability of a random k-mer and Pmatch is the probability that 

two k-mers are matched. As the block length B is fixed, for a given error rate and no 

repetitive sequence, the number of matched k-mers between two blocks grows with 

the overlapping length O. For a highly matched block pair, Pmatch >>Prandom. The 

expected number can roughly be estimated as: 

�[������] = ������

�

��
 

Filtering false matched reads using global score. We develop a new pseudo linear 

global scoring algorithm to filter the excessive, non-informative matched reads. Our 

scoring algorithm has two steps. The first is the mutual scoring step. For each 

matched read pair, we first randomly select a matched block pair and mark it. Then, 

we score the matched k-mer pairs in this matched block pair. Let (pi, pj) be the 

positions of i-th and j-th k-mer in one block and (p'i, p'j) be the position of i-th and j-th 
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k-mer in another block of matched pair. We define the distance difference factor 

(DDFi,j) between i-th and j-th k-mer as following: 

���,� = �1 −
�� − ��

��
� − ��

�� 

If DFi,j<ε, which indicates that the both k-mers supporting each other, we increase the 

scores of both k-mers by 1. The ε is set to 0.3 in our experiments. By calculating the 

DF between all possible pair of k-mers, we obtained scores for all overlapping k-mers 

of matched blocks. We only use the non-repetitive k-mer pairs in our scoring. If a k-

mer is matched more than once in the same block, it will be excluded from scoring. If 

the score of k-mer with highest score is significant (greater than a threshold), we set it 

as the seed position for future alignment. If there are multiple k-mers having the same 

score, we randomly select one as seed. 

The second is the extension scoring step. In order to increase the reliability of 

seed and reduce the computation of whole scoring process, we extend the scoring 

process from selected block pair to its neighbor matched block pairs if a seed k-mer is 

obtained. For each overlapping k-mer in neighbor block pair, we calculate the DF 

between the k-mer and the seed k-mer in original block pair. If DF<ε, we increase the 

score of seed k-mer by 1. If 80% of DF values of overlapping k-mers in a neighbor 

block pair satisfy DF<ε, we mark the block and do not score the k-mers in this block 

pair in the future. After one loop of mutual and extension scoring process, if there are 

still matched block pairs having not been marked, we continue the scoring process on 

those block pairs. The mutual scoring is done in O(N2) time and the extension scoring 

is done in O(N) time, where N is the number of k-mer matches As the number of k-

mers in mutual scoring is small, the overall scoring process can be done in a pseudo 

linear time.  
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Aligning SMS reads. The pair alignment of SMS reads is the first step for correcting 

reads and assembling genome using SMS reads. We only consider two SMS reads 

have more than 2000bp overlapped. Namely, we set the block length to 2000bp. After 

scoring the matched k-mers between two SMS reads, we sort the k-mers based on 

their scores. Then, we use the top ranked k-mers as seeds to perform local alignment 

of two reads using diff algorithm40,46.  If the overlapped length between two SMS 

reads is longer than 2000 bp and the mismatch rate of overlapped sequence is less 

than twice of SMS read error rate, we consider there is a match and output the align 

results. All detail parameters are described in Supplementary Note 2. 

Aligning SMS reads to a reference genome. The procedure of aligning SMS reads 

to a reference genome is similar to those of aligning two reads. We index the 

reference genome sequence and search the reads from the index table. We first break 

the reference genome into blocks with length of B and index the k-mers in each block. 

Then, we break the reads into blocks of same length B and sample the k-mers for 

looking up the index table. The matched k-mers between a read and reference genome 

are also scored. The top ranked k-mers are used as seeds to perform further local 

alignment using diff. 

In order to obtain high sensitivity of the alignment of SMS reads to a reference 

genome and keep the computational cost low, we present a two-steps approach. In 

first step, we use the block length B of 1000bp and k-mer sampling step length sl of 

20 to align reads to reference genome. As some SMS reads have less match k-mer or 

the distribution of their matched k-mers is uneven, those SMS reads cannot find the 

matching position in first step. In the second step, we double the block length B to 

2000bp and half the k-mer sample step length sl to 10, and align so far unmatched 

reads again. In practice, we can find the matching for significant amount of reads in 
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first step and can find the matching for most of reads after second step. As the 

computational cost of second step is much higher than that of first step, our two-steps 

approach allows us reduce the computational cost and maintain high sensitivity at the 

same time. All detail parameters are described in Supplementary Note 1. 

Correcting SMS reads.  The random and independent properties of errors in SMS 

reads make it possible to correct them. Generally, there are two steps to correct SMS 

reads. The first step is building a multiple read alignment for each read to be corrected. 

The second step is constructing the correct read from the consensus of alignment. For 

the first step, we use our own alignment tool. We perform pairwise alignment 

(without local alignment using diff) between all reads with length greater than 5000 

bp. Then, we filter out alignment if the overlapped sequence is less than 90% of 

shorter read in the pair. The output of the alignment is written into multiple files. Each 

file includes the alignment information of 200,000 reads. For the second step, we 

develop a new SMS read error correction method by combining the principles from 

both DAGCon and FalconSense. We summarize the pairwise alignment to construct a 

consensus table with the counts of match, insertion and deletion. For trivial regions 

with consistent matches: match_count/(match_count+deletion_count)>0.8 and no 

significant insertion occurring (insertion_count<6), or consistent deletions:  

deletion_count/(match_count+deletion_count)>0.8 and no significant insertion 

occurring (insertion_count<6), we can simply determine the consensus base according 

to the count. For other complicate regions, we construct a local POG and solve the 

consensus with dynamic programming. All detail of this algorithm is described in 

Supplementary Note 2. 

De novo assembly using SMS reads. We develop a new pipeline for assembling 

SMS reads by integrating our new alignment and error correction method with the 
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Celera Assembler (CA). Our pipeline has three steps. In first step, for each reads 

longer than 3000bp, we perform pairwise alignment against other reads and select 100 

matched reads with top matched scores. No detail local alignment is performed in this 

step. In second step, we correct all template reads (>3000bp) using their matched 

reads. Finally, we pairwise align the corrected reads using our alignment method and 

feed the results into the “Unitig Construction” module of CA or Canu to construct the 

unitigs. We can also feed our correct reads to the CA directly, which used the 

overlapInCore for pairwise alignment.  

Evaluation. We evaluate MECAT tools using both simulated reads and raw reads 

from five model organisms. We compare our alignment tool to previous pairwise 

alignment tools, including BLASR, MHAP and Daligner, and to genome alignment 

tools, including BLASR and BWA-mem. We compare our correction tools to those in 

PBcR and Falcon. We also systematically evaluate our assembly tools by comparing 

with Canu, PBcR-MHAP, Falcon. The details of those comparisons are reported in 

Supplemental Note 5-9.  

 

Accession codes. Assembly and annotation files of Han-1 Chinese Human are 

available from GenBank: GCA_001856745.1. All source codes for MECAT and the 

analyses presented here are available from https://github.com/xiaochuanle/MECAT. 

The software and data used for this manuscript (including supplementary files and 

scripts) are available from http://sysbio.sysu.edu.cn/software/MECAT. Note: Any 

Supplementary Information and Source Data files are available in the online version 

of our paper. 
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