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Abstract

OBJECTIVE: To develop a clinical prediction model for diagnosing mild stroke/transient

ischemic attack (TIA) in first-contact patient settings. DESIGN: Retrospective study design 

utilizing logistic regression modeling of patient clinical symptoms collected from patient chart 

histories and referral data. SETTING: Regional fast-track TIA clinic on Vancouver Island, 

Canada, accepting referrals from emergency departments (ED) and general practice (GP). 

PARTICIPANTS: Model development: 4187 ED and GP referred patients from 2008–2011 who 

were assessed at the TIA clinic. Temporal hold-out validation: 1953 ED and GP referred patients

from 2012–2013 assessed at the same clinic. OUTCOMES: Diagnosis of mild stroke/TIA by 

clinic neurologists. RESULTS: 123 candidate predictors were assessed using univariate feature 

selection for inclusion in the model, and culminated in the selection of 50 clinical features. Post-

hoc investigation of the selected predictors revealed 12 clinically relevant interaction terms. 

Model performance on the temporal hold-out validation set achieved a sensitivity/specificity of 

71.8% / 72.8% using the ROC01 cutpoint (≥ 0.662), and an AUC of 79.9% (95% CI, 77.9%–

81.9%). In comparison, the ABCD2 score (≥ 4) achieved a sensitivity/specificity of 70.4% / 

54.5% and an AUC of 67.5% (95% CI, 65.2%–69.9%). The logistic regression model 

demonstrated good calibration on the hold-out set (β0 = -0.257); βlinear = 1.047). 

CONCLUSIONS: The developed diagnostic model performs better than the ABCD2 score at 

diagnosing mild stroke/TIA on the basis of clinical symptoms. The model has the potential to 

replace the use of the prognostic ABCD2 score in diagnostic medical contexts in which the 

ABCD2 score is currently used, such as patient triage.
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Introduction

Stroke is one of the leading causes of death and long-term disability in North America.1,2 

Many strokes are preceded by transient ischemic attacks (TIA), or "mini-strokes".3 The 

continuum from TIA to ischemic stroke has been referred to as acute cerebrovascular syndrome.4

It is estimated that patients diagnosed with a TIA have a 10% risk of recurrent stroke within 90 

days (5% within 2 days) if untreated, with 50% of recurrent strokes occurring within the first 48 

hours.1 Early treatment is associated with better patient outcomes, and is the target of many 

stroke best practice guidelines.1,2

In response to the growing awareness of the importance of TIA management for stroke 

prevention, Canadian stroke best practices recommend that all patients suspected of a TIA be 

assessed by stroke specialists within 48 hours of symptom onset.1,2 TIA clinics are frequently 

overburdened by referral volumes making the urgent triage of such high-priority patients 

difficult. Successful adoption of such recommendations, therefore, rest on the ability of TIA 

clinics to more accurately triage patients.

Diagnosis of ACVS can be challenging for TIA clinic staff as ACVS phenotypes can 

vary widely between patients depending upon the brain region affected. Compounding this 

difficulty many noncerebrovascular conditions, such as acute migraine, share many of the same 

features as ACVS. Such noncerebrovascular conditions, or mimic conditions,5 make it difficult 

for clinic staff to presumptively diagnosis referrals in order to prioritize true ACVS referrals for 

clinic intake. Approximately 30–60% of referrals to specialized TIA/stroke units are ultimately 

diagnosed as mimic conditions.6–12 Mimic referrals overburden the limited capacity and resources

of specialized TIA/stroke units, and this increases patient wait times and delays the timely arrival
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of ACVS patients to these units. Assisting TIA clinic staff in differentiating ACVS from mimic 

conditions could serve as a first step toward improving TIA management.

Several studies have examined the viability of using the ABCD2 score to diagnosis 

ACVS.8,9 Originally developed as a prognostic tool for predicting risk of recurrent stroke after a 

TIA, the ABCD2 score has been found to be moderately diagnostic of ACVS.8 This is due in 

large part to the presence of several clinical features (e.g., age, blood pressure, clinical 

presentation) within the ABCD2 score that are also diagnostic of ACVS. Previous studies9,13 

have reported low sensitivities (60.3–67%, cutpoint ≥ 4) for the score to diagnosis of ACVS and 

would appear to limit its clinical usefulness. This is unfortunate as approximately one-third of 

TIA clinics triage referrals on the basis of the ABCD2 score.14

Our research group has been working on a clinical prediction rule (CPR) to differentiate 

ACVS from mimic patients on the basis of patients’ history of presenting symptoms. Such a CPR

would have value in the triaging of patients referred to TIA clinics. A deficiency of using the 

prognostic ABCD2 score as a diagnostic tool is that due to its design it contains no mimic 

predictors, as the diagnosis of ACVS has already been established prior to prognostic use. When 

used as a diagnostic tool the ABCD2 score structurally only provides a presumptive diagnosis of 

ACVS; all other diagnoses are implicitly defined as not ACVS. In contrast, we approached the 

problem of ACVS recognition as a matter of differential diagnosis. We appreciated that adopting

such a framework will necessarily result in a model containing a large number of clinical 

features. This design decision runs counter to the principles of simplicity and brevity underlying 

most clinical support tools currently used in clinical practice. Instead, our aim when constructing 

our model was to focus exclusively on the task of differentiating ACVS and mimic conditions. 
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To the best of our knowledge, no studies currently exist in the literature that approaches the issue

of ACVS recognition as we have.

To develop our CPR we will assemble a dataset containing key clinical predictors 

previously identified in the literature and informed by current best practice as symptoms of 

ACVS and mimic conditions. From the dataset, we will use logistic regression modelling guided 

by clinical insights to construct our CPR. Finally, we will validate the model on a temporal hold-

out dataset. The contributions of our study to the ACVS literature are to develop a CPR to 

specifically differentiating ACVS and mimic conditions

Methods

Settings and Participants

We utilized a retrospective study design to construct our study dataset. Patient clinical 

records from the Stroke Rapid Assessment Unit (SRAU), Victoria, B.C., from 2008–2013 were 

used to construct the dataset. The SRAU is a specialized outpatient stroke unit servicing most of 

the Vancouver Island (pop. 759,366). The SRAU receives referrals from emergency 

departments, general practice, and specialists (e.g., ophthalmologists). Median wait-time from 

referral to unit arrival was 4.397 days (IQR = 1.864–9.523). Only patient first time assessments 

at the SRAU during the time period were included in the dataset (N = 7823). The Health 

Research Ethics Board of Island Health (one of five provincial health authorities in British 

Columbia) approved this study. Funding for this study was provided by the Heart and Stroke 

Foundation, Genome British Columbia, Genome Canada, and Canadian Institutes of Health 

Research.
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Data Preparation and Missing Data

The dataset consisted of patients’ reported event histories, risk factors (age, sex, 

hypertension, diabetes, etc.), ABCD2 scores (derived by adding patient diabetes status to the 

ABCD score recorded in the patients' charts), and final diagnoses. Event histories consisted of 

two free text fields (chief complaint and history of presenting illness). These two free text fields 

(henceforth, history fields) consist of descriptions of the patients’ events as recounted by the 

patients. Effort is made by SRAU stroke nurses to record the patients’ histories using the same 

language and words provided by the patient. Patient histories are recorded prior to a complete 

neurological assessment and final diagnosis by SRAU neurologists.

History fields were codified by a simple text-mining procedure that used pattern 

matching, in conjunction with NegEx15 negation detection, to map keywords and phrases onto 

clinical symptoms. Processing of the history fields is described in full in Sedghi et al., 2015.16 

The clinical symptoms that were codified were selected in advance of statistical analyzes. 

Symptoms to be codified were chosen that were either (a) well referenced in the ACVS literature

(e.g., vertigo, unsteadiness), or (b) medical concepts that appeared in the patients' history fields 

(i.e., data-driven symptoms selection; e.g., Electric sensation, Emotionally labile, etc.). Absence 

of keywords and phrases in records were coded as the absence of the symptom in the patients’ 

records.

The complete initial dataset contained a total of 121 variables (diagnosis, risk factors, 

ABCD2 score, and codified history fields). The only continuous variables in the dataset were age

(years), and systolic and diastolic blood pressure (mmHg). All other predictors were coded as: 

absent/no = 0, present/yes = 1; for patient sex, female = 0 and male = 1; for ABCD2 = 0, 1, 2, 3, 

4, 5, 6, 7, or missing.
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Patient diagnoses were by unit neurologists during standard of care neurological 

assessment. The diagnosis field extracted from the patient records consisted of eight possible 

classifications: (a) Stroke, (b) Stroke–Probable, (c) Stroke–Possible, (d) TIA, (e) TIA–Probable, 

(f) TIA–Possible, (g) Mimic, (h) Other, and (i) Unknown. Mimic conditions5 have similar 

clinical presentations/symptoms as TIA/mild Stroke, but are non-cerebrovascular in origin (e.g., 

migraine, seizure). The Other classification represents either non-ischemic strokes (e.g., 

hemorrhagic stroke) or non-cerebral ischemic events (e.g., cranial nerve ischemia). Unknown 

represents situations in which a diagnosis could not be determined (e.g., not yet diagnosed). 

Cases in the dataset were restricted to patients for whom either a clinical or radiological 

diagnosis (e.g., brain imaging) could be determined. Cases with classifications of Other or 

Unknown were omitted from analysis due to the ambiguity surrounding the diagnosis (see Figure

1). The remaining classifications were dichotomized as either ACVS (incl. Stroke, Stroke-

Probable, Stroke-Possible, TIA, TIA-Probable, TIA-Possible) or Mimic for the purposes of these

analyzes.

Prior to analysis, the variables comprising the initial dataset were reviewed for possible 

clinical redundancies. After review it was decided that several of the concepts be grouped 

together as composite variables and added to the dataset. Syncope and LOC (Loss of 

Consciousness) were combined with a logical OR operator to create Syncope or Loss of 

consciousness (LOC)* (henceforth, an asterisk (*) denotes a composite variable); i.e., Syncope 

or Loss of Consciousness (LOC)* is coded as present if the patient reported either Syncope or 

Loss of Consciousness, or both. Similarly, the variables Anxiety and Stress were combined to 

create the single variable Anxiety or stress*. The variables Visual field, Left visual field, Left 

eye visual field, Right visual field, and Right eye visual field were combined to create Visual 
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field deficit (either side)*. Finally, Involuntary movement, Shaking, and Tremor were combined 

to create a single composite variable, Involuntary movement, shaking, or tremor*.

Treatment of Missing Data

Prior to analysis, the data were examined for missing data and outliers (see Figure 1). 

Missing values were defined as any NULL values observed in the data extracted from the SRAU 

EMR database. The only outliers observed were two instances in which a diastolic blood 

pressure was recorded in excess of 700 mmHg. The only variables containing missing data were 

patient sex, systolic and diastolic blood pressure, and ABCD2 score. For these variables we 

assumed values were either not measured or recorded and thus were missing completely at 

random. With the exception of the ABCD2 score, listwise deletion was employed for the other 

variables prior to data analysis. In the case of the ABCD2 score, listwise deletion was applied to 

the data after feature selection was performed.

Training and Test Datasets

The full clinical dataset (N = 7823) was divided into training (2008–2011, N = 5096) and 

test (2012–2013, N = 2727) datasets. Figure 1 provides a summary of how patients from the 

training and test datasets were excluded due to missing data and diagnosis.

Inter-rater reliability was conducted on the training dataset to compare the accuracy of 

the text-mining procedure with that of manual coding of patient history fields. Due to the size of 

the training dataset (N = 5096) only 1% (N = 52) of the total cases were analyzed, with random 

case selection equally distributed across the four years (2008–2011, N = 13 cases/year). For each

of the clinical variables coded from the history fields Gwet’s AC1 was computed.17 Median 

Gwet’s AC1 was 0.98 (IQR = 0.957–1).
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Table 1 displays the demographic characteristics of the final training (2008–2011, N = 

4187) and test (2012–2013, N = 2038) datasets after missing data was addressed, with the 

exception of the ABCD2 score.

Feature Selection

The process of feature selection was conducted on the final training dataset (N = 4187). 

Each feature was considered as a univariate predictor. Feature selection was filter based18 and 

utilized a statistical association in conjunction with clinical expert review.18–20 For each of the 

123 candidate predictors (i.e., 121 variables in the dataset, less the diagnosis and ABCD2 score, 

plus the additional 4 composite variables, i.e., 121 - 2 + 4 = 123) the bivariate association with 

the diagnosis variable was computed. Odds ratios were computed for each predictor by 

regressing each variable independently on the diagnosis using a logistic regression model with 

the variable under consideration as the sole predictor. The Wald p-value was used as the 

statistical test of significance. Alpha was set at 0.05 for each candidate predictor. No effort was 

made to control for multiple comparisons;21–23 that is, the decision as to a predictor's spuriousness

was decided upon the basis of domain knowledge (i.e., support for the predictor in the ACVS 

literature).

Feature selection followed two stages. In the first stage, variables with a significant p-

value value (α = 0.05) would be preferentially (i.e., favourably) reviewed for selection on the 

basis of their clinical relevance. Two criteria disqualified significant variables from selection: (a)

the variable was clinically ill-defined (i.e., non-descriptive), and (b) the variable clinically 

overlapped another significant variable that was better defined and clinically broader in 

application.
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In the second stage, variables with non-significant associations with the diagnosis were 

examined. Only two criteria were used to qualify these variables for selection. First, non-

significant variables could be selected to complete a related set of clinically relevant variables if 

other members of the set were statistically significant; this review resulted in the inclusion of 

only the variables associated with numbness and weakness. These variable sets cover multiple 

body regions (left and right side face, arm, and leg, along with any overall indication of the 

condition, numbness or weakness, respectively). If one body region was significant, the other 

regions were selected. The second criterion was that non-significant variables could be included 

if their clinical relevance was already well established in the literature, and the exclusion of the 

variable would be clinically questionable.

Model Construction

From the set of features chosen through this two-stage process, our next step was to 

include all selected features in a logistic regression model. Continuous predictors were 

standardized before model fitting using the following centers/standard deviations so as to allow 

for comparisons with the ABCD2 score: (a) age: 60 years of age / 10 years SD; (b) systolic blood

pressure: 140 mmHg / 10 mmHg SD; and (c) diastolic blood pressure: 90 mmHg / 10 mmHg SD.

Binary predictors were not standardized. Post-hoc interaction terms were then evaluated to 

explore how clinically meaningful interactions influenced model fit. Evaluation of interaction 

terms was on the basis of both statistical significance and clinical relevance. The full clinical 

model then comprised all selected variables plus a small number of clinically meaningful and 

significant interactions.

For the full clinical model three different cutpoints were calculated on the training dataset

(2008–2011): (a) maximum efficiency24—the cutpoint that maximizes accuracy; (b) maximum 
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Kappa24,25—the cutpoint that maximizes Kappa (i.e., inter-rater agreement (Cohen’s Kappa) 

between a model’s predictions and the true class labels); and (c) ROC0125—the cutpoint that 

minimizes the distance between point (0,1) on the ROC plot and the ROC curves.

After fitting of the full clinical model was completed we created an extreme phenotype 

variant of the model. In this variant, patients with clinical diagnoses of either TIA-Possible or 

Stroke-Possible were excluded from the training dataset, and the model was refitted (N = 3722). 

This model was created to examine the influence of these edge cases on the model’s 

performance. Cutpoints for this model were calculated as previously described.

Once models were examined for performance, final models for the full clinical (N = 

6225) and extreme phenotype (N = 5510) models were constructed by refitting the models on the

combined test and training sets, and cutpoints determined.

Although we did not conduct a formal power analysis, we considered the large number of

records in the training set (N = 4187) as sufficient to pursue a multivariate model. A commonly 

used guideline26 indicates that an effective sample size of 10 'events' per parameter is adequate 

for a logistic regression model. Our training set achieves 1486 'events' (i.e., the smaller of the 

number of ACVS and the number of Mimics).

Performance Evaluation

Performance of the full clinical model in differentiating ACVS patients from mimics was 

assessed on both the training dataset (in-sample performance) and the test dataset (out-of-sample 

performance). The test dataset was not used in the feature selection process so as to ensure an 

unbiased estimate of the full clinical model's performance. Performance of the ABCD2 score for 

each dataset was also calculated so as to better contextualize the performance of the full clinical 

model. To evaluate the apparent performance of the full clinical model on the training set, cases 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 22, 2016. ; https://doi.org/10.1101/089227doi: bioRxiv preprint 

https://doi.org/10.1101/089227


Development of a clinical prediction model for TIA     11

with missing ABCD2 scores were removed after model fitting was completed. This was done to 

permit a direct comparison of the model's performance with that of the ABCD2 score on the 

same cases. For the test dataset, cases with missing ABCD2 scores were removed before 

analysis. For the full clinical model, predicted probabilities were used to access model 

performance; for the ABCD2 score raw scores (range 0–7) were used.

Decision curve analysis (DCA) was conducted to assess the clinical utility of the full 

clinical model and nd the ABCD2 score.27–29 Although traditional measures of discrimination 

(e.g., sensitivity, C-statistic, etc.) and calibration assess model performance, they cannot indicate 

if a model is actually clinically useful.30,31 DCA attempts to quantify clinical utility using the 

concept of net benefit. Net benefit represents the number of true positives predicted by a model 

adjusted for by the number of false positives that have been weighted by the relative 

consequences (harm) of an unnecessary treatment relative to a missed treatment (i.e., p / (1 - p), 

where p is closely related to the concept of positive predictive value).27,30,32 Net benefit can also 

be understood as the gain in true positive cases detected by a model at a specific cutpoint, 

adjusted to be relative to a baseline "model" of assuming all cases to be negative (i.e., a "no 

treatment" or “none” model with no false positives).27

Analyzes were completed using the OptimalCutpoints (v1.1.3),25 PredictABEL (v1.2.2),33

ROCR (v1.0.7),34 pROC (v1.8),35 Hmisc (v3.17.4),36 rms (v4.5.0),37 immer (v0.5.0),38 dplyr 

(v0.5.0),39 and ggplot2 (v2.1.0)40 libraries in the R statistical language (v3.3.1).41

Results

Feature Selection

Feature selection results can be found in the Supplement. Table S1 displays the 123 

candidate variables, along with their clinically related conditions, bivariate associations with the 
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diagnosis (ACVS vs. Mimic), sorted by logistic regression Wald p value, and final selection 

decision. Odds ratios could not be calculated for two variables owing to low frequencies in the 

training set: Pallor (N = 3) and Collapse (N = 0).

During first stage selection (p < 0.05), 74 candidate variables were identified for review. 

Of these variables, 44 were retained, 19 were deemed clinically non-descriptive, 7 were 

constituents of the composite variables, and 4 were redundant with broader clinical concepts. 

Variables that were included as constituents of the composite variables (N = 7) were 

automatically excluded if the composite variable was significant. This occurred for the four 

composite variables, (a) Involuntary movement, shaking or tremor*, (b) Visual field deficit 

(either side)*, (c) Syncope or Loss of consciousness (LOC)*, and (d) Anxiety or stress*. The 

only clinically overlapping variables that were excluded were Face droop right, and Face droop 

left.

During second stage selection (p > 0.05), 47 candidate variables were identified for 

review. Of these variables, 35 were excluded, 4 were retained as clinically relevant, 6 were 

constituents of the composite variables, and 2 were retained to complete the numbness and 

weakness variable sets.

Of the 4 retained variables, three related to the visual domain, Curtain, Diplopia, and 

Vision loss, with the other two being Smoking and Eye droop (ptosis). The visual variables were 

retained as the visual domain has received relatively less attention in the ACVS literature 

compared to the motor and speech domain.42 Curtain represents a patient's phenomenological 

(and indeed self-reported as such) experience of a “curtain” or “shade” descending over his or 

her field of view.43 This symptom is characteristic of transient monocular blindness (Amaurosis 

fugax). Vision loss represents the condition of homonymous hemianopsia, a symptom of 
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posterior circulation strokes. Diplopia, or double vision, is another symptom of posterior 

circulation stroke. Smoking is known risk factor for stroke. Eye droop (ptosis) was retained due 

to its relation to Bell's Palsy. Up to 75% of patients with Bell's Palsy believe they have suffered a

stroke,44 making Eye droop (ptosis) an important variable to include in the model.

To summarize, of the 123 candidate variables examined, a total of 50 variables were 

selected for inclusion in the final logistic regression model. Of these variables, 44 had a 

significant bivariate association (p < 0.05) with the diagnosis, and 6 were not significantly 

associated with the diagnosis but either were, (a) included to complete the numbness and 

weakness variable sets (N = 2), or (b) included on the basis of clinical relevance (N = 4).

In the logistic regression model fitting, twelve clinically relevant interaction terms based 

upon the selected predictors were included in the model. Table 2 displays the full clinical model 

and supporting references in the literature for the predictors in the model. Table 3 displays the 

extreme phenotype variant of the model.

Performance Evaluation

The full clinical model was fitted to the training data (N = 4187) and cutpoints for the 

model were determined. The predicted probability corresponding to each type of cutpoint were: 

(a) maximum efficiency: 0.516; (b) maximum Kappa: 0.59; and (c) ROC01: 0.662. For the 

ABCD2 score a cutpoint of ≥ 4 was used as this value has been suggested by a number of 

national stroke guidelines.45,46 These cutpoints were used to evaluate performance of the models 

on the test dataset.

The extreme phenotype variant for the full clinical model was fitted to the training data, 

less “Possible” diagnoses, (N = 3722) and cutpoints determined. The predicted probability 
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corresponding to each type of cutpoint were: (a) maximum efficiency: 0.499; (b) maximum 

Kappa: 0.567; and (c) ROC01: 0.599.

Table 4 displays the performance measures of the full clinical model, extreme phenotype 

variant, and ABCD2 scores on both the training (re-substitution performance on training set) and

test datasets, less patients with missing ABCD2 scores (N = 3962 and N = 1953, respectively).

The scaled Brier score (0 = uninformative model, 1 = perfect prediction)47 for the full 

clinical model was 0.254. DeLong's test of ROC curves48 indicated a significant difference 

between the full clinical model and ABCD2 score on both the training and test datasets, p < 

0.001, respectively.

On the test dataset the scaled Brier score was 0.226. However, measures of the 

calibration line49–51 suggest that the full clinical model is well specified (βlinear = 1.047), but 

'calibration-in-the-large'50 indicates that predicted probabilities are systematically too high (β0 = 

-0.257). In other words, the model does a good job predicting observed probabilities across a 

broad range of predicted probabilities, though it consistently overestimates the probability of 

ACVS (Figure 2, solid curve below the line of equality). Figure 2 displays validation plots47 

(graphical representation displaying both model discrimination and calibration) for the full 

clinical model on the training and test datasets. The distribution of predicted outcomes along the 

x-axis depicts the discriminate performance of the model to differentiate ACVS from mimic 

cases.52

Figure 3 displays decision curve analysis (DCA) plots for the full clinical model and 

ABCD2 score on the training and test datasets (ABCD2 scores were transformed to probabilities 

by way of logistic regression). On the test dataset the full clinical model achieved a net benefit of
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0.214 at the empirical cutpoint determined on the training set, while the ABCD2 score achieved 

a net benefit of 0.118 at the empirical cutpoint of ≥ 4.

Final Model Fits

Tables S2 and S3 in the Supplement display the full clinical model and extreme 

phenotype variant model fit to the combined training and test datasets, respectively.

Discussion

The goal of this study was to derive from patients' reported event histories a clinically-

informed model that can be used to optimally differentiate between ACVS and mimic conditions.

Our full clinical model has demonstrated better predictive performance than the ABCD2 score. 

This increase in performance can be directly attributed to the extensive number of variables 

included in the full clinical model. The validation plots of the full clinical model on both the 

training and test sets suggest that the model is well specified and encompasses the major 

predictor variables of both ACVS and mimic conditions. Moreover, the AUC of the model on the

test dataset (79.9%) is in keeping with theoretical upper limit for the AUC of a perfectly 

calibrated model.53 We interpret these results as evidence that the goals of the current study have 

been achieved.

The analysis of net benefit on the test dataset suggests that when performance is 

contextualized to a TIA clinic referral population (59.7% ACVS), our full clinical model 

achieves an increase in net benefit of 9.7% over the ABCD2 score. In the context of clinical 

practice (e.g., referral triage) the net benefit analysis suggests that our proposed clinical model 

might have greater clinical utility than the ABCD2 score as it currently used with a cutpoint of ≥ 

4. Prior research has shown that a majority of specialized TIA clinics triage patient referrals by 
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ABCD2 scores.14 As our model was developed on an equivalent population of patients it is likely

that our model could be of value in improving upon existing TIA clinic triage practices.

A limitation of the current study is that the clinical practicality of the full clinical model 

is not immediately apparent. Given the goals of the study, the model is necessarily verbose with 

50 main effects and 12 interaction terms. Moreover, logistic regression models are 

computationally complex and require the use of digital platforms to be usable as clinical 

prediction rules. In contrast, most clinical prediction rules tend to be terse and simple to 

complete, such as the ABCD2 score. Future work will need to determine if (a) such a large 

model can be made tractable for use by clinicians in real-world settings; or, conversely, (b) if a 

streamlined "bedside model" can be achieved by reducing the number of predictors and 

interactions in the model—in essence, simplifying the form of the model toward an additive 

point system like the ABCD2 score.

In conclusion, the results of the current study are encouraging in that they can be 

interpreted to suggest that a high degree of predictive ability to differentiate ACVS from mimic 

conditions can be attained on the basis of presenting clinical symptoms.
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Table 1. Demographic characteristics of training and test data.

 Levels

Training Set

(2008–2011)

Test Set

(2012–2013)

T and chi-square

homogeneity test

p values

N 4187 2038

Patient Age, mean (sd) 68.97 (13.81) 68.89 (13.83) 0.825

Male, N (%) 2073 (49.5) 1040 (51.0) 0.272

Diagnosis of ACVS, N (%) 2701 (64.5) 1217 (59.7) <0.001

CTA Completed, N (%) 933 (22.3) 862 (42.3) <0.001

MRI Completed, N (%) 791 (18.9) 393 (19.3) 0.737

ABCD2, N (%) 0 48 (1.1) 21 (1.0) 0.151

1 174 (4.2) 114 (5.6)

2 495 (11.8) 256 (12.6)

3 813 (19.4) 383 (18.8)

4 1014 (24.2) 509 (25.0)

5 786 (18.8) 367 (18.0)

6 545 (13.0) 260 (12.8)

7 87 (2.1) 43 (2.1)

Missing 225 (5.4) 85 (4.2)

Systolic BP, mean (sd) 140.94 (21.75) 143.56 (22.83) <0.001

Diastolic BP, mean (sd) 76.95 (10.88) 79.44 (11.11) <0.001

Hypertension, N (%) 2503 (59.8) 1231 (60.4) 0.658

Hyperlipidaemia, N (%) 1754 (41.9) 864 (42.4) 0.726

Atrial Fibrillation, N (%) 503 (12.0) 245 (12.0) 1.000

Diabetes, N (%) 737 (17.6) 382 (18.7) 0.287

Smoking, N (%) 537 (12.8) 226 (11.1) 0.055
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Table 2. Full Clinical logistic regression model (Age, Systolic BP and Diastolic BP 

standardized). B=coefficient estimate, OR=odds ratio, CI=confidence interval.

Variable B OR 95% CI

Intercept -0.489 0.613 0.476–0.789

Patient age (years, center = 60, sd = 10)5,11,54–57 0.301 1.351 1.248–1.463

Patient sex5,7,11,57 0.441 1.554 1.320–1.829

History of hypertension5,11,57,58 0.335 1.398 1.189–1.643

History of hyperlipidaemia11,57 0.121 1.128 0.964–1.321

Smoking5,11,57 0.470 1.600 1.266–2.023

History of atrial fibrillation58 0.224 1.251 0.977–1.602

History of diabetes5,11,57 0.082 1.086 0.885–1.332

History of migraine54,57 -0.474 0.623 0.454–0.853

Dizziness5,57,59–61 0.006 1.006 0.817–1.239

Headache5,54,55,62 -0.324 0.723 0.590–0.887

Systolic BP (mmHg, center = 140, sd = 10)56 0.055 1.056 1.006–1.109

Diastolic BP (mmHg, center = 90, sd = 10)56 0.026 1.026 0.934–1.127

Face droop56,63,64 0.673 1.960 1.431–2.685

Weak face left56,63,64 -0.206 0.814 0.459–1.443

Weak face right56,63,64 -0.700 0.497 0.277–0.892

Weak arm left56,63,64 0.470 1.600 1.137–2.251

Weak arm right56,63,64 0.568 1.765 1.233–2.528

Weak leg left56,63 0.277 1.319 0.864–2.014

Weak leg right56,63 0.420 1.523 0.948–2.446

Weakness (motor, any indication)11,56,63 0.426 1.532 1.247–1.881

Numb face left62,63 0.503 1.653 1.192–2.292

Numb face right62,63 0.220 1.246 0.847–1.832

Numb arm left62,63 0.205 1.227 0.915–1.646
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Numb arm right62,63 0.165 1.179 0.837–1.661

Numb leg left62,63 0.498 1.646 1.100–2.462

Numb leg right62,63 0.442 1.556 0.950–2.548

Numbness (any indication)11,62,63 -0.019 0.981 0.778–1.236

Bilateral (numbness or weakness)5,60,65 -0.551 0.576 0.417–0.798

Eye droop (ptosis)5,60 -0.030 0.971 0.432–2.180

Visual field deficit (either side)*60,62,63 0.366 1.442 1.018–2.041

Neck pain55,60,66 -0.509 0.601 0.373–0.968

Nausea5,60 -0.435 0.647 0.482–0.870

Unsteadiness6,60,62,63 0.256 1.292 1.074–1.553

Curtain5,6,42,43 0.411 1.509 0.986–2.308

Syncope or Loss of consciousness (LOC)*5,11,12,42 -0.595 0.552 0.386–0.789

Lightheaded5,11,12,61 0.021 1.021 0.695–1.500

Vertigo5,6,11,57,59,60,62 -0.871 0.419 0.294–0.596

Confusion5,6,57,60,67 -0.585 0.557 0.452–0.687

Amnesia5,11,42,60,67 -1.569 0.208 0.085–0.512

Language disturbance56,62–64 0.450 1.568 1.246–1.973

Speech56,62–64 0.769 2.157 1.767–2.633

Positive visual disturbance5,6,42,54 -0.866 0.421 0.321–0.551

Position (movement of head causes Sx)5,59–61 -0.407 0.665 0.270–1.638

Diplopia5,6,54,60,62 0.525 1.690 1.228–2.326

Vision loss5,42,60,62,63 0.686 1.986 1.370–2.879

Concentration, Loss of5 -0.885 0.413 0.233–0.731

Sudden onset (symptoms)5–7 0.191 1.211 1.006–1.456

Sensory march5,6,54 -0.623 0.536 0.317–0.908

Involuntary movement, shaking, tremor*5,6,43,60,62,67 -0.712 0.491 0.338–0.713

Anxiety or stress*5,11,12 -0.657 0.518 0.382–0.702
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Patient age (years, center = 60, sd = 10) × Concentration, Loss of 0.354 1.424 0.968–2.095

Patient age (years, center = 60, sd = 10) × Headache 0.159 1.173 1.038–1.324

Patient sex × Nausea 0.239 1.270 0.815–1.980

Patient sex × Position -0.871 0.418 0.127–1.382

Confusion × Amnesia67 1.479 4.390 1.297–14.861

Dizziness × Lightheaded -0.764 0.466 0.285–0.761

Headache × Lightheaded 0.615 1.850 1.102–3.104

Headache × Vertigo60 0.674 1.962 1.109–3.469

Neck Pain × Language Disturbance66 1.325 3.763 1.015–13.950

Lightheaded × Speech -0.907 0.404 0.243–0.671

Vertigo × Speech60 0.786 2.195 1.126–4.277

Face droop × Eye droop (ptosis)5,60 -1.129 0.323 0.100–1.047
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Table 3. Extreme Phenotype logistic regression model (Age, Systolic BP and Diastolic BP 

standardized). B=coefficient estimate, OR=odds ratio, CI=confidence interval.

Variable B OR 95% CI

Intercept -0.843 0.430 0.327–0.566

Patient age (years, center = 60, sd = 10)5,11,54–57 0.360 1.433 1.313–1.563

Patient sex5,7,11,57 0.555 1.743 1.463–2.075

History of hypertension5,11,57,58 0.343 1.410 1.183–1.680

History of hyperlipidaemia11,57 0.085 1.089 0.919–1.292

Smoking5,11,57 0.651 1.918 1.495–2.461

History of atrial fibrillation58 0.223 1.250 0.960–1.627

History of diabetes5,11,57 0.078 1.081 0.869–1.345

History of migraine54,57 -0.597 0.550 0.383–0.791

Dizziness5,57,59–61 -0.047 0.954 0.761–1.196

Headache5,54,55,62 -0.371 0.690 0.551–0.865

Systolic BP (mmHg, center = 140, sd = 10)56 0.062 1.063 1.009–1.120

Diastolic BP (mmHg, center = 90, sd = 10)56 0.065 1.067 0.964–1.181

Face droop56,63,64 0.792 2.207 1.587–3.071

Weak face left56,63,64 -0.041 0.960 0.520–1.772

Weak face right56,63,64 -0.704 0.495 0.267–0.915

Weak arm left56,63,64 0.435 1.545 1.073–2.227

Weak arm right56,63,64 0.687 1.987 1.357–2.909

Weak leg left56,63 0.331 1.392 0.887–2.183

Weak leg right56,63 0.416 1.515 0.923–2.488

Weakness (motor, any indication)11,56,63 0.567 1.762 1.416–2.194

Numb face left62,63 0.485 1.625 1.139–2.317

Numb face right62,63 0.104 1.109 0.725–1.697

Numb arm left62,63 0.233 1.263 0.919–1.735
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Numb arm right62,63 0.121 1.129 0.776–1.643

Numb leg left62,63 0.536 1.709 1.111–2.630

Numb leg right62,63 0.583 1.791 1.058–3.031

Numbness (any indication)11,62,63 -0.071 0.932 0.726–1.196

Bilateral (numbness or weakness)5,60,65 -0.660 0.517 0.360–0.742

Eye droop (ptosis)5,60 0.195 1.215 0.512–2.881

Visual field deficit (either side)*60,62,63 0.308 1.361 0.932–1.986

Neck pain55,60,66 -0.481 0.618 0.368–1.039

Nausea5,60 -0.621 0.538 0.381–0.759

Unsteadiness6,60,62,63 0.205 1.228 1.005–1.500

Curtain5,6,42,43 0.630 1.878 1.203–2.934

Syncope or Loss of consciousness (LOC)*5,11,12,42 -0.714 0.490 0.330–0.727

Lightheaded5,11,12,61 -0.050 0.951 0.626–1.446

Vertigo5,6,11,57,59,60,62 -1.175 0.309 0.204–0.468

Confusion5,6,57,60,67 -0.637 0.529 0.422–0.664

Amnesia5,11,42,60,67 -2.010 0.134 0.039–0.463

Language disturbance56,62–64 0.495 1.641 1.286–2.093

Speech56,62–64 0.876 2.401 1.943–2.966

Positive visual disturbance5,6,42,54 -0.834 0.434 0.323–0.584

Position (movement of head causes Sx)5,59–61 0.033 1.033 0.405–2.640

Diplopia5,6,54,60,62 0.605 1.831 1.305–2.570

Vision loss5,42,60,62,63 0.804 2.233 1.508–3.308

Concentration, Loss of5 -0.942 0.390 0.200–0.761

Sudden onset (symptoms)5–7 0.248 1.282 1.051–1.563

Sensory march5,6,54 -0.775 0.461 0.255–0.833

Involuntary movement, shaking, tremor*5,6,43,60,62,67 -0.683 0.505 0.337–0.757

Anxiety or stress*5,11,12 -0.936 0.392 0.275–0.559
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Patient age (years, center = 60, sd = 10) × Concentration, Loss of 0.351 1.420 0.913–2.209

Patient age (years, center = 60, sd = 10) × Headache 0.200 1.222 1.065–1.402

Patient sex × Nausea 0.579 1.784 1.086–2.930

Patient sex × Position -1.219 0.296 0.083–1.053

Confusion × Amnesia67 1.930 6.890 1.466–32.378

Dizziness × Lightheaded -0.804 0.448 0.260–0.771

Headache × Lightheaded 0.693 1.999 1.122–3.560

Headache × Vertigo60 1.008 2.741 1.447–5.193

Neck Pain × Language Disturbance66 1.292 3.639 0.887–14.923

Lightheaded × Speech -1.057 0.348 0.199–0.608

Vertigo × Speech60 0.913 2.491 1.210–5.131

Face droop × Eye droop (ptosis)5,60 -1.791 0.167 0.047–0.595
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Table 4. Performance measures (95% confidence interval) of models on training and test datasets.

AUC Sensitivity Specificity Accuracy Cutpoint

Full Clinical Model (training) 0.804 (0.790–0.818) 0.873 (0.859–0.885) 0.556 (0.530–0.582) 0.760 (0.747–0.773) MaxEfficiency: 0.516

Full Clinical Model (training) 0.804 (0.790–0.818) 0.807 (0.792–0.822) 0.645 (0.620–0.669) 0.750 (0.736–0.763) MaxKappa: 0.590

Full Clinical Model (training) 0.804 (0.790–0.818) 0.717 (0.699–0.734) 0.739 (0.716–0.762) 0.725 (0.711–0.739) ROC01: 0.662

Full Clinical Model (test) 0.799 (0.779–0.819) 0.882 (0.862–0.899) 0.545 (0.510–0.579) 0.746 (0.726–0.765) MaxEfficiency: 0.516

Full Clinical Model (test) 0.799 (0.779–0.819) 0.806 (0.783–0.828) 0.634 (0.599–0.667) 0.737 (0.717–0.756) MaxKappa: 0.590

Full Clinical Model (test) 0.799 (0.779–0.819) 0.718 (0.692–0.743) 0.728 (0.696–0.758) 0.722 (0.702–0.741) ROC01: 0.662

Extreme Phenotype Variant (training) 0.802 (0.788–0.816) 0.813 (0.798–0.828) 0.630 (0.604–0.655) 0.748 (0.734–0.761) MaxEfficiency: 0.499

Extreme Phenotype Variant (training) 0.802 (0.788–0.816) 0.752 (0.735–0.769) 0.707 (0.683–0.731) 0.736 (0.722–0.750) MaxKappa: 0.567

Extreme Phenotype Variant (training) 0.802 (0.788–0.816) 0.720 (0.703–0.738) 0.739 (0.716–0.762) 0.727 (0.713–0.741) ROC01: 0.599

Extreme Phenotype Variant (test) 0.799 (0.779–0.819) 0.823 (0.801–0.844) 0.622 (0.588–0.655) 0.742 (0.723–0.761) MaxEfficiency: 0.499

Extreme Phenotype Variant (test) 0.799 (0.779–0.819) 0.757 (0.731–0.780) 0.686 (0.652–0.717) 0.728 (0.708–0.747) MaxKappa: 0.567

Extreme Phenotype Variant (test) 0.799 (0.779–0.819) 0.721 (0.694–0.746) 0.719 (0.686–0.749) 0.720 (0.700–0.739) ROC01: 0.599

ABCD2 (training) 0.655 (0.638–0.672) 0.691 (0.673–0.709) 0.526 (0.500–0.552) 0.633 (0.617–0.647) Guideline: 4.000

ABCD2 (test) 0.675 (0.652–0.699) 0.704 (0.677–0.729) 0.545 (0.510–0.579) 0.640 (0.618–0.661) Guideline: 4.000
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Figure 1. Participant flow diagram detailing missing data by variable and data set.

Initial Train Set, 2008-2011 (N = 5096)

Initial Data Set, 2008-2013 (N = 7823)

ACVS: 2885 Mimic: 1636 Oth/Unk: 575

Diastolic BP Outliers (N = 1)
ACVS: 1 Mimic: 0 Oth/Unk: 0

Missing Only Patient Sex (N = 0)
ACVS: 0 Mimic: 0 Oth/Unk: 0

Missing Only Systolic BP (N = 0)
ACVS: 0 Mimic: 0 Oth/Unk: 0

Missing Only Diastolic BP (N = 6)
ACVS: 4 Mimic: 1 Oth/Unk: 1

Missing Systolic & Diastolic BP (N = 437)
ACVS: 179 Mimic: 149 Oth/Unk: 109

Missing Patient Sex, Systolic & Diastolic BP (N = 0)
ACVS: 0 Mimic: 0 Oth/Unk: 0

Final Train Set (N = 4187)
ACVS: 2701 Mimic: 1486

Missing ABCD2 Score (N = 225)
ACVS: 147 Mimic: 78

ACVS: 4183 Mimic: 2516 Oth/Unk: 1124

Initial Test Set, 2012-2013 (N = 2727)
ACVS: 1298 Mimic: 880 Oth/Unk: 549

Diastolic BP Outliers (N = 1)
ACVS: 1 Mimic: 0 Oth/Unk: 0

Missing Only Patient Sex (N = 13)
ACVS: 8 Mimic: 5 Oth/Unk: 0

Missing Only Systolic BP (N = 0)
ACVS: 0 Mimic: 0 Oth/Unk: 0

Missing Only Diastolic BP (N = 0)
ACVS: 0 Mimic: 0 Oth/Unk: 0

Missing Systolic & Diastolic BP (N = 174)
ACVS: 72 Mimic: 52 Oth/Unk: 50

Missing Patient Sex, Systolic & Diastolic BP (N = 2)
ACVS: 0 Mimic: 2 Oth/Unk: 0

Final Test Set (N = 2038)
ACVS: 1217 Mimic: 821

Missing ABCD2 Score (N = 85)
ACVS: 50 Mimic: 35
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Figure 2. Validation plots of full clinical model on (A) training data, 2008–2011 (N = 3962), 

and (B) test data, 2012–2013 (N = 1953). RMSD=root mean standard deviation from line of 

equality.
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Figure 3. Decision curve analysis plots of full clinical model and ABCD2 scores on (A) training 

data, 2008–2011 (N = 3962), and (B) test data, 2012–2013 (N = 1953). Parentheses (cutpoint, 

net benefit).
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