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Abstract 
 
Recent advances in single cell transcriptional profiling open up a new avenue in studying the functional 
role of cell-to-cell variability in physiological processes such as stem cell differentiation. In this work, 
we developed a novel algorithm called SINCERITIES (SINgle CEll Regularized Inference using TIme-
stamped Expression profileS), for the inference of gene regulatory networks (GRNs) from single cell 
transcriptional expression data. In particular, we focused on time-stamped cross-sectional expression 
data, a common type of dataset generated from transcriptional profiling of single cells collected at 
multiple time points after cell stimulation. SINCERITIES recovers the regulatory (causal) relationships 
among genes by employing regularized linear regression, particularly ridge regression, using temporal 
changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations 
(activation and repression) come from partial correlation analyses between pairs of genes. We 
demonstrated the efficacy of SINCERITIES in inferring GRNs using simulated time-stamped in silico 
single cell expression data and single transcriptional profiling of THP-1 monocytic human leukemia 
cell differentiation. The case studies showed that SINCERITIES could provide accurate GRN 
predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and 
JUMP3. Meanwhile, SINCERITIES has a low computational complexity and is amenable to problems 
of extremely large dimensionality.  
 
Keywords: network inference, single cell, gene expression, gene regulatory network, time-stamped 
cross-sectional data 
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Background 
 
Cell profiling technologies have enabled scientists to measure intracellular molecules (DNA, RNA, 
proteins, metabolites) at whole-genome level and down to single cell resolution. Over the last decade, 
high-throughput single cell assays have experienced tremendous progress, thanks to advanced 
microfluidics techniques and increased sensitivity in cell profiling assays. For example, the Fluidigm 
Dynamic Array platform employs integrated fluidics circuitry to capture single cells (up to 96 cells per 
run) for transcriptional expression profiling using quantitative RT-PCR (qRT-PCR) or RNA-
sequencing (RNA-seq) [1]. The ability to assay individual cells and to examine intra-population 
cellular heterogeneity brings great benefits to fields such as stem cell and cancer biology. In the last 
few years, single cell analyses have demonstrated the ubiquity of cellular heterogeneity, even within 
cell populations or cell types that have been traditionally perceived as homogeneous [2–6]. Meanwhile, 
many single cell studies have provided evidence for the physiological roles of cell-to-cell variability in 
normal and diseased cells [7–11].  

Single cell transcriptional profiling overcomes many issues associated with population-average 
or bulk data that mask cellular heterogeneity (e.g. Simpson’s paradox [12]), thereby presenting new 
means for understanding biology. The number of bioinformatics tools for analyzing single cell 
expression data has proliferated in recent years [13–15]. A class of these algorithms concerns with the 
deconvolution of cell populations and tissues to elucidate population substructures and identify known 
and novel cell subtypes [16–20]. These algorithms often apply or modify existing clustering and 
dimensionality reduction algorithms, such as PCA, tSNE and diffusion maps, to accommodate single 
cell data. Another class of algorithms deals with the ordering of cells within the cell population along a 
perceived transition path between different cell states (e.g. Monocle [21], Wanderlust [22], SCUBA 
[23] and TSCAN [24]). Such cell ordering produces a trajectory in the state space of gene expression 
corresponding to a physiological transition, such as stem cell differentiation process.   

The third class of algorithms considers gene regulatory network (GRN) inference. A GRN is a 
network graph, where the nodes of this graph represent genes and the edges represent gene-gene 
interactions. The most common gene networks created from single cell transcriptional data have 
undirected edges (see for example [11,25,26]), where such edges indicate associations among genes, 
for example co-expression or co-regulation relationships. In contrast, the focus of our work is inferring 
GRNs with directed (causal) edges, where an edge pointing from gene i to gene j implies that the 
protein product(s) of gene i regulates the expression of gene j  (e.g., gene i encodes a transcription 
factor of gene j). The edges may also have signs, representing the modes of the gene regulation: 
positive for activation and negative for repression. In comparison to the other two classes of 
algorithms, there have been lesser algorithmic developments on the inference of such GRNs from 
single cell transcriptional profiles, possibly because of the extreme difficulty in this task [13–15].  

One of the challenges in using single cell expression data for GRN inference is the high data 
dropout rate due to transcriptional bursting of gene expression process, leading to zero-inflated dataset 
[13–15]. In addition, single cell profiling techniques such as qRT-PCR and RNA-seq use cell lysates, 
and consequently, the identities of the cells are lost. The resulting data therefore provide only cross-
sectional information of the cell population. A few GRN inference methods have previously been 
proposed based on Boolean network model [27–29], stochastic gene expression model [30], and a 
combination of machine learning and nonlinear differential equation model [31]. However, none of 
these methods use time point information directly in the GRN inference. In general, temporal data 
possess more information than static or single time-point data, especially for the determination of 
causal networks [32]. For these reasons, here we consider time-stamped cross-sectional single cell 
transcriptional profiles, i.e. the expression profiles of single cells taken at multiple time points after cell 
stimulation. Such type of dataset is commonly generated in studies of cell differentiation process, 
where stem cells are induced to differentiate at the beginning of the experiment and afterwards cells are 
collected at multiple time points for single cell analysis [11,25,33].  
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In this work, we created a network inference algorithm, called SINCERITIES (SINgle CEll 
Regularized Inference using TIme-stamped Expression profileS). The GRN inference was formulated 
as regularized linear regressions based on temporal changes of the gene expression distributions. The 
modes of the gene regulations, i.e the signs of the edges, were determined using partial correlation 
analyses. We demonstrated the efficacy of SINCERITIES using in silico time-stamped single cell 
expression profiles, as well as time-stamped cross-sectional transcriptional profiles of THP-1 human 
myeloid monocytic leukemia cells [25]. We also compared SINCERITIES to existing GRN inference 
algorithms developed for time series expression data, namely TSNI [34] and JUMP3 [35], and to a 
tree-based GRN inference algorithm GENIE3 [36]. The case studies illustrated the efficacy of 
SINCERITIES in extracting accurate GRN, by taking advantage of temporal information in time-
stamped single cell expression data.  
 
Results  
Gene regulatory network inference using SINCERITIES 
Below, we provide a brief description of SINCERITIES. More details of SINCERITIES can be found 
in Methods. In the following, let m be the number of genes, n be the number of measurement time 
points, and sk be the number of cells in the k-th time point sample (k = 1, 2, …, n). Figure 1 illustrates 
the main steps of SINCERITIES. The time-stamped cross-sectional dataset (see Fig. 1A) comprises n 
data matrices 𝐸!!×!, where the matrix element 𝐸!!,! is the transcriptional expression value of gene j, 
i.e. the amount of mRNA molecules of gene j in the i-th cell at the k-th time point. SINCERITIES is 
based on the assumption that changes in the expression of a transcription factor will alter the 
expression of the target genes. Thus, in the first step of SINCERITIES (see Fig. 1B), we quantify the 
temporal changes in the expression of each individual gene by computing the distance of the marginal 
gene expression distributions between two subsequent time points. For the distributional distance (DD) 
metric, we use the Kolmogorov-Smirnov (KS) distance, i.e. the maximum absolute difference between 
two cumulative density functions (see Methods) [37]. By using a DD metric, we could account for not 
only the overall changes in the gene expression distribution, but also the shift in the fractions of 
dropouts (i.e. genes with zero mRNA count). The performance of SINCERITIES did not depend 
sensitively on the choice of the DD metric (see Methods). Since the time windows may not necessarily 
be uniform, the DD values are normalized by the time step size.  
 In order to establish directed (causal) edges in the GRN, we treat the change in the expression 
of a transcription factor in a given time window as a perturbation. Furthermore, we assume that such a 
perturbation will cause a proportional shift in the gene expression distributions of the corresponding 
target genes in the next time window. As shown in Fig. 1C, the GRN inference in SINCERITIES 
involves solving m independent linear regressions. More specifically, for each gene j, we formulate a 
linear regression using the normalized DDs of this gene at time windows l+1, denoted by 𝐷𝐷!,!!! 
(𝑙 = 1,2,… , 𝑛 − 1), as the response (dependent) variable, while setting the normalized DDs of all other 
genes at the previous time window 𝑙 (𝐷𝐷!,! , 𝑝 = 1,2,… ,𝑚) as the regressor (independent) variables. 
The linear regression is thus given by: 
 

𝐷𝐷!,!!! = 𝛼!,!𝐷𝐷!,! + 𝛼!,!𝐷𝐷!,! +⋯+ 𝛼!,!𝐷𝐷!,!                                            (1) 
 

where αp,j is the regression coefficient describing the influence of gene p on gene j. The least square 
solution vector 𝜶!∗ is constrained to be non-negative since DDs take only non-negative values. The 
linear regression above is often underdetermined as the number of genes typically exceeds the number 
of time windows. For this reason, we employ a penalized least square approach to obtain 𝜶!∗ using an 
L2-norm penalty, also known as ridge regression or Tikhonov regularization (see Methods for more 
details). SINCERITIES relies on GLMNET [38] to compute the solution vector 𝜶!∗ for each gene j, 
using leave-one-out cross-validation (LOOCV) for determining the weight of the penalty term. Upon 
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completion, SINCERITIES produces a ranked list of all possible edges in the GRN (a total of m2 
edges) in descending order of αp,j values (see Fig. 1D). Larger αp,j indicates higher confidence that the 
corresponding edge exists (i.e. the edge p → j). For the mode (sign) of the gene regulatory edges, 
SINCERITIES uses partial correlation analyses on the expressions of every gene pair, controlling for 
the other genes (see Methods). The sign of an edge is set to the sign of the corresponding partial 
correlation. In other words, a positive (negative) correlation is taken as an indication of activation 
(repression).  

Presently, SINCERITIES cannot directly handle single cell data from stem cell differentiation 
process that produces more than one cell type (i.e. branching). In such a scenario, a pre-processing step 
is needed to group cells into individual cell lineages (for example, using time-variant clustering [39]), 
and SINCERITIES could subsequently be applied to data from each differentiation branch. In the case 
studies, we tested SINCERITIES performance in inferring moderately sized GRNs (<50 genes). While 
there exist no technical limitation in applying SINCERITIES to single cell expression data with many 
ore genes, for example RNA-seq data, we expect that network inferability issue would become 
important in such an inference [40,41]. Finally, SINCERITIES currently could not accommodate 
datasets with fewer than five time points due to the limitation of LOOCV. 

 
Evaluation of SINCERITIES on in silico single cell data 
To evaluate the efficacy of SINCERITIES, we simulated in silico time-stamped single cell expression 
datasets using 10-gene and 20-gene gold standard GRNs. The gold standard GRNs comprise 40 
random subnetworks of Escherichia coli and Saccharomyces cerevisiae GRNs, i.e. ten networks for 
each size and from each species (see Additional file 1), generated using GeneNetWeaver [42]. For the 
main dataset, we simulated single cell gene expression data for 100 cells at 8 unevenly spaced time 
points using a stochastic differential equation model (see Methods). In order to test the robustness of 
SINCERITIES with respect to the number of sampling time points and to the degree of stochasticity in 
the gene expression, we further generated supplementary datasets using the 10-gene GRNs above, for 
varying degrees of intrinsic noise (by changing σ parameter, see Methods) and different numbers of 
sampling time points. In the gold standard GRNs, we assumed that there exist no self-regulatory edges, 
since some of the existing algorithms used in the comparison, namely GENIE3 and JUMP3, do not 
identify or remove such edges from GRN predictions.  

We assessed the performance of SINCERITIES by evaluating the areas under the Receiver 
Operating Characteristic (AUROC) and the Precision-Recall curve (AUPR) [43]. Higher AUROC and 
AUPR values indicate more accurate GRN predictions. For this purpose, we computed the numbers of 
true positive (TP), true negative (TN), false positive (FP) and false negative (FN) edges by comparing 
the regulatory edges in the gold standard network with the top q edges from the ranked list output of 
SINCERITIES. When considering GRNs with signed edges, a true positive prediction referred to the 
correct prediction of an edge and its sign. The ROC curve was constructed by plotting the true positive 
rates (TPR = TP/(TP+FN)) versus the false positive rates (FPR = FP/(FP+TN)) for increasing q 
(𝑞 = 1,2,… ,𝑚!). Similarly, the precision (TP/(TP+FP)) and recall (TP/(TP+FN)) curve was plotted for 
increasing q.  

Table 1 gives the AUROC and AUPR values of SINCERITIES predictions for the main dataset, 
respecting the sign of the gene regulatory edges. As expected, the larger (20-gene) GRNs had lower 
AUROC and AUPR values, indicating that they were more difficult to infer than the smaller (10-gene) 
GRNs. Meanwhile, Table 2 shows the mean AUROC and AUPR values of SINCERITIES for the 
supplementary dataset. In general, the performance of SINCERITIES decreased slightly with 
increasing intrinsic stochasticity. Meanwhile, decreasing the number of time points did not appreciably 
change the performance of SINCERITIES.  

We further compared the performance of SINCERITIES to three other network inference 
methods, namely TSNI [34], GENIE3 [36], and JUMP3 [35]. TSNI (Time Series Network Inference) is 
a GRN inference algorithm developed for time series gene expression data, relying on a linear ordinary 
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differential equation model of the gene transcriptional process [34]. Meanwhile, GENIE3 (GEne 
Network Inference with Ensemble of trees) employs on a tree-based ensemble strategy using either 
random forest or extra-trees algorithms [36]. GENIE3 was among the top performers in DREAM 4 and 
DREAM 5 network inference challenges [44,45]. Recently, GENIE3 has also been applied to single 
cell data as a preliminary step to infer the skeleton of the GRN [31]. Lastly, JUMP3 uses a hybrid 
strategy combining non-parametric decision trees approach with dynamical ON/OFF modelling, to 
infer GRNs from time series expression data [35]. Since TSNI and JUMP3 require time series 
(longitudinal) data, we applied these methods to the (population) averages of the single cell gene 
expression data from each time point. Among the three previous methods, only TSNI generates GRN 
predictions with signed edges. 

Figure 2 compares the AUROC and AUPR values of SINCERITIES and the three other 
methods mentioned above. The AUROC and AUPR values for TSNI and SINCERITIES were 
computed by respecting for the signs of the edges. However, for GENIE3 and JUMP3 predictions, the 
AUROC and AUPR values were based only on the existence of the regulatory edges (ignoring signs). 
The results showed that SINCERITIES significantly outperformed all of these methods (p-value < 
0.05, paired t-tests) (see Additional file 2: Table S1).   

 
Reconstructing GRN driving THP1 differentiation 
In the following, we applied SINCERITIES to infer the GRN that drives the differentiation of 
monocytic THP-1 human myeloid leukemia cell differentiation into macrophages. The GRN of THP-1 
differentiation has previously been constructed using deep sequencing (deepCAGE) and RNA 
interference (RNAi) experiments [46,47], providing the gold standard network for evaluating the 
performance of SINCERITIES and the three existing inference methods. The time-stamped cross-
sectional single cell data came from qRT-PCR expression profiling of 45 transcription factors (TFs) in 
960 THP-1 cells that were collected at 8 distinct time points (0, 1, 6, 12, 24, 48, 72, 96 hours) after 
stimulation by 12-myristate 13-acetate (PMA) [25].  

We applied SINCERITIES as well as the three other methods to reconstruct the GRN of THP-1 
differentiation using the single cell expression data above. The AUROC and AUPR values were 
evaluated using the anti-/pro-differentiation TF network found by RNAi knockdown experiments as the 
gold standard network [47]. We noted that only 20 TFs in the RNAi study overlapped with the set of 
genes in the single cell study [25]. Therefore, while the GRN inferences were done for 45 TFs, the 
calculation of AUROCs and AUPRs was based on the regulatory edges among the common set of 20 
TFs. Again, for GENIE3 and JUMP3, the AUROC and AUPR values did not take into account the 
modes (signs) of the regulatory edges.  

Table 3 shows the AUROCs and AUPRs for the four network inference strategies. For 
SINCERITIES, we reported the AUROC and AUPR values both with and without the mode of the 
gene regulations. The AUROC and AUPR values of SINCERITIES for the unsigned GRN prediction 
were similar to those using in silico data. As expected, the AUROC and AUPR values for signed GRN 
predictions were lower, but only slightly. TSNI, GENIE3, and JUMP3 performed worse than 
SINCERITIES, and did not give much better predictions than a random network (AUROC = 0.50). 

 
Computational Runtime 
To assess the computational complexity of our approach, we measured the runtimes of SINCERITIES 
for 10- and 20-gene in silico datasets, and compared these runtimes to those of the three other 
algorithms. Table 4 gives the average runtimes (in seconds) for TSNI, GENIE3, JUMP3 and 
SINCERITIES for the main in silico dataset and for the THP-1 differentiation data. Tree-based 
inference methods (GENIE3 and JUMP3) were significantly slower than SINCERITIES and TSNI. In 
particular, doubling the network size, the runtimes of GENIE3 and JUMP3 doubled and quadrupled, 
respectively. Meanwhile, the runtimes of SINCERITIES and TSNI finished almost instantaneously (<1 
second) for these datasets, since these algorithms involved solving linear regressions. Finally, we noted 
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that the regularized linear regressions in SINCERITIES (one for each gene) are independent of each 
other and are therefore amenable for parallel computation. 
 
Comparison to other network inference methods for single cell data 
The challenges of analyzing single cell transcriptional data have led to the creation of novel 
bioinfomatics algorithms, including algorithms for GRN inference using single cell transcriptional 
profiles [26–28,31]. A number of algorithms have been developed based on viewing the single cell 
gene expressions as binary state vectors, whose state transition trajectories are governed by a gene 
regulatory network with Boolean logic functions. Examples of such algorithms include SCNS [28], 
SingleCellNet [27] and BTR [29]. A general drawback of these algorithms is that the dimension of the 
state space of a Boolean network increases exponentially with respect to the number of genes (2m where 
m is the number of genes). Consequently, even for a moderately sized GRN (~50 genes), providing a 
reasonable coverage of the state space would require a tremendous number of single cell profiles. The 
extremely large state space will also make the inference problem computationally challenging.  

Recently, Ocone et al. used a combination of a machine-learning algorithm GENIE3 and ODE 
modelling for GRN inference using single cell transcriptional data. Here, GENIE3 was first applied to 
produce a skeleton of the GRN. This skeleton was then refined by fitting an ODE model to pseudo-
time trajectories of the gene expression, produced by applying Wanderlust algorithm [31] to single cell 
expression data in low-dimensional diffusion map projection [48]. However, there are several issues in 
using pseudo-time trajectories for GRN inference. First, one makes an implicit assumption that the 
trajectory reflects gene expression changes that are caused by the gene regulatory interactions 
associated with the physiological process of interest (e.g. cell differentiation). In our experience, the 
success of cell ordering in reproducing the gene expression trajectory depends sensitively on the cell 
sampling strategy, that is, being able to sample the right cells at the right time point or stages. For 
example, the application of Wanderlust to the in silico time-stamped single cell dataset from yeast led 
to cell ordering that was incongruent with the sampling times, especially for latter time points 
(Additional file 3: Fig. S1 and Fig. S2).  

Meanwhile, Kouno et al. showed by using multiple dimension scaling that the THP-1 cell 
differentiation follows a rather irregular temporal dynamics in the low-dimensional (2D) projected 
space (see also Additional file 3: Fig. S3 for PCA, t-SNE and diffusion map analysis). As in the case of 
in silico dataset, Wanderlust ordering of THP-1 single cell expression data showed little correlation 
with the cell time-stamps (see Additional file 3: Fig. S4). SINCERITIES overcomes the issues 
mentioned above (large dataset requirement, high computational complexity, cell ordering) as the 
network inference involves numerically efficient regularized linear regression and directly use time-
stamped cross-sectional data (without an intermediate step to construct state transition trajectory). 

 
Conclusion 
Advances in single cell transcriptional profiling offer much promise in elucidating the functional role 
of cell-to-cell variability across different key physiological processes, such as stem cell differentiation. 
In particular, single cell expression data carry crucial information on the gene regulatory network that 
governs cellular heterogeneity and cell decision-making. However, inferring GRNs from single cell 
transcriptional profiles is complicated by the intrinsic stochasticity and bursty dynamics of the gene 
expression process and the loss of cell identity during high-throughput transcriptional profiling. In this 
work, we developed SINCERITIES for GRN inference using time-stamped cross-sectional single cell 
expression data, a common type of dataset generated by transcriptional profiling of single cells at 
multiple time points. SINCERITIES is based on the premise that changes in the gene expression 
distribution of a transcription factor in a given time window would cause a proportional change in the 
transcriptional expression distributions of the target genes in the next time window. The network 
inference involves numerically efficient ridge regression problem. In comparison to network inference 
algorithms for population average time series data (TSNI and JUMP3) and to a tree-based machine 
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learning algorithm (GENIE3), SINCERITIES could provide significantly more accurate GRNs based 
on AUROCs and AUPRs.  
 
Methods 
Distribution Distance  
In SINCERITIES, we used the Kolmogorov-Smirnov distance to quantify the distance between 
cumulative distribution functions of gene expressions from subsequent time points, according to 
 

𝐷𝐷!,! = max 𝐹!!!! 𝐸! − 𝐹!! 𝐸!                                                           (2) 
 

where DDj,l denotes the distributional distance of gene j expression Ej between time points tl and tl+1 (l 
= 1, 2, …, n−1) and 𝐹!! 𝐸!  denotes the cumulative distribution function of Ej. We also evaluated two 
additional DD metrics, namely the Anderson-Darling (AD) statistics [49] and the Cramér–von Mises 
(CM) criterion [50] (see Additional file 3: Table S2). The performance of SINCERITIES did not 
depend sensitively on the DD metrics used. In order to accommodate non-uniformity in the sampling 
times, we normalized DDj,l with respect to the time window size, as follows: 
 

𝐷𝐷!,! =
!!!,!
!!!

                                                                           (3) 

 
where 𝐷𝐷!,! denotes the normalized distribution distance of gene j in the time window between tl and 
tl+1 with Δ𝑡! = 𝑡!!! − 𝑡!.  
 
Ridge Regression 
As shown in Fig. 1C and in Eq. (1), for each gene j, we solved a linear regression problem of the form: 
𝐲 = 𝐗𝛂,	
  where	
  y	
  denotes	
  the	
  n−2	
  vector	
  of	
  𝐷𝐷	
  distances	
  of	
  gene	
  j	
  corresponding	
  to	
  time	
  windows	
  
Δt2	
  to	
  Δtn−1,	
  and	
  X	
  denotes	
  the	
   (n − 2)×m 	
  matrix	
  of	
  𝐷𝐷	
  distances	
  corresponding	
  to	
  time	
  windows	
  
Δt1	
  to	
  Δtn−2,	
  for	
  all	
  genes.	
  To obtain the solution vector α , we performed a ridge regression penalized 
least square optimization as follows: 
 

      min𝜶 𝐲 − 𝐗𝛂 !
! + !

!
𝜆 𝛂 !

!                                                               (4) 

 
with the constraint that 𝛼! ≥ 0 . We used GLMNET algorithm (MATLAB) to generate the 
regularization path, i.e. the solution 𝛂 as a function of different λ values [38].  

The optimal weight factor λ is generally data dependent. Here, we performed a leave-one-out 
cross validation [51] to determine the optimal weight factor λ. In LOOCV, we allocated one row of y 
and X as the test dataset and the remaining as the training dataset. Then, we generated the 
regularization path for the training dataset using GLMNET, and computed the error of predicting the 
test dataset as a function of λ. We repeated this exercise for every permutation of test and training 
dataset assignment, and selected the optimal λ that minimized the average prediction error. Finally, we 
ran GLMNET on the full dataset and took the solution α* that corresponded to the optimal λ value 
above. In addition to ridge regression, we also tested SINCERITIES with two other penalty functions: 
the ‘Least Absolute Shrinkage and Selection Operator’ (Lasso) L1-norm penalty [52], which was 
adopted in our previous algorithm SNIFS (Sparse Network Inference For Single cell data) [53], and the 
elastic-net penalty [54]. These alternative penalty functions however led to much poorer GRN 
predictions than ridge regression (for further details, see additional file 3: Table S3).   
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Partial Correlation Analysis 
In order to determine the mode (sign) of gene regulatory relationships, we performed the Spearman 
rank partial correlation analysis. More specifically, for each time point k (k = 1, 2, …, n), we calculated 
the Spearman rank partial correlation coefficient of gene expressions from every pair of genes while 
controlling for the other genes. The sign of the regulatory edge pointing from gene i to gene j was set 
equal to the sign of the partial correlation coefficient for the combined expression data over all time 
points. Note that by using correlation, the sign of the edge pointing from gene i to gene j is equal to the 
sign of the edge pointing from gene j to gene i.  
 
In silico data generation 
We used GeneNetWeaver (GNW) to randomly generate 10-gene and 20-gene random subnetworks of 
Escherichia coli and Saccharomyces cerevisiae (yeast) GRNs. After removing self-regulations, we 
simulated in silico single cell expression data using the following stochastic differential equation 
(SDE) model of the mRNA [55]: 
 

𝑑𝑥! = 𝑉 𝛽 1 + 𝐴!,!
!!
!!!!

− 𝜃𝑥!!
!!! 𝑑𝑡 + 𝜎𝑥!𝑑𝑊(𝑡)                                      (5) 

 
where xj describes the mRNA level of gene j, Ai,j denotes the regulation of the expression of gene j by 
gene i, β denotes the basal transcriptional rate, θ denotes the mRNA degradation rate constant, and σ 
and V are scaling parameters. The term dW(t) denotes the random Wiener process, simulating the 
intrinsic stochastic dynamics of gene expression [56]. We set Aij to 1 for gene activation, to −1 for gene 
repression, and to 0 otherwise. For the main dataset in the case study, we set the parameters to the 
following: V=30, β =1, θ=0.2, and σ=0.1. 

We simulated the SDE model above using the Euler-Maruyama method [57] with an initial 
condition xj(0) set to 0 for every gene, until the gene expression reached steady state (t  = 3 arbitrary 
time unit). For each GRN structure, we generated 100 stochastic trajectories for each time point (a total 
of 8×100 = 800  independent trajectories for 8 time points), representing 100 single cells. The 
simulations above mimicked the scenario where single cells are lysed for gene expression profiling 
[28,58]. To test the robustness of SINCERITIES with respect to the intrinsic noise in gene expression 
and to the number of sampling time points, we further generated two supplementary datasets from the 
20 10-gene E.coli and yeast gold standard GRNs: by varying σ parameter between 0.1 and 0.4 with a 
step of 0.1 (see Table 2A) and by selecting the first n time points from the following set t = 0.51, 0.60, 
0.74, 1.2, 1.3, 1.5, 1.8, 2.2, 2.6, and 3 where n is between 6 and 10. The time points had been selected 
to exclude the time period when the mRNA level rose quickly from the initial concentration. This 
initial increase was a consequence of starting the simulations from xj(0) = 0, and did not necessarily 
reflect the gene regulatory actions.  

 
Software availability 
The MATLAB implementation of SINCERITIES is freely available from the following website: 
http://www.cabsel.ethz.ch/tools/sincerities.html.  
 
Availability of data and materials 
The single cell THP-1 transcriptional profiles are available from the original publications (see 
supplementary material in [25]).  The in silico single cell data are available from SINCERITIES 
website: http://www.cabsel.ethz.ch/tools/sincerities.html.  
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Figures 
 
 

 
Figure 1 The workflow of SINCERITIES. (A) Input: time-stamped cross-sectional data of gene 
expression. (B) Step 1: calculation of normalised distribution distance of gene expression distributions 
over each time step; (C) Step 2: formulation of the GRN inference as a linear regression problem; (D) 
Output: edge predictions of the GRN. 
 
 
 

 
Figure 2 Performance comparison among TSNI, GENIE3, JUMP3, and SINCERITIES. (A) AUROC 
and (B) AUPR values for 10-gene gold standard GRNs. (C) AUROC and (D) AUPR values for 20-
gene gold standard GRNs. 
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Tables 
Table 1 Performance of SINCERITIES in the inference of gold standard GRNs.  

  

SINCERITIES 

10-GENE NETWORK 20-GENE NETWORK 

AUROC AUPR AUROC AUPR 

Network E. coli 1 0.65 0.14 0.48 0.09 

Network E. coli 2 0.71 0.15 0.44 0.06 

Network E. coli 3 0.77 0.15 0.75 0.19 

Network E. coli 4 0.85 0.36 0.57 0.08 

Network E. coli 5 0.80 0.19 0.55 0.07 

Network E. coli 6 0.59 0.12 0.81 0.27 

Network E. coli 7 0.54 0.17 0.75 0.16 

Network E. coli 8 0.83 0.23 0.82 0.28 

Network E. coli 9 0.79 0.29 0.71 0.10 

Network E. coli 10 0.88 0.35 0.58 0.07 

Network Yeast 11 0.69 0.26 0.70 0.18 

Network Yeast 12 0.64 0.13 0.73 0.27 

Network Yeast 13 0.84 0.68 0.60 0.06 

Network Yeast 14 0.84 0.57 0.63 0.09 

Network Yeast 15 0.86 0.44 0.71 0.31 

Network Yeast 16 0.90 0.48 0.70 0.17 

Network Yeast 17 0.78 0.39 0.73 0.13 

Network Yeast 18 0.92 0.72 0.65 0.17 

Network Yeast 19 0.73 0.23 0.78 0.26 

Network Yeast 20 0.94 0.73 0.73 0.20 

Mean  0.78 0.34 0.67 0.16 

± SD 0.11 0.20 0.10 0.08 
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Table 2 Robustness of SINCERITIES to (A) intrinsic stochastic noise and (B) number of time points. 

SINCERITIES: 10-GENE NETWORKS 

  AUROC AUPR 

σ A 

0.1 0.78 ± 0.11 0.34 ± 0.17 

0.2 0.76 ± 0.10 0.33 ± 0.16 

0.3 0.66 ± 0.10 0.22 ± 0.10 

0.4 0.60 ± 0.10 0.17 ± 0.07 

Time points B 

10 0.78 ± 0.16 0.32 ± 0.17 

9 0.79 ± 0.11 0.39 ± 0.22 

8 0.78 ± 0.11 0.34 ± 0.17 

7 0.80 ± 0.10 0.36 ± 0.20 

6 0.78 ± 0.11 0.37 ± 0.20 
 
 
Table 3 Performance comparison among TSNI, GENIE3, JUMP3 and SINCERITIES in inferring the 
GRN of THP-1 cell differentiation.  
 

 
AUROC AUPR 

TSNI 0.44 0.11 

GENIE3 0.46 0.23 

JUMP3 0.52 0.16 
SINCERITIES (without sign) 0.70 0.33 

SINCERITIES (with sign) 0.64 0.25 
 

 
Table 4 Computational times comparison among TSNI, GENIE3, JUMP3 and SINCERITIES.  
 

Average  runtime (*) TSNI GENIE3 JUMP3 SINCERITIES 

10-gene networks 0.04 sec 16 sec 6 sec 0.32 sec 
20-gene networks 0.06 sec 40 sec 24 sec 0.74 sec 

THP-1 differentiation  0.33 sec 41 sec 43 sec 0.83 sec 
* Computational times were measured on an 8-GB RAM, 1.6Ghz dual-core Intel core i5 computer. 
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