
 

 
  
 

1 Introduction  
The ability to predict translation efficiency in bacteria is important to 
define the relation between genotype and phenotype, and to engineer 
new organisms optimized for producing biomaterials (Kyle, et al., 2009), 
fuels (Toone and de Winde, 2013) and natural products (Krivoruchko 
and Nielsen, 2015). The information to regulate the translation process is 
encoded in the mRNA nucleotide sequence. The preference for specific 
combinations of nucleotides in the coding region, which results in codon 
bias, has a strong effect on protein expression and formation (Li, et al., 
2012; Mortimer, et al., 2014; Plotkin and Kudla, 2011; Pop, et al., 2014). 
Changes in the nucleotide sequence and codon usage can affect the 
mRNA folding process, which is a key determinant of protein expres-

sion. The ability of RNA strands to fold and form stable structures 
influences all the steps of the translation process: initiation, elongation, 
mRNA localization and turnover (Bentele, et al., 2013; Bonde, et al., 
2016; Duval, et al., 2013; Goodman, et al., 2013; Mortimer, et al., 2014). 
The Shine-Dalgarno (SD) sequence encoded in the mRNA is another key 
factor for translation regulation. Indeed, when the SD sequence is located 
in untranslated regions (UTRs), it promotes the binding of ribosomes and 
accelerates translational initiation (Kozak, 2005; Shine and Dalgarno, 
1974; Shultzaberger, et al., 2001). Contrarily, its presence in the coding 
region can reduce the translational elongation rate in bacteria (Li, et al., 
2012). Thus, understanding bacterial translation on a mechanistic level 
will result in accurate predictions of protein expression from mRNA 
sequence (Gingold and Pilpel, 2011). In this work we considered the 
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Methods: In this work we present PGExpress, a binary classifier to discriminate between mRNA sequences with low 
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Results: Our logistic regression-based tool (PGExpress) was trained using a 20-fold gene-based cross-validation 
procedure on the WT-High dataset. In this test PGExpress achieved an overall accuracy of 74%, a Matthews correla-
tion coefficient 0.49 and an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.81. Tested on 3 sets 
of sequences with different Ribosome Binding Sites, PGExpress reaches similar AUC. Finally, we validated our meth-
od by performing in-house experiments on five newly generated mRNA sequence variants. The predictions of the ex-
pression level of the new variants are in agreement with our experimental results in E. coli. 	
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measure of translation efficiency, which provides a quantitative estima-
tion of the of translation process, independent from the transcription. The 
translation efficiency is defined as the ratio of protein to mRNA abun-
dance, which corresponds to the amount of protein produced by a single 
molecule of mRNA (Tuller, et al., 2010a; Tuller, et al., 2010b). 
In the past, many studies and software tools have been developed for 
predicting protein expression based on mRNA sequence. Tools to tailor 
the untranslated region (UTR) to achieve a desired protein expression 
level were also introduced (Na and Lee, 2010; Reeve, et al., 2014; 
Rodrigo and Jaramillo, 2014; Seo, et al., 2014). The RBS calculator 
(Salis, 2011), UTR designer (Seo, et al., 2014), and RBS designer (Na 
and Lee, 2010) are statistic methods based on thermodynamic models. 
They calculate the folding free energies for key molecular interactions to 
provide an estimation of the translation efficiency. In general, the predic-
tions from these methods show high correlation with experimental data. 
Recently Bonde and colleagues (Bonde, et al., 2016) studied the relation-
ship between SD sequences and protein expression by measuring expres-
sion levels of ~3,000 UTRs in the presence of different SD variants. 
Their empirical method (EMOPEC) outperformed the standard thermo-
dynamic models. Considering only the UTR regions, the available tools 
limit our understanding of the general picture of translational mechanism 
and our ability to engineer the whole mRNA molecule. Goodman and 
colleagues (Goodman, et al., 2013) measured the expression level of 
more than 14,000 synthetic gene variants in E. coli to quantify the effects 
of N-terminus codons as well as different combinations of promoter and 
ribosomal binding sites (RBSs). They found that rare codons in the N-
terminus increased the stability of the RNA structure resulting in de-
creased gene expression level. The gene variants tested by Kosuri and 
co-workers (Goodman, et al., 2013) included variations in both UTR and 
coding sequences, which made the data suitable for investigating the 
effects from coding sequences as well. We make use of their data to 
capture regulatory factors from both the UTR and coding region of the 
mRNA molecule. 
For estimating the contributions of different RNA regions on gene 
expression, we represented the sequences by global and local free energy 
features to find the main determinants of the translation efficiency. Since 
mRNA structure impacts each step of translation (Kozak, 2005; 
Mortimer, et al., 2014), it represents one the most important features to 
consider. The folding free energy is a classical measure to describe the 
RNA structure. Many tools to predict RNA structure implement thermo-
dynamic-based dynamic programming algorithms (Capriotti and Marti-
Renom, 2008). Many studies showed that different regions of mRNA 
preserve specific structural preferences (Kudla, et al., 2009; Mortimer, et 
al., 2014). Kudla and colleagues found that the predicted folding free 
energy of the first ∼40 nucleotides of the mRNA has a significant corre-
lation with the GFP protein abundance (Kudla, et al., 2009). In a recent 
study, it was observed that structures at the end of 5′ UTR and the begin-
ning of 3′UTR are well conserved and the coding region is more struc-
tured than UTRs (Mortimer, et al., 2014). Thus, the free energy associat-
ed to the formation of local structures is also an important predictive 
feature. In addition, since the SD sequence shows different regulating 
effects, we also computed the hybridization folding energy (also referred 
as binding energy) between the anti-SD sequence and different regions 
of the mRNA. The folding and hybridization free energies were com-
bined to represent the translational features of the mRNA. 
In this work we present PGExpress (Predicting Gene Expression), a new 
logistic regression-based algorithm to predict translation efficiency of 
mRNA sequences and designing new gene variants for experimental 
testing. PGExpress is a binary classifier that discriminates between 
nucleotide sequences with low and high translation efficiency. Our 

method relies on the calculation of the minimum free energy of folding 
as representations of the local and global mRNA structures and the 
minimum free energy of hybridization between anti-SD sequence and 
mRNA, which corresponds to the binding affinity of the ribosome with 
different strands of mRNA. The performance of PGExpress has been 
tested on previously published datasets and new experimental data 
generated in-house. 

2 Methods 

2.1 Datasets 
The data used in this work consists of protein expression and/or transla-
tion efficiency measures of genes and their variants in E. coli. The data 
were collected both from the literature (Goodman, et al., 2013; 
Taniguchi, et al., 2010) and experimental tests in our lab. The data from 
Kosuri and collaborators (Kosuri-All) is a collection of protein expres-
sion and translation efficiency measures from ∼14,000 gene variants 
(Goodman, et al., 2013). Each variant is a combination of the Promoter 
with high and low strength (High, Low), the Ribosome Binding Site 
(Wild-Type, Weak, Mid and Strong RBSs) and the first 33 nucleotides of 
the coding region (C33) of 137 essential E. coli genes followed by the 
superfolder GFP (sfGFP) coding sequence (see Supplementary Materi-
als, section Experimental data). From the Kosuri-All dataset we extract-
ed five subsets (WT-High, WT-Low, Weak-High, Mid-High, Strong-
High) with sequence variants composed by four Ribosome Binding Sites 
(RBS) and two Promoters. The main dataset (WT-High), which has been 
used for training and testing our method, collects the expression 
measures of 1,722 sequences formed by the High promoter, the Wild-
Type RBSs and 13 variants (including wild-type) of the C33 region of 
each gene (see Supplementary File 1). The Weak-High, Mid-High and 
Strong-High subsets, which have been used only for the testing phase, 
differ from the WT-High for the sequence of the Ribosome Binding Site, 
which have Weak, Mid and Strong binding affinities respectively (see 
Supplementary Files 2, 3 and 4 respectively). The WT-Low and WT-
High differ for the sequence of the promoter regions, which have low 
and high strength respectively. The WT-Low dataset has been used only 
in the preliminary analysis of the data (see Supplementary File 5). All 
gene variants are classified in two classes according to their translation 
efficiency. The median value of the translations efficiency in WT-High  
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Fig. 1.  Representation of the PGExpress algorithm. PGExpress input is a 12-elements vector composed by six RNA folding (Ef) and six anti-Shine-Dalgarno hybridization (Eh) free 
energies. Each sequence is divided in 3 blocks: the Ribosome Binding Site (RBS), the first 33 nucleotides of the coding sequence (C33) and the remaining part of the coding region 
starting from nucleotide 34 (CC). The whole coding sequence (CDS) is obtained joining C33 and CC. 

(2355.5) was used as classification threshold. To test the performance of 
PGExpress, we measured in our lab the protein expression level of five 
randomly selected variants from the Kosuri-All dataset (Exp-Set). We 
used the Exp-Set to check the agreement between the data in Kosuri-All 
and our measures. Additionally, we generated a validation set, namely 
Exp-Mut, which is composed of new variants derived from the five 
sequences in Exp-Set. The sequences of the ten gene variants are report-
ed in Table S1. 

Finally, we estimated the ability of our algorithm to predict the ex-
pression level of the full gene comparing the translation efficiency from 
Kosuri’s study with the single-cell data from a recent work in which the 
protein expression of wild-type genes was measured (Taniguchi et al., 
2010). For this comparison, we selected a subset of 44 common genes 
(Xie-Comm), for which the expression level was reported in High-WT 
and experimentally determined by Xie and collaborators (see Supple-
mentary File 6). Finally, we focused on a subset of 29 genes on which 
both studies are in agreement (Xie-Agree). In other words, Xie-Agree 
dataset is composed by the subset of genes for which the expression level 
from Xie-Agree (Taniguchi, et al., 2010) and the translation efficiency 
from Kosuri-All (Goodman, et al., 2013) are either higher or lower with 
respect to their median values. Since the common genes analyzed in both 
studies differ only for the composition of the C-terminal region (CC), we 
assume that our filtering procedure results in the selection of the group of 
genes for which the contribution of the C-terminal region of the coding 
sequence has little effect on the translation process. 

All the datasets used in this work are provided as supplementary files 
and a summary of their composition is reported in Table S2. 

2.2 Algorithm description 
Here we present a binary classifier (PGExpress) to predict the gene 

translation efficiency from sequence information. PGExpress is based on 
logistic-regression algorithm that takes in input a 12-elements vector 
composed by six RNA folding and six anti Shine-Dalgarno (SD) hybrid-
ization free energies. In detail, each gene variant is divided in three 
sequence blocks: the Ribosome Binding Site (RBS), which consists on 
average of 20 nucleotides preceding the coding sequence, the first 33 
nucleotides of the coding region (C33) and the remaining part of the 
coding sequence starting from nucleotide 34 (CC). Thus, each gene is 
represented by six sequence fragments including the three blocks previ-
ously defined (RBS, C33 and CC), and the combinations of RBS with 
C33 (RBS+C33), C33 with CC (CDS) and RBS with the whole coding 
sequence (RBS+CDS). For each block we calculated the RNA folding 

and the anti-Shine-Dalgarno (anti-SD) hybridization free energies using 
respectively RNAfold and RNAduplex tools from the ViennaRNA pack-
age (Lorenz, et al., 2011), which automatically replace Thymine (T) with 
Uracil (U). We used an 8-nucleotides anti Shine-Dalgarno sequence 
(CCTCCTTA) as reported by Kosuri and coworkers (Goodman, et al., 
2013). Both free energies have been rescaled to a temperature of 30 °C, 
which is the temperature at which the experiment in the Kosuri study 
was carried out. PGExpress uses a softmax function to calculate the 
probabilistic score (P) returned as output. If P>0.5, the gene variant is 
predicted to have a high translation efficiency (Trans>2355.5). A repre-
sentation of PGExpress and its 12 input features is provided in Fig. 1.  

2.3 Feature analysis 
To estimate the discriminative power of each feature, we compared 

the distributions of the RNA folding and anti-SD hybridization free 
energies of the five sequence blocks (RBS, C33, RBS+C33, CDS and 
RBS+CDS) on the subset of variants with high (Trans>2355.5) and low 
(Trans ≤2355.5) translation efficiencies in the WT-High dataset. In this 
analysis we did not consider the C-terminal region of the coding se-
quence (CC) because it corresponds to the sfGFP for all the variants in 
the Kosuri-All dataset. The comparison between the two distributions is 
performed calculating the Kolmogorov-Smirnov distance and the associ-
ated p-value. Furthermore, we compared the performance of our best 
approach (PGExpress) against five methods including different combina-
tions of the 12 input features. These methods are:  

• BFolding: most discriminative RNA folding free energy  
• BBinding: most discriminative anti-SD hybridization free energy  
• Folding6: RNA folding free energies of the six blocks  
• Binding6: anti-SD hybridization free energies of the six blocks. 
• BFoldBind: most discriminative RNA folding and anti-SD hybridiza-

tion free energies. 

2.4 Algorithm optimization 
PGExpress is based on a logistic-regression algorithm 

(LogisticRegression) implemented in the scikit-learn package 
(Pedregosa, et al., 2011). It has been optimized considering different 
tolerance values (0.1, 0.05, 0.01, 0.005 and 0.001). The scikit-learn 
LogisticRegression class was run using the L1 regularization method as 
penalty function and the defaults values for all the remaining options.   
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2.5 Training and testing 
To estimate the performance of PGExpress and the alternative meth-

ods, we performed several tests. First, we tested PGExpress using a 
gene-based 20-fold cross-validation approach on the WT-High dataset to 
keep all the variants belonging to the same gene in the same subset. For 
each test we calculated the performance using the evaluation measures 
defined in Supplementary Materials. The reported scores represent the 
average values obtained over five 20-fold cross-validation tests. The 
results obtained on the Kosuri-All (Weak-High, Mid-High and Strong-
High), Experimental (Exp-Set, Exp-Mut) and Xie (Xie-Comm, Xie-
Agree) datasets were calculated removing from the training set all the 
data related to the genes present in the testing set. This procedure reduc-
es the overfitting due to the presence of data from sequences with high 
similarity both in training and testing sets. To check for this source of 
bias, we also performed the all-against-all global alignments (1,558,513) 
among the RBS+C33 regions of all the gene variants. The global align-
ments of the nucleotide sequences were calculated using the align0 
algorithm from the fasta2.0 package (Myers and Miller, 1988).  

2.6 Engineering new sequences 
For validating our algorithm, we generated new sequences selecting 

the subset of gene variants which showed by mutation either higher or 
lower translation efficiency with respect to the median value of the High-
WT dataset. For calibrating our experimental expression measures and 
compare them with the data reported by Kosuri and colleagues 
(Goodman, et al., 2013), we first measured the expression level of five 
randomly selected gene variants (Exp-Set). In the next step, we generat-
ed five new sequences not included in the Kosuri-All dataset mutating at 
most one nucleotide in RBS or three codons in coding region. Finally, 
we randomly selected a set of five gene variants (Exp-Mut), four of 
which change their expression level either from High to Low (dapB and 
lpxK) or Low to High (lgt and zipA) and one case (murF) where the 
expression level remains in the same class. The sequences of the ten 
tested gene variants are reported in Table S1. 

2.7 Experimental expression measure  
DNA sequences consisting of promoter, ribosomal binding site 

(RBS), and 33 coding nucleotides (including ATG start site) of five 
different genes were synthesized (Genscript, Piscataway, USA) with 
flanking AscI and NdeI restriction sites. The DNA fragments were 
excised from the shuttle vector and directionally cloned into the pJ251-
GERC vector obtained from Addgene (Kosuri, et al., 2013). A unique 
EcoRI restriction site was engineered in between the 5′ region of the 
AscI site and the respective promoter sequence. Using the EcoRI site we 
identified the positive clones. Final gene variants were verified via 
Sanger sequencing. The correct variants were transformed in MG165 E. 
coli cells and starter cultures were grown over night at 37 °C. The next 
day cultures were diluted 1:1000 in 100 µL LB medium in optical quality 
black walled 96-well plates (PerkinElmer, Waltham, MA, USA) in 
quadruplicate and overlayed with 40 µL mineral oil. Bacteria were 
grown at 30 °C. Bacterial growth was followed by measuring the optical 
density at 600 nm (OD600) as proxy. The different combination of 
promoter, RBS, and coding region regulate the expression levels of the 
superfolder green fluorescent protein (sfGFP). Expression of the red 
fluorescent protein (mCherry) was controlled by a constitutive promoter 
(PLtetO-1) shared by all gene variants (Kosuri, et al., 2013). sfGFP and 
mCherry fluorescence levels were measured with a monochromator 

equipped BioTek Synergy Mx (BioTek, Winooski, USA) plate reader. 
Every five minutes a fluorescence measurement was performed.  

3 Results 

3.1 Classification and input features 
The selection of the data from Kosuri and co-workers allowed us to 

develop a machine learning method (PGExpress) that classifies the gene 
variants as having low (Trans≤2355.5) and high (Trans>2355.5) transla-
tion efficiency based on the sequence information. Before performing 
our tests, we analyzed the Kosuri-All dataset and focused on the gene 
variants in the WT-High subset. This set is composed of sequences with 
promoter with high binding affinity (BBaJ23100) and wild-type RBSs 
(Ribosome Binding Sites). The choice of WT-High dataset is supported 
by the observation that the correlation between the level of protein and 
RNA expression is higher than in WT-Low dataset (Fig. S1). Indeed, the 
correlation coefficients are 0.72 and 0.51 in WT-High and WT-Low sets, 
respectively. Thus, we selected the WT-High subset as a main reference 
set for this work. We divided the WT-High dataset in two subsets of 
gene variants with low and high translation efficiency with respect to the 
median value. In addition, the WT-High dataset was used to estimate the 
predictive power of our machine learning approach. To avoid the overes-
timation of the performances we performed a gene-based 20-fold cross-
validation test. Keeping the variants from the same gene in the same 
subsets, we excluded the presence of sequences with high level of identi-
ty both in training and testing. Thus, we calculated the distribution of the 
percentage of identity (PID) between the first two blocks (RBS+C33) of 
the different gene variants. The Fig. S2 shows that only ∼4% of the 
cases the PID achieved a value between 50% and 60%. To estimate the 
predictive power of the input features used in PGExpress, we performed 
the Kolmogorov-Smirnov (KS) test between their distributions in the 
subset of variants with low and high translation efficiency. The Tables 
S3 and S4 report the KS distance, the associated p-value and other 
statistical measures for the distributions of RNA folding and anti-Shine-
Dalgarno (anti-SD) hybridization free energies. This analysis revealed 
that overall the free energies of the RBS+C33 sequences result in the 
highest divergence between of the distributions of low and high ex-
pressed variants. Indeed the RBS+C33 score distributions correspond to 
the lowest RNA folding (Tables S3) and the second lowest anti-SD 
(Tables S4) p-values. This observation is confirmed by the boxplot in 
Fig. S3 which shows the distribution of RNA folding (panel A) and anti-
SD hybridization (panel B) free energies of the gene variants with low 
(black) and high (white) translation efficiency.  

3.2 Performance of different methods 
In a second step, we calculated the real performance of PGExpress 

and five alternative methods, which included a reduced number of 
features. The input features for the BFolding, BBinding, Folding6, 
Binding6 and BFoldBind were described in the section Feature Analysis. 
In Table 1 we tested the performance of the six methods on the WT-High 
dataset using the gene-based 20-fold cross-validation procedure. The 
results revealed that the RNA folding free energy corresponding to the 
RBS+C33 portion of the variants is the most informative feature. Indeed 
the BFolding method reached an overall accuracy (ACC) of 0.68 a 
Matthews Correlation Coefficient (MC) of 0.37 and Area Under the 
Receiver Operating Characteristic Curve (AUC) of 0.74. 
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Fig. 2.  ROC curves of the predictors. (A) ROC curves PGExpress and alternative methods with reduced input features on the WT-High dataset. (B) ROC curves of PGExpress on WT-
High, Weak-High, Mid-High and Strong-High datasets.  

Table 1.  Performance of the methods using alternative input features.  

Method ACC TNR NPV TPR PPV MC AUC N 

BFolding 0.68 0.63 0.70 0.73 0.67 0.37 0.74 1 
BBinding 0.54 0.50 0.55 0.59 0.54 0.09 0.55 1 
Folding6 0.69 0.64 0.71 0.74 0.67 0.38 0.74 6 
Binding6 0.54 0.53 0.54 0.55 0.54 0.07 0.56 6 
BFoldBind 0.72 0.70 0.73 0.74 0.71 0.44 0.79 2 
PGExpress 0.74 0.72 0.75 0.76 0.73 0.49 0.81 12 

ACC, MC, AUC and other evaluation measures are defined in Supplementary 
Materials. N is the number of input features. The input features of BFolding, 
BBinding, Folding6, Binding6, BFoldBind and PGExpress are defined in the 
section Features analysis.  

The discriminative power of the anti-Shine-Dalgarno (anti-SD) binding 
free energy is much lower. This is evident by measuring the performance 
of the BBinding method that achieved an ACC of 0.54 and MC of 0.08 
and AUC of 0.55. The analysis of the results of the Folding6 and Bind-
ing6 methods, which include six features of the same type free energy, 
do not show any substantial increase in the performances with respect to 
the BFolding and BBinding methods. The first improvement in the 
performance is obtained combining the RNA folding and anti-SD hy-
bridization free energies of the RBS+C33 sequence. Indeed the BFold-
Bind method, which takes in input only two features, reached an ACC of 
0.72 a MC of 0.44 and AUC of 0.79. In PGExpress we merged the six 
RNA folding and six anti-SD hybridization free energies. The results in 
Table 1 show that PGExpress achieved and ACC of 0.74, a MC of 0.49 
and AUC 0.81 improving the Matthews correlation coefficient of 0.05 
and the AUC of 0.02 with respect to BFoldBind. The Receiver Operating 
Characteristic (ROC) curves for all methods are plotted in Fig. 2A.  The 
little improvement resulting from the usage of 12 features is due to 
absence in the training set of variants in the 3’ region of gene which 
starts from nucleotide 34 (CC). Indeed in all the experiments reported by 
Kosuri and coworkers the CC block corresponds to the superfolder GFP 
coding sequence.  

Table 2.  Performance of the PGExpress on the Kosuri-All subsets.  

Dataset ACC TNR NPV TPR PPV MC AUC %High 

WT-High 0.74 0.72 0.75 0.76 0.73 0.49 0.81 50 

Weak-High 0.73 0.59 0.78 0.85 0.70 0.46 0.82 53 

Mid-High 0.83 0.12 0.84 1.00 0.83 0.28 0.82 81 

Strong-High 0.90 0.13 0.74 0.99 0.91 0.29 0.81 89 

ACC, MC, AUC and other evaluation measures are defined in Supplementary 
Materials. %High is the percentage of gene variants with high translation efficien-
cy.  

Although the Kosuri-All dataset presents this limitation, for generaliza-
tion purpose, we decided to include the CC energy scores in the input 
features of PGExpress. Our algorithm was optimized testing different 
values of tolerance for the logistic regression algorithm. The results in 
Table S5 do not show strong differences among the tested tolerance 
values, thus we select a tolerance equal to 0.05 as parameter for the 
training.  

3.3 Performance on the Kosuri-All subsets 
In the next test we focused on the performance of PGExpress on three 
datasets (Weak-High, Mid-High and Strong-High), which contain gene 
variants with the same 33 starting nucleotides in the coding regions 
(C33) but three different RBSs (Ribosome Binding Sites). Analyzing the 
three new datasets, we observed that the distribution of the translation 
efficiency (Trans) in Weak-High and WT-High are similar while Mid-
High and Strong-High are strongly unbalanced toward high translation 
efficiency values (see Fig. S4). Thus, comparing the performance on 
WT-High with those on the three new datasets, we observed that PGEx-
press achieved slightly lower overall accuracy (ACC) and Matthews 
correlation coefficient (MC) on the Weak-High dataset and, due to the 
dataset unbalance, higher ACC and lower MC on Mid-High and Strong-
High (Table 2). Nevertheless, the Area Under the ROC Curves for all the 
datasets are similar (Fig. 2B).  
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Fig. 3. Performance of the method as a function of the Logarithm Ratio (LR) and Reliability Index (RI). LR, RI, ACC, MC and AUC are defined 
in Supplementary Materials. %DBs the percentage of the dataset after filtering out less reliable training data (panel A) or predictions (panel B).  

3.4 Selecting high-quality predictions 
To better characterize the performance of PGExpress, we scored our 

method filtering-out the less reliable training data and predictions in WT- 
High dataset. First we assume that gene variants with translation effi-
ciency near the median (2355.5) constitute the noisy part of the dataset. 
Thus we re-scaled all the translation efficiency measures calculating 
Logarithm Ratio (LS) with respect to the median value (see Evaluation 
Measures section in Supplementary Materials) and filtered-out the data 
below a given threshold. The performance of PGExpress after removing 
the data close to the median value are reported in Fig. 3A and Table S6. 
We observed that removing 42% of the gene variants with translation 
efficiency higher than 1177.7 and lower than 4711 (LR<1), PGExpress 
reached an overall accuracy of 0.81 and an AUC of 0.88. Similar analy-
sis was performed filtering-out less reliable predictions. We used the 
probabilistic output (P) of our machine learning method to calculate the 
Reliability Index (R1) as absolute value of the difference P-0.5, re-scaled 
between 0 and 10. The results in Fig. 3B and Table S7 shows that remov-
ing the predictions with RI<3, PGExpress achieved an accuracy of 0.81 
and an AUC of 0.85 on 63% of the WT-High dataset.  

3.5 Test on our experimental dataset 
To test the ability of PGExpress to predict the translation efficiency 

we performed in-house experiments with five gene variants each in the 
Exp-Set and Exp-Mut datasets (see methods section) and measured the 
protein expression using the protocol introduced by Kosuri and co-
workers (Goodman et al., 2013). In Fig. S5 we plotted the measures of 
the fluorescence associated to each gene variant normalized by the 
maximum level of OD600. To make a fair comparison between our 
results and those reported by Kosuri and collaborators, we used the 
median value of the protein expression level in Kosuri data as threshold 
for discriminating between low and high expressed gene variants. Thus, 
we compared the maximum value of the re-scaled fluorescence (Table 
S8 and Fig. S5) obtained in our experiment with the median protein 
expression level in the WT-High dataset (2998.1).  

Table 3.  Prediction of the expression level for the gene variants (ID) in 
the Exp-Set and Exp-Mut datasets.  

Dataset ID Kosuri-All Experiment Prediction Output 

Exp-Set dapB-28 High High High 0.73 

 lgt-23* High Low High 0.55 

 lpxK-30 High High High 0.90 

 murF-21 Low Low Low 0.41 

 zipA-23 Low Low Low 0.22 

Mut-Set dapB-Mut - Low Low 0.23 

 lgt-Mut - High High 0.78 

 lpxK-Mut - Low Low 0.38 

 murF-Mut - Low Low 0.19 

  zipA-Mut - High High 0.88 

Kosuri-All: translation efficiency from Kosuri’s dataset. Experiment: protein 
expression levels from our in-house experiments. High and Low are referred to the 
median values of the translation efficiency (2355.5) for Kosuri-All data and the 
expression level (2998) for the Experiment data. Prediction: PGExpress predicted 
classes. Output: Probabilistic output of PGExpress defined in the section “Algo-
rithm Description”. *Our experimental measure for the lgt-23 gene variant is in 
disagreement with data from Kosuri dataset. The sequences of all variants are 
reported in Table S1.  

According to this assumption, we verified that for four gene variants 
over five (Exp-Set), our experiments match those performed by Kosuri 
and colleagues (Table 3). The only difference is observed for a variant of 
the lgt gene (lgt-23), which is classified to have high protein expression 
and translation efficiency in the Kosuri-All dataset, whereas our experi-
ments revealed a low protein expression. Nevertheless the prediction of 
PGExpress agrees with the results reported in Kosuri-All dataset. Finally 
we evaluate the accuracy of PGExpress predictions on the Exp-Mut 
dataset, verifying that our predictions are correct for all the new gene 
variants. A dubious prediction is represented by the variants lpkX-Mut 
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which is predicted to have low expression level (P=0.19) and, our in-
house measure of protein expression (2996), is only few digits below the 
threshold (2998.1).   

3.6 Towards predictions from complete gene sequences 
In the last part of this work we estimated the performance of PGEx-

press in predicting the translation efficiency of the full-length wild-type 
gene. For this analysis we compared the data from Kosuri and col-
leagues, where the 3′ region of the gene starting from the nucleotide 34 
(CC) was replaced by sfGFP, with the experimental results from Xie and 
coworkers in which the full sequence of the gene was considered (REF). 
The direct comparison of the two studies is a challenging task, in which 
the differences in the experimental setting can lead to contradictory 
results. Thus, we extracted a set of 44 common genes (XieComm) and 
divided it in two groups. The Xie-Agree is a reliable set of 29 genes in 
which we assumed that both studies are in agreement because they are 
performed in comparable experimental conditions and the contribution of 
the 3’ region is not significant. The second subset of 15 genes (XieDiff) 
for which the predictions can be strongly affected by the experimental 
conditions and/or the contribution of the 3’ region. The results in Table 4 
show that the performance of PGExpress on the XieComm dataset is 
close to random with ∼55% overall accuracy and 0.51 AUC. After the 
filtering procedure, that removed the genes with contradictory expression 
levels, PGExpress achieved an overall accuracy of ∼81%, Matthews 
correlation coefficient of 0.52 and AUC equal to 0.83.  

4 Discussion  
In this work we presented PGExpress, a logistic regression-based meth-
od for predicting translation efficiency of mRNA from a set of free 
energy features. The method uses the folding free energies of six se-
quence blocks which represent the local and global mRNA folding 
structures. The six blocks include RBS, C33, CC sequence and their 
combinations. Among them the folding energy the block of RBS+C33 
provides the most informative feature. This is in agreement with previ-
ous findings that the folding structure around starting codon has a strong 
effect on translation. By adding folding free energies from other blocks, 
the prediction accuracy slightly increased. This might indicate that, 
although other regions of the gene have an impact on translation, the 
structure of the 5’ region constitutes the main contribution to the transla-
tion rate. For instance, the presence of a folded SD sequence near a 
starting codon might slow down the translation process reducing the 
probability of the ribosomes to bind or elongate. Accordingly, the mini-
mum hybridization free energies were used to represent the effect of the 
SD sequence calculating the hybridization energy between the mRNA 
and the anti-SD sequence. Although the minimum hybridization free 
energy itself shows a weak correlation with the translation efficiency, the 
interplay between all folding and hybridization free energies allowed to 
improve the performance of our predictor. This indicates that the mRNA 
structures and SD sequences regulate translation in a cooperating man-
ner. In addition, we test the sensitivity of PGExpress to small changes in 
the nucleotide sequences. For this purpose we measured the expression 
level of five gene variants that differ in few nucleotides from the original 
sequences from Kosuri-All dataset. Our analysis show that PGExpress is 
able to correctly predict the expression level of all new variants, most of 
which (4/5) resulted in an opposite expression level with respect to the 
original sequence.  
 

Table 4.  Performance of PGExpress on the Xie subsets.  

Dataset ACC TNR NPV TPR PPV MC AUC N 

XieComm 0.55 0.42 0.28 0.60 0.74 0.02 0.51 44 

XieAgree 0.81 0.71 0.58 0.84 0.90 0.52 0.83 29 

XieDiff 0.07 0.00 0.00 0.10 0.17 -0.87 0.00 15 

N is the number of genes in each set. ACC, MC, AUC and other accura-
cy measures are defined in Supplementary Materials. 
 
Strikingly, is the case of the dapB variant which achieved ~10-fold 
lower expression with only 2 synonymous mutations (see Tables S1 and 
S8). This observation confirms the robustness of our method, which 
supports its practical application in biotechnology. Compared with other 
methods that are merely focusing on the effects of RBSs, we integrated 
the main effecting factors from the perspective of whole sequence, which 
enabled us to predict translation efficiency accurately and to engineer 
new sequences at the whole sequence level.  
We also tested PGExpress on the dataset released by Xie and collabora-
tors (Taniguchi, et al., 2010), which measured the expression level of the 
full sequence of each gene. By considering a subset of 29 full genes 
PGExpress achieved ∼81% overall accuracy indicating that, for this 
subset of genes (XieAgree), the features extracted from the 5’ region of 
gene allowed to reach a good level of generalization. Further investiga-
tions are needed to understand the poor performance obtained on the 
remaining subset of genes (XieDiff). This result can be due to the incon-
sistency among the two experimental setting and/or the stronger contri-
bution of the 3’ region to the expression level of these genes. In the latter 
case, the limited information available in Kosuri dataset, which do not 
includes full coding region of the genes, confines our ability to investi-
gate further the translational mechanisms.  
The binding and elongation in the translation process, which involves the 
RBS recognition and the sliding of the ribosomal complex along the 
whole mRNA sequence (Kudla, et al., 2009; Li, et al., 2012; Plotkin and 
Kudla, 2011), suggests that position specific features can provide a more 
realistic model for the translational mechanism. However the scale and 
composition of the dataset limit the application of more complex ma-
chine-learning methods based on position-specific features. Future 
directions of our work will include the analysis of new features to im-
prove the prediction of the translation efficiency of wild-type genes in E. 
coli, and the development of tools for identifying key nucleotides to 
control protein expressions. We believe that our in-silico approach can 
have strong impact on biotechnological applications reducing the exper-
imental effort to engineer optimized organisms. 
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