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Synopsis: The equilibrium relative humidity values for a number of the most commonly used 
precipitants in biological macromolecule crystallisation have been measured using a new 
humidity control device. A simple argument in statistical mechanics demonstrates that the 
saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution 
(Raoult’s Law). The same argument can be extended to the case where solvent and solute 
molecules are of different size. 
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Abstract 
 
The humidity surrounding a sample is an important variable in scientific experiments. 

Biological samples in particular require not just a humid atmosphere but often a relative 

humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the 

sample in the same state during measurements. The controlled dehydration of 

macromolecular crystals can lead to significant increases in crystal order, which often leads 

to higher diffraction quality. Devices that can accurately control the humidity surrounding 

crystals on a beamline have led to this technique being increasingly adopted, as experiments 

become easier and more reproducible. Matching the relative humidity to the mother liquor is 

the first step to allow the stable mounting of a crystal. In previous work, we measured the 

equilibrium relative humidity for a range of concentrations of the most commonly used 

precipitants and showed how this related to Raoult’s law for the equilibrium vapour pressure 

of water above a solution. However, a discrepancy between measured values and those 

predicted by theory could not be explained. Here, we have used a more precise humidity 

control device to determine equilibrium relative humidity points. The new results are in 

agreement with Raoult’s law. We also present a simple argument in statistical mechanics 

demonstrating that the saturated vapour pressure of a solvent is proportional to its mole 

fraction in an ideal solution: Raoult’s Law. The same argument can be extended to the case 

where solvent and solute molecules are of different size, as is the case with polymers. The 

results provide a framework for the correct maintenance of the RH surrounding samples. 
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1.0 Introduction 

Sample environments that control relative humidity (RH) are important in many experiments 

where a wide variety of samples require specific RH values to maintain sample integrity or 

RH is a parameter to be varied. Humidity control has been an important parameter in the 

study of lipid bilayers (Lin et al., 2007), amyloid fibers (McDonald et al., 2008), small 

molecule crystallography (Mo & Ramsoskar, 2009) as well as coherent X-ray diffraction 

microscopy of cells (Takayama & Nakasako, 2012). In biological crystallography, changing 

the RH can often induce phase changes in crystals of macromolecules with the concomitant 

improvement in the quality of observed diffraction. This has been observed since the earliest 

days of macromolecular crystallography (Berthou et al., 1972; Einstein & Low, 1962; Huxley 

& Kendrew, 1953; Perutz, 1946) and is most easily effected by altering the molar fraction of 

water in the crystal solution or by changing the RH of the air surrounding a crystal. Many 

successful examples are in the literature (Adachi et al., 2009; Bowler et al., 2006; Cramer et 

al., 2000; Fratini et al., 1982; Gupta et al., 2010; Heras et al., 2003; Hu et al., 2011; Kadlec 

et al., 2011; Kuo et al., 2003; Nakamura et al., 2007; Sam et al., 2006; Vijayalakshmi et al., 

2008; Yap et al., 2007; Zerrad et al., 2011). Several specific devices have been developed to 

control the humidity surrounding a crystal (Einstein, 1961; Sjogren et al., 2002; Pickford et 

al., 1993) with modern devices mounted at X-ray sources or synchrotron beamlines 

(Kiefersauer et al., 2000; Russi et al., 2011; Sanchez-Weatherby et al., 2009). The ability to 

change the relative humidity while characterizing changes via diffraction allows any changes 

undergone by the crystal to be seen in real time and increases the chances of characterizing a 

beneficial phase change. 

The HC1 was developed at the EMBL Grenoble to be a user friendly device 

compatible with a complex beamline environment (Sanchez-Weatherby et al., 2009). It 

produces an air stream with a controlled relative humidity using a dispensing nozzle, in the 
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same manner as cryo-stream devices produce a nitrogen flow at 100 K, and is therefore easy 

to integrate with most diffractometers. It supplies a stream of humid air at a RH determined 

by a dew point controller acting on a water saturated air supply. The device is now installed 

at laboratories and synchrotrons across the world (Bowler, et al., 2015), resulting in many 

successful experiments (Hu et al., 2011; Kadlec et al., 2011; Malinauskaite et al., 2014; 

Oliete et al., 2013). The device can also be used for ambient temperature data collection 

(Bowler, et al., 2015; Russi et al., 2011) where the RH must be matched to the mother liquor 

to prevent dehydration of the crystal. The first step in these experiments is to define the 

equilibrium point between the RH and the mother liquor of the sample. This is an essential 

step as it defines the starting point for the experiments and maintains the crystal in a stable 

environment when the mother liquor is removed. In order to facilitate this stage we measured 

the equilibrium RH points for a variety of solutions commonly used for the crystallization of 

proteins and nucleic acids (Wheeler et al., 2012). This provided a starting point for most 

experiments and the results obtained were compared with Raoult’s law for the equilibrium 

vapour pressure of water above a solution (and for solutions of polymers, with a 

generalisation). The measurements made were consistently higher than those predicted by 

Raoult’s law and a satisfactory explanation for the discrepancy could not be found. Here, we 

have repeated the measurements using a device based on the HC1 but with higher precision 

in the control of RH. The new measurements are in very good agreement with Raoult’s law. 

Because of its importance, we present a simple explanation for Raoult’s law using statistical 

mechanics and also show how this treatment can be extended to polymer solutions, where 

Raoult’s law breaks down. These results illuminate the machinery underlying a long observed 

phenomenon and allow the accurate prediction of humid atmospheres for specific sample 

requirements that is applicable to a wide variety of fields. 
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2.0 Experimental Procedures 

Relative humidity measurements 
  
 Solutions of PEG were made gravimetrically at concentrations between 50.0% and 

10% w/w. Stock solutions of salts at 3 M were made and then diluted to reach the desired 

concentration. A round 600 μm Micromount (MiTeGen, Ithica, NY, USA) was mounted on 

either the BM14 or MASSIF-1 (Bowler, et al., 2015; Nurizzo et al., 2016) diffractometers 

with a HC-Lab (Arinax, 259, Rue du Rocher de Lorzier, 38430 Moirons, France) mounted at 

a distance of 5 mm from the loop. The HC-Lab is based on the original HC1 developed at the 

EMBL, Grenoble (Sanchez-Weatherby et al., 2009) but with improvements in the dew point 

controller, temperature measurement, and calculation of relative humidity. These 

developments have led to a device with superior control and stability of relative humidity 

levels. In order to determine the equilibrium RH a drop of solution (typically 2 μl) was placed 

on the loop with a pipette. The diameter of the drop was measured using specific image 

analysis software. The humidity was adjusted until the drop diameter was stable. This was 

repeated a few times until the drop diameter was stable upon initial placement on the loop. 

Each measurement was repeated three times at ambient temperatures between 21 and 24.0oC.  

 

 
3.0 Results 
 

3.1 Agreement between measured equilibria and predicted values 

In previous work we measured the RH equilibrium points for a range of solutions commonly 

used in protein crystallization and examined the results in terms of Raoult’s law and the 

Flory-Huggins model for the entropy of mixing of polymers (Bowler, et al., 2015; Wheeler et 

al., 2012). While the measured values provided a starting point for humidity control 

experiments and Raoult’s law should be a good explanation for the observed results, there 
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was a considerable discrepancy between the two (Wheeler et al., 2012). Measured values 

were consistently 1 to 3% higher than those predicted which were attributed to the condenser 

used in the device being rather inaccurate at humidity values above 96%. Repeating these 

measurements using the new humidity control device, the HC-lab, the discrepancy is no 

longer significant (Figures 1A and 2A). The results now obtained from the HC-lab are also in 

agreement with detailed studies of the activity of water above salt (Robinson, 1945; Wishaw 

& Stokes, 1954) and polymer solutions (Sadeghi & Shahebrahimi, 2011; Sadeghi & 

Ziamajidi, 2006) (Figures 1B and 2B), with the salt solution measurements made in this study 

appearing to be more accurate. This now brings the control of relative humidity surrounding 

crystals into line with measurements made using dedicated and accurate devices as well as 

theoretical calculations.  

 
 
3.2 Derivation of the origin of Raoult’s Law 

Raoult’s Law is for the reduction of the saturated vapour pressure above a solvent when a 

mole fraction x of some solute is dissolved within it. If the vapour pressure above the pure 

solvent is �� then the vapour pressure of the solvent above the solution is given by 

 

      � � ���1 � ��                                                                            (1) 
 
 

It is of course an idealisation, but is remarkably good, particularly at low mole fractions of 

the solute. Originally empirical (Raoult, 1887), from what principles can it be derived? Any 

such derivations depend on the assumption of an ideal solution, meaning that within the body 

of the solution the elements of the solute are near identical to the elements of the solvent (and 

yet for a non-volatile solute the solute cannot enter the vapour phase). In thermodynamics, 

equilibrium at constant temperature and pressure corresponds to a minimum of the Gibbs’ 
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function G and hence liquid-vapour equilibrium requires equal chemical potentials. The 

chemical potential of the solvent vapour phase is the same as that of the solvent, both above 

the pure liquid solvent and above a solution. The chemical potential in the solution is reduced 

by mixing; thermodynamic arguments are used to turn an entropy of mixing into the change 

of chemical potential. Thermodynamics does not deal with the mechanisms underlying these 

steps and it seems reasonable to ask, first, how the vapour pressure can be affected by the 

number of ways of arranging fixed numbers of two kinds of molecules and, secondly, why is 

there no apparent role for a work function related to the latent heat of vaporisation?  

      Raoult’s Law is the direct result of the dilution of the solvent by the solute and can be 

extracted by applying elementary statistical mechanics. The machinery involves the energy 

levels the confined components can occupy and, in the simplest case of non-ideal solutions, 

differences in work functions are both important and easily calculated. 

 

 
3.2.1 Statistical mechanics 
 
It is a truth universally acknowledged that any system (such as an atom in a box) that has 

energy levels ��  and is in thermal equilibrium at temperature T has a probability of occupying 

a given level proportional to exp �� ��

��
� where k is Boltzmann’s constant. This is because the 

vast majority of possible configurations consistent with a prescribed total energy have this 

distribution. Thus for the macroscopic phenomena we are concerned with sums or averages 

over very many individual microscopic systems (here atoms, ions or molecules). For pure 

solvent we divide the energy levels into two classes, those in the liquid and those in the 

vapour phases. They are separated by a step in energy, a work function W, and so the number 


�
�, from a total of N atoms, found in a state of energy ��� above W in the vapour is given by 

                      
�
� � � ����� ���

��	


��
�/�∑ exp �� ���

��	


��
�� � ∑ exp �� ��

�

��
���                         (2) 
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For a given temperature, the total number of atoms in the vapour is found by summing the 

numerator above over the index i. As the vapour energies start above the energy levels in the 

liquid by the work function W (closely related to the latent heat) the fraction of atoms in the 

vapour contains a suppression factor of exp �� 	

��
�. We are not yet concerned with this factor, 

or with the details of the structure of the energy levels. It suffices that for a given temperature 

and container, the number of atoms in the vapour phase is a fraction y of the total number of 

solvent atoms N. The fraction y is determined by the work function, the temperature and by 

the detailed structure of the energy levels, determined by the volumes available. If a fraction 

x of the solvent atoms are removed and replaced by Nx units of solute, changing nothing else, 

the volume of the container does not change and neither the detailed structure of the energy 

levels nor the work function for solvent atoms change because of the close identity of the 

solvent and solute units in an ideal solution. The fraction of solvent atoms in the vapour 

phase does not change and because there are now only (1-x)N atoms of solvent, the number 

of atoms of solvent in the vapour phase is reduced by a factor (1-x). Hence, the reduced 

vapour pressure and Raoult’s law. 

    This simple argument is indubitably correct, given the assumptions of an ideal solution. 

The flux of solvent molecules leaving the surface is reduced by a factor (1-x) and for 

equilibrium both the returning flux and the number density of solvent molecules in the vapour 

phase are also reduced by a factor (1- x);  directly the result of the smaller concentration of 

solvent molecules. This approach can be extended to non-ideal solutions (such as solutions of 

polymers) but is more complicated because of the need to calculate differences in work 

functions. 
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3.2.2 Some technical details concerning volume 
 

A second result from elementary statistical mechanics removes a potential objection 

to the above argument. What if the volume of pure solvent is reduced?  If the volumes of 

liquid and of vapour are being held constant, the number of vapour atoms is (for fixed 

temperature) a definite fraction of the number of atoms in the liquid phase. The more general 

result is that the concentration of atoms in the vapour phase is a definite fraction of the 

concentration of atoms in the liquid phase. The vapour pressure above a liquid in a sealed 

container does not, in equilibrium, depend on the volume of liquid in the container. Thus (1-

x)N atoms of solvent in the container without xN atoms of dissolved solute, would not (and 

does not) result in a pressure reduced by (1-x). The reason is rather technical; the energy 

levels for atoms in the vapour are those of particle waves confined within the volume 

between the liquid surface and the walls of the container. For an ideal gas, the number of 

energy levels in a given interval of energy is proportional to the volume – the spacing goes 

down as the volume goes up. If the volume available to vapour doubles, the number of levels 

in some interval Δ� at � also doubles and hence so does the number of molecules in the 

vapour. Thus the concentration of atoms in the vapour phase is constant as the volume 

increases - the pressure remains the same. Similarly, the molecules in the liquid roam 

throughout the liquid volume and their wave functions are constrained by the walls (and the 

liquid surface). If the volume of liquid is reduced, the sum over the populations of liquid 

energy levels is reduced because there are fewer of them. The spacing of energy levels in the 

liquid has gone up with the reduction in volume and the concentration in the liquid remains 

the same. Thus the saturated vapour pressure above the liquid remains constant as the ratio of 

vapour volume to liquid volume is increased, until of course all the atoms originally in the 

liquid are in the vapour phase. Thereafter, as the volume is increased (by pulling back on a 

piston perhaps) the vapour density and so the pressure along the isotherm fall. 
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    When solvent molecules extracted are replaced by solute, the solute molecules make up the 

missing liquid volume. This makes available to the reduced number of solvent molecules the 

same energy level structures in both the liquid and vapour phases. This dependence of the 

energy level density on free range volume results in the concentration of atoms in the vapour 

phase being a definite fraction of the concentration in the solution. It is important for 

considering the vapour pressure above solutions that are not ideal; for example, polymers. 

Finally, it is essential for understanding the thermodynamic treatment and entropy of mixing. 

 

  
3.2.3. Solutions of molecules of different sizes 
 

Suppose now that instead of replacing a fraction of molecules of solvent with molecules of 

solute pre-empting the same volume, solute molecules require a different volume. For the 

case of polymers, such as polyethylene glycol, the specific volume will be larger, 

substantially larger for the heavier long chain polymers. Let there be �� molecules of solvent 

of specific volume �� , similarly for the solute �
 , �
. The volume occupied by the liquid 

solution is ���� � �
�
 and the concentration of solvent molecules is less than for pure 

solvent occupying the same volume. The ratio of concentrations of the solvent molecules in 

the solution to pure solvent gives a factor in the vapour pressure ratio of 

 

                       

����

���������

                                                                                         (3) 

 
This factor reduces to Raoult’s law as the specific volumes of solvent �� and solute �
  

approach equality. This is not the whole story because the difference in work functions for 

solvent phase transitions is not zero except in this limit.  The following simple calculation 

yields the requisite difference in work functions. The work function is the work that has to be 

done when removing a molecule against the cohesive forces in the liquid and any 
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contribution from ambient pressure. If a molecule is instead added, the volume it pre-empts 

acquires negative potential energy and hence the work done is - �∆� . Consider the operation 

of replacing a molecule of solvent by one of solute. The liquid expands by a volume ∆� �
��
 � ��� and this volume contains a negative potential energy density. The effective 

pressure P must balance that from the thermal energy density and so is given by 

 

                                       ������ � �
�
� � ��� � �
���                              (4) 
 
Thus, the work that has to be done to make the replacement is given by 

 

� ����� � �
���
 � ���
���� � �
�
  

                                                                                                                                 (5) 
 
 
This is made up of two pieces, the work necessary to insert a molecule of solute (a 

contribution to the chemical potential �
) and the work necessary to extract a molecule of 

solvent (����. As �
  ! 0, the solution approaches pure solvent,  identifying the difference 

in the work that has to be done to deliver one molecule of solvent to the solution as opposed 

to pure solvent as 

 

∆#� � ���
��
 � ���
���� � �
�
  

                                                                                                                               (6) 
 
This can be verified by calculating the work done against pressure to insert a solvent 

molecule into the solution as opposed to the same volume of pure solvent. Calculate the 

(pressure related) work done inserting an atom of 1 into a solution and also calculate the work 

done inserting an additional atom into a volume of pure species 1. In both cases ∆� � ��. 

The pressure in solution is given by              
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��� � �
���
���� � �
�
  

 
as in (eq. 4) and the pressure in pure solvent is �� ��⁄ . Then 

 

�∆��∆�� � ����� � �
���
���� � �
�
 � 1��� 

 
 
and this also yields (eq. 6).  

 

The difference in work functions for removing atoms to the vapour phase, ∆#�, is the 

negative of (eq. 6). The effect on relative humidity is an exponential factor  

       exp %� ∆	�

��
& � exp �∆	�

��
�  

                    
 
 
The concentration ratio (eq. 3) multiplied by this factor yields the relative humidity of the 

solvent   

 
�
�� � ����

���� � �
�
 exp � �
��
 � ���
���� � �
�
� 

                                                                                                                              (7) 
 
The first factor on the right hand side is the volume fraction of solvent in the solution and 

reduces to Raoult’s law as the specific volumes become equal. The second factor goes to 

unity in this same limit. It is less obvious that (eq. 7) also reduces to Raoult’s law in the limit 

of extreme dilution, regardless of the ratio of specific volumes – but it is so. 

This expression (eq. 7), derived using elementary notions from statistical mechanics, 

is the same as that derived using thermodynamics and the Flory-Huggins entropy of mixing 

devised for polymer solutions (Flory, 1942; Flory, 1970) or, equivalently, Hildebrand’s 

entropy of solution of molecules of different size (Hildebrand, 1947). In such treatments both 

factors in (eq. 7) emerge from matching chemical potentials. Our treatment clarifies the 
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physical meaning of the factors – the first factor is concentration ratio; the second 

(exponential) factor embodies the difference in work functions. In the appendix we discuss 

the relationship between simple statistical mechanics and thermodynamic arguments, 

addressing in particular the significance of entropy of mixing. 

 

4.0 Discussion 

The control of the relative humidity surrounding samples is important to maintain their 

integrity and study the effects of increased or decreased humidity. Here we have established 

that the theoretical calculation of RH values we previously determined (Bowler, et al., 2015; 

Wheeler et al., 2012) are in satisfactory agreement with a humidity control device used on 

protein crystallography beamlines. As the predicted values are also in complete agreement 

with measurements made using specific devices, the previous discrepancies can be ascribed 

to shortcomings in the control of RH in the HC1c used. We have also determined the origin 

of the observed vapour pressure changes above solutions of solutes. If N units of a liquid 

solvent are in an equilibrium where liquid and vapour phases coexist, a fixed fraction are (for 

a given temperature) in the vapour phase. If the number of units is reduced to N(1-x), if all 

else remains unchanged, because of the presence of Nx units of the solute in an ideal solution, 

then the number of units in the vapour phase (and hence the pressure) are reduced by the 

same factor (1-x), Raoult’s Law. For unequal sizes of solvent and solute components, the 

dilution factor has to be multiplied by an exponentiated work function. These results provide 

a solid basis on which to predict the relative humidities required to maintain a wide variety of 

samples and solutions in homeostasis. 
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Figure legends 

 

 
 

Figure 1. Plot showing the equilibrium relative humidity for salt solutions commonly used as 
precipitants or additives in macromolecular crystallogenesis measured using the HC-Lab (A) 
and the measured vapour pressures above solutions of ammonium sulphate (Wishaw & 
Stokes, 1954) and sodium chloride (Robinson, 1945) solutions (B). The lines show the 
calculated RH from Raoult’s law (Wheeler et al., 2012). The measurements made using the 
HC-Lab (A) more accurately reflect the predicted values from Raoult’s Law. 

 
 

 
 
 

Figure 2. Plot showing the equilibrium relative humidity for PEG solutions commonly used 
as precipitants or additives in macromolecular crystallogenesis measured using the HC-Lab 
(A) and the measured vapour pressures above PEG solutions from (Sadeghi & Shahebrahimi, 
2011; Sadeghi & Ziamajidi, 2006) (B). The lines show the calculated RH from Raoult’s law 
modified for polymer solutions (Bowler, et al., 2015). 
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Appendix. Statistical mechanics, entropy and chemical potentials 
 
The origin of Raoult’s law lies in the freedom of the units of solvent and of solute to roam all 

through the volume of liquid. For the assumptions of an ideal solution access of both solvent 

and solute to the whole volume results in energy levels available (to the solvent) for a given 

volume, unchanged from those in pure solvent and the density of (energy) states is 

proportional to volume. Entropy of mixing codes these same ideas in the language of 

thermodynamics.  

 

    Suppose that we can decompose a system into many identical pieces having energy 

levels  ��. This complex system is in thermal equilibrium at some temperature T, with an 

exponential distribution in energy of the components. Let the total energy of our complex 

system be U. The following relations apply: 

 


� � ������ �����
'  

 

( � ) 
���
�

� �
∑ ��  exp �� ������

'  

 
where                          
                     ' � ∑ exp ����� /��� 
 
A small change in the internal energy U can be written as 
 
                                                Δ( � ∑ ��� Δ
� � ∑ 
�� Δ�� � � ∑ ∆
��   
 
The last term corresponds to taking a common potential out from the levels ��  and vanishes if 

there is no change in the number of components in the system. The first term is the result of 

slightly redistributing the population over the energy levels �� . It represents the addition of 

heat. The second term corresponds to the energy levels changing with no change of 

population – doing it very slowly. If the volume slowly increases the energy levels slowly sag 
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and the system does work. Thus the equivalent expression in thermodynamics is the first law 

in the form 

 
Δ( � Δ* � Δ# �  �∆� 

 
where the last term is called chemical work and � is the chemical potential. (Generally, each 

species of atom has its own chemical potential.) If everything is done very slowly and 

reversibly 

 
Δ* � �Δ+ 

 
where S is the thermodynamic entropy going back to Carnot. We are identifying the heat term 

in the first law with   

Δ* � ) ��
�

Δ
�  

 
Express the energy of the ith level in terms of its population 
 
                                         �� � ���,
���'�                      �� =
�/� 
 
For fixed N the sum of Δ
�  is zero and so the term in ln �z� drops out and 
 
                                          Δ* � ����Δ�∑ ��,
��� � =�Δ+ 
 
demonstrating the equivalence of the Carnot and Boltzmann entropies. 
 
Thus the entropy associated with N units (atoms, molecules, ions …) distributed over these 

energy levels, in equilibrium at temperature T, is 

 

+ �  ��� ) ��
�

,
��  
 
The probabilities ��  involve the normalising factor z, a sum over all energy levels. The value 

depends on the level density. The more levels the components are spread over, the smaller the 

individual ��  and the larger the entropy. 

    Substitution of the expressions for the exponential probabilities yields for the entropy 
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+ � 0
� � ��,
' 

 
Rewriting the sum for z as an integral  
  

                                                   ' � 1 exp �� � ��� ��

��
⁄ 2� 

 

The density of states factor 
��

��
 depends on � (which integrates out) and is linearly 

proportional to the volume available to the wandering molecules. Consider taking a volume 

�� of solvent and a volume �
 of solute. (This is most easily envisaged if the solute is also a 

liquid. Otherwise pretend that there is a solute liquid with the properties the solute will 

display in the solution). Before mixing the two together each has its entropy, appropriate to 

volumes ��  and �
 respectively. After mixing, both solvent and solute have access to a total 

volume �� � �
 . For an ideal solution nothing else has changed and so taking the difference 

of entropy after and before the mixing  

 
+�
 � +� � +
 � ����� � �
�,
��� � �
� � ��,
�� � �
,
�
� 

                                                                                                                                         (A.1) 
This is the entropy of mixing and arises entirely from the increased density of energy levels 

as more volume is made available for units of both solvent and solute to roam at random. 

(These volumes are defined by the boundaries confining the liquids, setting boundary 

conditions and hence determining the quantised energy levels.) 

    Since we are looking at mixing of two forms of condensed matter, each with the same 

specific volume (ideal solution again) the above expression for the entropy of mixing can also 

be written with �� and �
 replaced by �� and �
 respectively. The result is essentially 

identical to the product of k (Boltzmann’s constant) and the logarithm of the number of 

different ways of arranging �� and �
 units. This is a purely combinatorial problem and the 

number of perceptibly different ways is given by 

��� � �
�!
��! �
!  
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What can this have to do with the vapour pressure above a solution? We now see that �� and 

�
 are (for an ideal solution) proxies for �� and �
 and these volumes control the energy 

levels available to the components of the solution before and after mixing. 

      More generally, suppose that the solvent molecules are associated each with free volume 

�� and the solute molecules with �
. Then the entropy of mixing (A.1) above is 

 
           ����� � �
� ln����� � �
�
� � �� ln������ � �
ln ��
�
�               (A.2) 
 
This is essentially the expression for the entropy of mixing for solvent and solute molecules 

of different free volumes to be found in (eq. 3) of Hildebrand (1947), where the volumes are 

introduced through a classical argument concerning uncertainty of location. This is also 

equivalent to the Flory-Huggins entropy for polymer solutions, most clearly discussed in 

Flory (1970). 

    The derivative of the entropy of mixing with respect to the number of solvent molecules 

within the solution ���� yields the difference in chemical potentials that must match the 

difference in chemical potentials of the vapours above solution and pure solvent.  

∆� � �� 4∆+
4��

 

 
For the solution  

��
� � ��� 4
4��

��� � �
�ln ����� � �
�
� 

                                                                                                                                (A.4) 
and for the pure solvent before mixing 

��� � ��� 4
4��

��ln ������ 

                                                                                                                                 (A.5) 
 
Taking the difference and matching to the vapour phase eventually yields 
 

ln � �
��� � ,
 ����

���� � �
�
 � �
��
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equation (6) of Hildebrand (1947).  Then the relative humidity of the solvent above such a 

solution is 

�
�� � ����

���� � �
�
 exp � �
��
 � ���
���� � �
�
� 

                                                                                                                               (A.6) 
Equation (A.6) is identical to (eq. 7). 
 
In section 3.2.3 we calculated the difference in work functions for the solvent in a solution of 

volume V and pure solvent in the same volume. This result can also be obtained from the 

differential of the difference of entropies of the solution and pure solvent in equal volumes. 

The only terms that survive in the difference are ( �� � �
��,
� for the solution and 

��
��,
� for the pure solvent. The volume V is  

 
                                     � � ���� � �
�
=��

��� 
 
The relevant difference in chemical potentials is then 
 

              �� �������	�

�	�	�����
 

                                                                                                                            (A.7) 
 

The negative of this is the difference in work functions, needed to complete the ratio of 

vapour pressures at the end of section 3.2.3. The result (A.7) above of course agrees with (eq. 

6). 
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