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Multiple Confounders Correction with Regularized
Linear Mixed Effect Models, with Application in

Biological Processes
Haohan Wang and Jingkang Yang

Abstract—In this paper, we inspect the performance of reg-
ularized linear mixed effect models, as an extension of linear
mixed effect model, when multiple confounding factors coexist.
We first review its parameter estimation algorithms before
we introduce three different methods for multiple confounding
factors correction, namely concatenation, sequence, and interpo-
lation. Then we investigate the performance on variable selection
task and predictive task on three different data sets, synthetic
data set, semi-empirical synthetic data set based on genome
sequences and brain wave data set connecting to confused mental
states. Our results suggest that sequence multiple confounding
factors corrections behave the best when different confounders
contribute equally to response variables. On the other hand,
when various confounders affect the response variable unevenly,
results mainly rely on the degree of how the major confounder
is corrected.

Index Terms—linear mixed model, confounding factors correc-
tion, multiple confounding factors

I. INTRODUCTION

With the necessity of introducing large data sets, researchers
are competing to generate enormous data sets to study. Beyond
the possibility of collecting relevant information simultane-
ously, batches of data have to be collected first and then
integrated into one data set. This data acquisition conduct does
not raise obvious hazards for traditional tasks such as face
recognition or optical character recognition [14], [30], how-
ever, may dramatically affect the generalizability of trained
models or scientific discovery followed-up on many modern
tasks where data is sensitive to confounding factors [17].

Confounding factors have been discussed in statistics for
a long time [2], [22], so we only briefly recapitulate the
ideas here. For a study of the relationship between explanatory
variable X and response variable Y , confounding effects occur
when there is a third variable Z that influences both X and Y .
Therefore, frequently, the correlations between X and Y is not
intrinsic. In other words, the relationship between X and Y
arises from confounding factor Z, rather than real associations.
However, to be a factor that have real impact on the response
variable, it can neither be the intermediate variable nor the
one only relevant variable in a small batch of data. Thus, the
discovered relationship is a spurious relationship between X
and Y , which happens more than often in real-world. For

H. Wang is with the School of Computer Science, Carnegie Mellon
University. e-mail: haohanw@cs.cmu.edu

J. Yang is with International School, Beijing University of Posts and
Telecommunications, China. email: jk.yang1995@gmail.com

Manuscript received April 19, 2005; revised August 26, 2015.

example, a biological process may be correlated with the
temperature or humidity of when experiments are conducted
[19], or a psychological reaction may be associated with
cultural or demographic information of where data is collected
[31]. Similar circumstances also apply to GWAS [21], where
samples in the same batch presumably share some genotypic
patterns or phenotype properties, resulting in the discovered
association to be a spurious one.

To effectively correct confounding effects, linear mixed
model (LMM) is introduced [20]. Various works have been
introduced to apply LMM to different domains. For example,
Cnaan et al. focused on unbalanced repeated measures data
and longitudinal data [5]. Krueger and Tian compared linear
mixed model and ANOVA to derive two advantages of linear
mixed model: the ability to accommodate missing data points
often encountered in longitudinal datasets and the capacity
to model nonlinear, individual characteristics [12]. On the
frontier of bioinformatics research. Schelldorfer et al. proved
that linear mixed model with Lasso is beneficial whenever a
grouping structure among high-dimensional observations exist
[26]. In addition, Ghidey et al. showed that the L2 penalization
can be utilized to smooth random effects distribution [8].
Different penalizations can guide linear mixed models to
exhibit different performances [23].

Although there are some previous researchers investigating
the case when two or more confounders coexist in one data set,
for example, LaGasse et al. worked on multiple confounding
factors corresponding to fetal exposure to understand how
drugs influence on the fetus [13], and Griffiths took multiple
confounding effects in multiple linear regression to evaluate
the effect of bulk tumor resection on survival [27], few
of them inspected how linear mixed model perform with
multiple confounders. Therefore, a valuable question remains
unanswered about how to correct the multiple confounding
factors with linear mixed model effectively.

In this paper, we mainly focus on the problem when multiple
confounding factors coexist. We introduce three methods that
can work with multiple confounding factors in different per-
spectives, ahead of which, we first review the traditional linear
mixed model and present the regularized versions derived
from original ones, in addition to our discussion of two
different parameter learning approaches for LMM, namely
MLE and REML, which could be straightforwardly generalized
for regularized linear mixed models.

In our experiments, we compare the performances of tra-
ditional and regularized linear mixed models under different

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2016. ; https://doi.org/10.1101/089052doi: bioRxiv preprint 

https://doi.org/10.1101/089052
http://creativecommons.org/licenses/by-nc-nd/4.0/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

parameter learning likelihood functions, as well as with dif-
ferent multiple confounding factor correction methods. We
evaluate the performance on variable selection task as well as
prediction task on three different data sets: 1) synthetic data
set, 2) semi-empirical synthetic data set based on real-world
genome sequences, 3) real-world brain wave data set relating
confusion mental state. Our results indicate that L1 regularized
model with sequence multiple confounding factor correction
method achieves the best result consistently.

This paper is structured as the following: we first briefly
review standard linear mixed models and its parameter estima-
tion likelihood functions, then present regularized linear mixed
models with L1 and L2 regularizers. Finally, methods focusing
on multiple confounding factors are introduced, followed
by experiments on synthetic data and real-world data. Then
we conclude this paper with a brief discussion followed by
summaries and future directions.

II. REGULARIZED LINEAR MIXED MODEL

In this section, we will introduce regularized linear mixed
model, ahead of which, we first briefly discuss original linear
mixed model and its parameter learning likelihood functions
as background.

A. Linear Mixed Model

Linear Mixed Model (LMM) is a model that has been
widely appreciated in the effectiveness of correcting confound-
ing factors introduced by batch effects of data collected and
summarized in groups [20]. As an extension of the linear
regression model, it describes the relationship between a
response variable and explanatory variables, with coefficients
that can vary on one or more grouping variables to correct
batch effects. Correspondingly, a mixed-effects model consists
of two parts, fixed effects as conventional linear regression and
random effects that are associated with different batches.

Formally, for a standard linear regression, suppose we have
m samples, with response variable y = (y1, y2, ...ym) and
known explanatory variables X = (x1, x2, ...xm). For each
i = 1, 2, ...,m, we have xi = (xi,1, xi,2, ...xi,p), i.e., X is of
the size m×p. A standard linear regression is in the formality
of y = Xβ where β stands for parameter vector for fixed
effects.

Considering batch effects, we have linear mixed model as
following:

y = Xβ + Zµ+ ε (1)

where µ stands for vector of random effects, Z stands for
a designed matrix for random effects of the size m× t and ε
stands for observation noise.

Equation 1 can be formalized as the following Gaussian
process

y ∼ N(Xβ + Zµ, σ2
eI)

where σ2
eI accounts for the observation noise ε in previous

equation. Further, the distribution of random effect µ is

assumed to be N(0, σ2
gI), and above Gaussian process can

be written as:

y ∼ N(Xβ, σ2
gK + σ2

eI) (2)

which is a standard form of LMM, where K = ZZT .
a) Parameter Estimation: There are numerous algo-

rithms accounting for parameter estimation of LMM. For
major focus, here we focus on one state-of-art algorithm for
(restricted) maximum likelihood estimation. Readers can refer
to other literature for a thorough introduction of algorithms
[4], [10], [20].

To begin with, from Equation 2, we could derive LMM’s
log-likelihood function as following:

lML(β, σg, δ) =−
1

2
(m log 2πσ2

g + log |K + δI|

+
(y −Xβ)T (K + δI)−1(y −Xβ)

σ2
g

)
(3)

where δ = σ2
e/σ

2
g .

However, Equation 2 does not take into account the loss in
degrees of freedom resulting from estimating fixed effects. A
straight forward extension of it is Restricted Maximum Log-
Likelihood, as following:

lREML(σg, δ) =lML(β, σg, δ) +
1

2
(d log(2πσ2

g)

+ log |XTX| − log |XT (K + δI)X|)
(4)

where d stands for the loss of degrees.
Solving these non-convex optimization problems of maxi-

mizing lML(β, σg, δ) with standard methods like grid search
will resolve the parameter estimation problem.

A more effective way to solve Equation 3 and Equation 4
is introduced by [16], named FaSTLMM, which stands for
factored spectrally transformed linear mixed model. It solves
Equation 3 by taking spectral decomposition of K (i.e. K =
USUT ) and rewrite Equation 3 into:

lML(β, σg, δ) =−
1

2
(m log(2πσ2

g) + log(S + δI)

+
1

σ2
g

(UT y − UTXβ)T

(S + δI)−1(UT y − UTXβ))

(5)

Then, β and σ2
g can be solved with closed form by taking

derivative and setting the derivatives to zero respectively. After
plugging in the closed form of β and σ2

g back into Equation 5,
δ can be solved with Brent search [3].

Specifically, fixed effect sizes β can be achieved with:

β = (XT
U (S + δI)−1XU )

−1XT
U (S + δI)−1yU (6)

where XU = UTX and yU = UT y. Equation 6 offers the
closed form of fixed effect sizes encoding how explanatory
variables contribute to response variables.

B. Regularized Linear Mixed Model

With the background built up, we now proceed to regular-
ized linear mixed models. Following the same way of how
regularized linear regression is extended from vanilla linear
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regression, we introduce two forms of regularized linear mixed
models here and discuss the potential for LMM to be extended
with other regularizers.

1) Sparse Linear Mixed Model: One distinct advantage
of Sparse Linear Mixed Model is that it results in a sparse
fixed effect vectors that are corresponding to the most relevant
explanatory variables associated with response variables. It is
attained with sparse regularizer induced to linear mixed model
during parameter learning process. One straightforward way is
to replace Equation 6 as following:

β =(XT
U (S + δI)−1XU )

−1XT
U (S + δI)−1yU

+ λ||β||1
(7)

where λ is a prior to control the strength of sparsity regularizer.
As we can see, this is a direct extension of traditional Lasso
[28], also discussed in [7], [25].

Another direction to introduce sparsity into LMM, which
is more intuitive, but less employed in reality, is to induce
sparsity regularizer when we solve for parameter δ. In other
words, we could append the λ||β||1 term to the end of
Equation 5. However, since this method is less recognized
in the field, we only focus on the former way to introduce
sparsity through our experiment.

2) Ridge Linear Mixed Model: Following how sparsity
is introduced into LMM, another prominent regularizer, L2

norm regularizer, is naturally considered as a successor. Ridge
Linear Mixed Model can be attained as following:

β =(XT
U (S + δI)−1XU )

−1XT
U (S + δI)−1yU

+ λ||β||2
(8)

where λ is also a prior to control the strength of regularizer,
as an extension from Ridge Regression [11].

Again, this regularizer can also be introduced directly to
Equation 5 instead of Equation 6, but we adopt the above
form for consistency with the sparsity case.

Different from the intuitive case of sparse Linear Mixed
Model, Ridge regularizer may be expected to be less ad-
vantageous on variable selection performance. However, one
strength is that L2 regularizer can help select the variables
stably, while L1 regularizer usually sacrifice the stableness for
sparsity [33].

3) Other regularized linear mixed models: Many other
regularizers can be introduced to Equation 6 or Equation 5
to aim for better variable selection performance or predictive
performance.

For example, The L0 norm regularizer [15] has the ideal
property to regularize effect sizes for a sparse variable selec-
tion. Unfortunately, its use forms a non-convex optimization
problem, which is NP-hard [18], [6]. Some work aiming to
combine the advantage of L1 norm and L2 norm. Elastic net
is one such method [34], and Trace Lasso [9] improves Elastic
net by offering the same modeling power with one fewer
hyperparameter.

These regularizers can be straightforwardly applied to
LMM. However, we do not cover them in this paper mostly
because they are primarily the extensions of the classical L1

and L2 regularizers.

III. MULTIPLE CONFOUNDING FACTORS CORRECTION

With the set-up of regularized linear mixed model, now we
proceed to introduce different methods of handling multiple
confounding factors. We will introduce three methods, namely
Concatenation, Sequence, Interpolation. To be best of our
knowledge, the Interpolation method has been explored, but
not published1.

To better illustrate our idea, without loss of generalization,
we assume the data sets come with two confounding factors,
denoted as Z1 and Z2. These methods could be straightfor-
wardly generalized to cases with finite number of confounding
factors.

A. Concatenation

The first method we present is simply the concatenation
of confounding factors. Specifically, to achieve the same
model as the standard one discussed previously with only one
confounding factor, we simply concatenate two confounding
factors into one, yielding

Z = [Z1, Z2]

Therefore, kinship matrix K can be attained again as ZZT .
This method may look trivial, but it effectively integrates

different confounding factor categories into one universal
category. For example, for a clinical study, if Z1 encodes
that the subject is either American, Asian, or African and
Z2 encodes the gender of a subject, then this concatenation
method is indeed recasting Z1 and Z2 into Z that encodes
that the subject is one of these six categories: American male,
American female, Asian male, Asian female, African male,
African female.

Therefore, we believe that concatenation is the simplest way
of correct multiple confounding factors while maintains intu-
itiveness of integrating different categories into an universal
one.

B. Sequence

The second method we introduce is to correct multiple
confounders following a sequential order.

For two confounding factors, Z1 and Z2, we have K1 =
Z1Z

T
1 and K2 = Z2Z

T
2 , as well as K1 = U1S1U

T
1 and K2 =

U2S2U
T
2 .

Then to correct multiple confounding factors in a sequential
order, we successively transform the initial data (or current
transformed data) into the next transformed space governed
by the next confounding factor. In other words, we replace
the term UTX and UT y in Equation 5 and Equation 6 with
UT
2 U

T
1 X and UT

2 U
T
1 y, which could be trivially extended cases

with infinite many confounding factors.
One fact to notice is that, K encodes the covariance

structure of samples, therefore, for whatever information those
confounding factors encode, K will be invariably of the same
dimension as the number of samples available, leading to the
fact all U matrix will of the same size, which validates the
sequential equations above.

1https://github.com/MicrosoftGenomics/FaST-LMM/tree/master/fastlmm
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C. Interpolation

The last method is an interpolation of available kinship
matrices. Specifically, we first calculated K1 = Z1Z

T
1 and

K2 = Z2Z
T
2 and we could derive K from a linear interpola-

tion of K1 and K2.
For the simplest case, we have K = K1 + K2. This

model makes the assumption that covariance structure is
additive, therefore, a linearly interpolation of two covariance
structure will result in a covariance structure that encodes both
relationship information. This method will be helpful if two
confounding factors are underlying related.

One simple question could be that the ideal interpolated
result for K should be K = 1

2K1 +
1
2K2 instead. However,

since the first term learned by our model is δ, which is the
scaling factor of covariance matrix, our model is consequently
scale invariant of Kinship matrix. In other words, K = K1 +
K2 will have the same statistical power with K = 1

2K1+
1
2K2.

IV. EXPERIMENTS

In this section, we will investigate the performance of
the regularized linear mixed models with different multiple
confounding correction methods regarding variable selection
and prediction on various data sets.

First, to fairly compare the methods, we generate a synthetic
data set so that the golden standard result of variable selection
is available as the evaluation metric. For this synthetic data
set, the response variables are confounded with two different
factors. Then, we create a semi-empirical synthetic data set
where we use the real-world genome sequences as explanatory
variables X . We generate effect sizes β and the response
variable y, which is also confounded by two different sources
of confounding factors. We evaluate the variable selection
results with our generated β. Lastly, we evaluate the predictive
performance with some real-world brain wave data relating to
confusion mental state. With this data set, we compare our
models on the F1 score of confusion prediction.

We compare the regularized linear mixed models with orig-
inal un-regularized version when the parameters are learned
through MLE or REML likelihood functions. The original
linear mixed model, sparse linear mixed model and ridge linear
mixed model are denoted as linear, L1 and L2 respectively.

We also compare the different methods we introduced in
Section III. We investigate those three methods discussed
together with the situation when we only correct one con-
founding factor. Therefore, there are five methods for the
experiments and denoted as Confounder 1, Confounder 2,
Concatenation, Sequence, Interpolation respectively.

A. Synthetic Data Set

1) Data Generation: Firstly, we generate explanatory vari-
ables, fixed effects and response variables that are correspond-
ing to fixed effects. We generate a random matrix X with the
size n× p and a random sparse vector β with the size p× 1.
Then we calculate vector Yf as Xβ, which is of the shape
n×1. Therefore, we have explanatory variable X , fixed effect
β. β serves as the golden standard of the variable selection
task that our model is aimed to solve.

To simulate the situation where response variables are
confounded by different confounding sources, we split X into
two parts, the first half is denoted as X1 (of the size n × p

2 )
and the second half is denoted as X2 (of the size n × p

2 ).
Then we cluster these n data points into groups based on the
features X1 and X2 respectively by K-Means. For each group,
we generate a corresponding response variable Yr1 and Yr2.
The cluster information (i.e confounding factor identifiers) are
Z1 and Z2.

Finally, we have the response variable as following:

Y = (1− we)(wr1Yr1 + wr2Yr2 + (1− wr1 − wr2)Yf ) + weε
(9)

where ε is random noises that are sampled from a normal
distribution N(0, 1). wr1 and wr2 are weights to control the
strength of confounding factors. we is the weight to control
the strength of random noises.

2) Experiment Set-up: We compare three linear mixed
models, under two different likelihood functions, MLE and
REML respectively, and with three different multiple con-
founding factor correction methods as well as the situation
when only one confounding factor is corrected.

Parameters of regularization for regularized linear mixed
models are selected with cross-validation. We cross-validated
the parameters λ to choose the model that identifies a fixed
number (denoted as M ) of causal variables [32]. The reason
that we avoid traditional machine learning cross-validation
mechanism that selects the parameter with highest predictive
performance is that predictive performance is independent of
the performance in variable selection.

We evaluate the performance with the precision-recall curve.
As many different experiments are run, we show the compari-
son of area under precision-recall curve for simplicity. Table I
reports the result under a various different choices of M .

3) Results: Table I shows the area under the precision-
recall curve for different models, different likelihood functions
and various confounding factors correction methods under
different reported M variables. The highest score of each row
is indicated in italic and bold, while the second highest score
is showed in bold only.

It is noticeable that for different confounding factor correc-
tion methods, Sequence method has a distinct advantage over
others. Almost all the highest scores and second highest scores
come from Sequence method.

To compare different regularized linear mixed models, we
can see that each one of the three models has been reported as
the highest score several times. However, sparse linear mixed
models under sequence confounding correction method are
consistently reported as the top two methods across all the
numbers in each row. This correlates with the known fact
that Lasso performs well in variable selection task due to its
sparsity control.

We can also see that MLE and REML report identical scores.
In fact, there are differences in almost all of these numbers if
we look at the 7th digit after the decimal point, but we cannot
show these digits due to the limit of the page width. However,
these differences are too insignificant, and we can safely draw
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TABLE I: AUC for precision-recall curve for different models, different algorithms and different confounding factor correction
methods

MLE
M Confounder 1 Confounder 2 Concatenation Sequence Interpolation

Linear L1 L2 Linear L1 L2 Linear L1 L2 Linear L1 L2 Linear L1 L2
10 0.1034 0.0477 0.1033 0.1033 0.0477 0.1033 0.1033 0.0477 0.1033 0.1032 0.1588 0.0477 0.1033 0.1032 0.1032
50 0.1500 0.1394 0.1397 0.1499 0.1394 0.1397 0.1499 0.1496 0.1396 0.1398 0.1504 0.1598 0.1500 0.1293 0.1498

100 0.1292 0.1391 0.1340 0.1391 0.1391 0.1340 0.1290 0.1391 0.1289 0.1646 0.1449 0.1340 0.1241 0.1440 0.1290
150 0.1392 0.1324 0.1390 0.1392 0.1324 0.1356 0.1358 0.1291 0.1323 0.1500 0.1501 0.1490 0.1357 0.1292 0.1389
200 0.1319 0.1317 0.1318 0.1393 0.1293 0.1317 0.1417 0.1317 0.1317 0.1380 0.1431 0.1468 0.1318 0.1318 0.1317

REML
M Confounder 1 Confounder 2 Concatenation Sequence Interpolation

Linear L1 L2 Linear L1 L2 Linear L1 L2 Linear L1 L2 Linear L1 L2
10 0.1034 0.0477 0.1033 0.1033 0.0477 0.1033 0.1033 0.0477 0.1033 0.1032 0.1588 0.0477 0.1033 0.1032 0.1032
50 0.1500 0.1394 0.1397 0.1499 0.1394 0.1397 0.1499 0.1496 0.1396 0.1398 0.1504 0.1598 0.1500 0.1293 0.1498

100 0.1292 0.1391 0.1340 0.1391 0.1391 0.1340 0.1290 0.1391 0.1289 0.1646 0.1449 0.1340 0.1241 0.1440 0.1290
150 0.1392 0.1324 0.1390 0.1392 0.1324 0.1356 0.1358 0.1291 0.1323 0.1500 0.1501 0.1490 0.1357 0.1292 0.1389
200 0.1319 0.1317 0.1318 0.1393 0.1293 0.1317 0.1417 0.1317 0.1317 0.1380 0.1431 0.1468 0.1318 0.1318 0.1317

the conclusion that the performances of MLE and REML are
homogeneous.

B. Semi-empirical Synthetic Data Set
Because of the proliferate usage of Linear Mixed Model in

genome-wide association studies (GWAS), our second experi-
ment is aimed to evaluate the performance in variable selection
for GWAS. To simulate the real genome data set as well
as maintain the golden standard to be known, we generate
the causal SNPs based on real SNP sequence. This is the
reason that our second experiment is named as Semi-empirical
Synthetic Data Set.

1) Data Sets: We use the real genome information from
a well-studied plant Arabidopsis thaliana. The Arabidopsis
thaliana data set we obtained is a collection of around 1300
plants, each with around 215k SNPs [1]. For these SNPs, we
randomly select 1000 causal SNPs and randomly generate their
effect sizes following a Normal distribution in the same way
as in the previous section.

We generate the response variables Y following the same
condition as introduced in previous section following Equa-
tion 9.

2) Results: This experiment is set up identically as the
previous one except that now we report 1000 discovered
SNPs. However, variable selection task on genome sequences
is significantly more challenging from variable selection task
on randomly generated data set due to Linkage Disequilibrium
(LD) [24]. To account for the fact that discovering a SNP
that is in LD with the actual causal SNP is equivalent to
discovering the actual causal SNP statistically, we regard a
discovery of SNP that is 200K bases away from the actual
causal SNP as a true positive discovery.

The results are showed in Fig. 1. As the figure shows,
in terms of both precision-recall curve and the area under
precision-recall curve, sparse linear mixed model under the
sequence multiple confounding factor correction method per-
forms the best across all the combinations.

To compare the performance of different multiple con-
founding factor correction methods, we can see that sequence
methods perform consistently better than all the other methods
under each model or each likelihood function.

Interestingly, on the model aspect, under all the other
confounding factor correction methods, sparse LMM, which is
expected to be the best one in variable selection task, behave
significantly worse than the other two models.

Similar as previous case, there is no distinguishable differ-
ence between method MLE and method REML. Again, if we
look further than the 6th digit after decimal point, we will
observe differences between these two methods.

C. Brain Wave Confusion Prediction

Our third experiment is focusing on the predictive perfor-
mance of regularized linear mixed model. Before the exper-
iment, we need set up the background of how prediction is
performed with linear mixed models.

1) Prediction in Linear Mixed Models: The prediction of
linear mixed model needs to be carried out differently from
general machine learning models, for the reason that the effect
sizes β are learned in a setting when X is transformed into
UTX . However, for a classification task, to maintain the labels
valid, y remains untransformed. Consequently, the effect sizes
are learned as a projection from the space UTX to y, instead
of from X to y (for general machine learning) or from UTX
to UT y (for linear mixed model in regression)

Therefore, for testing data set with explanatory variables
Xte, β is not directly applicable. It is also unfeasible to
directly use UTXte for many reasons, the simplest one will
be mismatch of dimensions.

To carry out valid prediction, we make another assumption
that states the Kinship matrix we have from training data set
and the kinship matrix we calculate from testing data set are
from the same distribution. Therefore when we project the
testing data set with testing kinship matrix, it is still applicable
to learned β.

In other words, we assume Zte is available, and we have:

Kte = ZteZ
T
te

Kte = UteSteU
T
te

ypred = g(UX
te β)
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(a) Confounder 1 with MLE
method

(b) Confounder 1 with REML
method

(c) Confounder 2 with MLE
method

(d) Confounder 2 with REML
method

(e) Concatenation with MLE
method

(f) Concatenation with REML
method

(g) Sequence with MLE method (h) Sequence with REML
method

(i) Interpolation with MLE
method

(j) Interpolation with REML
method

Fig. 1: Precision-recall curve and AUC to compare the per-
formance for each linear mixed model (in the same figure),
for each learning algorithm (in the same row) and for each
multiple confounding factors corrections method (in the same
column)

where g(·) stands for the function of classification (As an ex-
ample, sigmoid function for Logistic Regression). Therefore,
the predicted labels is attained from ypred

2) Data Set: We use the brain wave data set2 collected by
EEG sensors when students are learning online courses [29].
The data is labeled as whether the students feel confused or
not.

Data is collected from 10 college students while they
watched MOOC video clips. Videos are extracted from online
education resources that are anticipated not to be confusing
for college students, as well as videos that are expected to
confuse a typical college student if a student is not familiar
with the video topics. Data is collected via a portable EEG
mindset with a single sensor on the forehead.

We have 10 college students, each watching 10 videos and
after they watch the video, they label that whether they feel
confused or not themselves.

In our experiment, to make the task more challenging, we
use the each sampled signal as one data point, resulting in
more than 12k data points. Each data point shares the same
label as the subject labels for that video. There are two
confounding factors will highly affect the labels: i.e. subject
IDs and video IDs.

To make the problem even more challenging, we use the first
five subjects’ data as training data and the rest five subjects’
data to test. Therefore, the labels are heavily confounded by
subject IDs since brain waves may be dramatically different
between subjects and there is no data in the testing case of
the subjects that appear in training case.

3) Results: We compare the performance of regularized lin-
ear mixed models on methods handling multiple confounding
factors on F1-score of confusion prediction. The results are
showed in Fig 2.

As Fig 2 shows, both MLE and REML perform similarly
in the learning process. Sparse Linear Mixed Model performs
much better than the other two models. We conjecture that
this is because of the overfit proof properties introduced by
L1 regularizer.

For multiple confounding factors correction methods, we
can see that interpolation works the best across these three
methods. However, none of these methods work better than
the simple case where we only correct confounding factor 1,
which is the subject ID. We conjecture several reasons for this
phenomenon: 1) the way we split training data and testing
data makes the labels heavily confounded by subject IDs, but
much less confounded by video IDs. 2) The labels we use are
annotated by the subjects indicating whether they are confused
or not. The labeling mechanism is naturally confounded by
subjects IDs, but not video IDs. For these two reasons, we
believe that it is reasonable to observe that the results behave
the best when only the subject ID confounder is corrected, but
not both.

V. DISCUSSION

Through these three experiments, we have compared the
performance of variable selection task and binary classification

2Publicly available at: https://www.kaggle.com/wanghaohan/eeg-brain-
wave-for-confusion
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Fig. 2: F1 score of predicted result of confusion

task for different linear mixed models, different likelihood
functions and different multiple confounding factor correction
methods. Several conclusions can be drawn when comparing
these three experiments together.

Sparse Linear Mixed Model under sequence confounding
correction method consistently performs as the best (or at
least second best) in variable selection tasks across these
experiments. On one hand, while it is a known fact that L1

regularized models are good at variable selection tasks, it is
interesting to see that Sparse Linear Mixed Model does not
dominate other two models in other confounding correction
methods. On the other hand, all these linear mixed models
perform better with sequence method than corresponding
models with other methods. We conjecture that, sequence
method could correct those multiple confounding factors in
a more ideal way, that it offers an excellent background for
L1 regularized models to perform.

There is no observable difference between MLE and REML.
Despite the fact that there are statistical differences, we do
not observe any empirical differences when two methods are
applied.

Selection of confounding factors correction models heavily
relies on the semantics of confounding factors. In our third
example, when we know the data is heavily confounded
with the first confounders, and much less confounded with
the second one, all these three multiple confounding factor
correction methods perform inferior to the method when only
the first factor is corrected.

Sparse Linear Mixed Models also dominate the performance
with respective to prediction. This is probably related to the
overfitting proof property introduced by L1 regularizers.

VI. CONCLUSION

In this paper, we discussed regularized linear mixed models
with L1 and L2 regularizers, reviewed two methods that used
in parameter learning for linear mixed models, namely MLE
and REML and then introduced three methods to correct
multiple confounding factors together.

We evaluated the performance for two tasks that are fre-
quently met in biomedical research, namely variable selection
task and prediction task. We first evaluated the methods
on synthetic data. Then we evaluated the methods on the
semi-empirical data set generated from genome information
to simulate GWAS, which was followed by evaluation of
prediction performance on brain wave data set that is related
to the mental state of confusion.

Our experiments have shown that Sparse Linear Mixed
Models under sequence method of multiple confounding
factors correction performed the best consistently compared
across all the other combinations. MLE and REML methods
did not distinguish from each other. We also made some sug-
gestions on selection of multiple confounding factor correction
methods.

Looking forward, we would like to explore more on the the-
oretical aspect of those multiple confounding factor correction
methods and build the selection guidance of these methods
in the theoretical aspect in addition to the empirical aspect
discussed in this paper.
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