
1

Logic Synthesis of Recombinase-Based Genetic
Circuits

Tai-Yin Chiu and Jie-Hong R. Jiang

Abstract—A synthetic approach to biology is a promising
technique for various applications. Recent advancements have
demonstrated the feasibility of constructing synthetic two-input
logic gates in Escherichia coli cells with long-term memory based
on DNA inversion induced by recombinases. On the other hand,
recent evidences indicate that DNA inversion mediated by genome
editing tools is possible; powerful genome editing technologies,
such as CRISPR-Cas9 systems, have great potential to be
exploited to implement large-scale recombinase-based circuits.
What remains unclear is how to construct arbitrary Boolean
functions based on these emerging technologies. In this paper, we
lay the theoretical foundation formalizing the connection between
recombinase-based genetic circuits and Boolean functions. It en-
ables systematic construction of any given Boolean function using
recombinase-based logic gates. We further develop a methodology
leveraging existing electronic design automation (EDA) tools to
automate the synthesis of complex recombinase-based genetic
circuits with respect to area and delay optimization. Experimental
results demonstrate the feasibility of our proposed method.

I. INTRODUCTION

THE development of synthetic biology shows the feasi-
bility to implement computing devices with DNA ge-

netic circuits in living cells. Synthetic cellular designs of-
ten intended to implement certain functions that make cells
respond to specific environmental stimuli or even change
their growth and cellular development. For instance, synthetic
toggle switches [1] and genetic oscillators [2]–[5] can be
used to control cell metabolism, synthetic counters [6] can
be potentially applied to the regulation of telomere length and
cell aggregation, and genetic logic gates [7]–[10] can achieve
digital computation in response to stimulus input signals.
In addition to these transcription-based DNA circuits, new
emerging translational mRNA circuits [11] are likely to have
impact on mammalian regenerative medicine and gene therapy.
Through the genetic engineering, synthetic cellular circuits
are potentially useful to perform therapeutic and diagnostic
functions.

For some situations where noxious chemical stimuli exist
for many cell generations, the computational results from the
synthetic circuits in parent cells are required to be propagated
to their daughter cells so that the daughter cells can save
time to respond to the environmental stimuli. To achieve this
transgenerational memory, one possible method is to store the

Manuscript received September XX, 20XX; revised November XX, 20XX.
T.-Y. Chiu is with the Graduate Institute of Electronics Engi-

neering, National Taiwan University, Taipei 10617, Taiwan (E-mail:
b99202046@ntu.edu.tw).

J.-H. R. Jiang is with the Department of Electrical Engineering and the
Graduate Institute of Electronics Engineering, National Taiwan University,
Taipei 10617, Taiwan (E-mail: jhjiang@ntu.edu.tw).

T T GFP

AHL → Bxb1

aTc →

phiC31

(A)

(B)

attP attB

attR attL

Fig. 1. (A) Schematic illustration of the irreversible inversion of DNA
sequences using serine recombinases. (B) Implementation of an AND gate
using recombinases. The right-turn arrow represents a promoter; the red and
blue triangles are the targeting sites of recombinases Bxb1 and phiC31,
respectively; the letter T’s flanked by the targeting sites are transcription
terminators; the green box represents the gene encoding the green fluorescent
protein.

computational results in separate synthetic memory devices
which can be duplicated in cell divisions. In recent work [12],
a more efficient scheme for constructing synthetic cellular
circuits with integrated logic and memory was proposed,
where the computational result was automatically stored in
the computing circuit configuration and the changes of con-
figuration can be propagated to its descendant cells. The so-
implemented circuits were built based on recombinases and
tested in Escherichia coli cells and they showed a long-
term memory for at least 90 cell generations. More recently,
recombinase-based logic circuits has been applied in clinical
uses. E.g., in [13] the authors demonstrate that biosensor
made of recombinase-based logic gates can be used to detect
pathological glycosuria in urine from diabetic patients. The
ability to build complex recombinase-based logic circuits is an
important step to enable widespread biomedical applications.

Specifically the synthetic cellular circuits proposed in [12]
used serine recombinases Bxb1 and phiC31 to implement
various two-input logic gates. A serine recombinase target-
ing a pair of non-identical recognition sites known as attB
(attachment site bacteria) and attP (attachment site phage)
is able to induce irreversible DNA inversion. As illustrated

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

2

in Fig. 1(A), since the inversion makes the recognition sites
become hybrid sites called attR and attL which cannot be
targeted by the recombinase, no further inversion is allowed
afterwards.

We illustrate how recombinases take part in the implemen-
tation of two-input logic gates with the two-input AND gate
example shown in Fig. 1(B). (As a convention, in this paper we
read a DNA sequence from left to right assuming the 5’-to-3’
direction of the coding strand.) Let molecules AHL and aTc be
the stimulus inputs to a cell and act as inducers activating the
expressions of recombinases Bxb1 and phiC31, respectively.
These recombinases when activated will irreversibly invert
(flip) the DNA sequences flanked by their recognition sites
(denoted by the colored triangle pairs). The DNA sequences
being flanked can be a promoter, a transcription terminator, or
a reporter, e.g., a green fluorescent protein (GFP). Inverting
these DNA sequences will alter the output gene expression. In
Fig. 1(B), two terminators were flanked by the recognition
sites of recombinases Bxb1 and phiC31, and the output
green fluorescent reporter is highly expressed only when both
inducers AHL and aTc are in high concentration to activate
BxB1 and phiC31 which together further flip and disable both
terminators (denoted by letter “T”). Therefore, the circuit of
Fig. 1(B) effectively implements a two-input AND gate. Note
that such DNA sequence changes will survive through cell
divisions and can be inherited to descendant cells in different
generations. Hence the so-implemented logic function can
achieve a long-term transgeneration memory.

Note that the feasibility of constructing large recombinase-
based circuits is limited to available recombinases. Never-
theless, with the advances of biotechnology, DNA inversion
techniques mediated by genome editing approaches, such
as ZFNs [14], [15], TALENs [15]–[17], and CRISPR-Cas9
nucleases [17]–[20] have already been reported. It is envisaged
that these genome editing tools could be alternatives scalable
to realize large recombinase-based circuits [21]. Motivated by
the viability and applicability of recombinase-based circuits,
in this paper we formalize the construction of a general multi-
input logic gate with its DNA sequence composed of series of
promoters and transcription terminators targeted by multiple
recombinases. We further characterize the set of Boolean
functions realizable under such logic gates. In addition, we
show a design flow for arbitrary Boolean function construction
with cascaded recombinase-based logic gates. This automated
design methodology is demonstrated by leveraging synthesis
tool ABC [22], an electronic design automation (EDA) tool
developed at UC Berkeley, to synthesize cascaded multi-level
recombinase-based circuits.

The rest of the paper is organized as follows. In Section II,
some examples of multi-input recombinase-based logic gates
are shown to motivate this work. In Section III, the syntax and
semantics of recombinase-based logic gates are formalized.
In Section IV, we propose a method to synthesize logic cir-
cuits composed of recombinase-based gates using conventional
logic synthesis tools. In Section V, experimental results are
evaluated. Finally, conclusions and future work are remarked
in Section VI.

II. PRELIMINARIES

To formalize the general multi-input gate construction, we
use the three-input logic gates in Fig. 2 as an example to
illustrate. Fig. 2(A) shows a realization of a 3-input AND gate
using three recombinases R1, R2, and R3, where molecule Ii
is a stimulus input that activates the expression of recombinase
Ri, for i = 1, 2, 3. Then Ri’s induce the inversions of their
corresponding DNA sequence fragments. In order to express
GFP in this gate, first we require R1 to invert the inverted
promoter so that the RNA polymerase can bind to it and
begin the transcription of the downstream DNA sequence in
which the GFP gene resides. Second, R2 is needed to flip
the terminator to avoid the termination of transcription before
reaching the GFP gene. Third, R3 is demanded to upright the
GFP gene for the RNA polymerase to initiate GFP production.
Collectively, to have GFP highly expressed all Ri’s must
exist, and thus this circuit implements a 3-input AND gate.
Note that this 3-input AND gate, where the promoter and
the reporter gene GFP can be flipped by recombinases, is
designed in a different fashion from the 2-input AND gate
in Fig. 1(B), where only transcription terminators are inverted
by recombinases. The additional choice of flipping the DNA
fragments of promoter and GFP gives more flexibility for logic
gate construction.

In Fig. 2(B)-(H) we present seven other basic 3-input
gates implemented with recombinases. Special implementa-
tions with nested targeting sites are applied on the XOR gate
in (G) and the XNOR gate in (H). In the XOR gate in (G), the
existence of one or three recombinases results in one or three
times of GFP gene flipping and thus making the upside-down
gene become upright, while the existence of two recombinases
makes the GFP gene flip twice and remain upside down.
Similar situations happen in the XNOR gate in (H).

Since the implementations of multi-input gates are possible,
we are not constrained to using only 3-input gates and basic
gate types, such as AND, OR, NAND, NOR, XOR, and XNOR
gates. Rather, we can construct complex logic gates with more
inputs. Fig. 3(A) shows an example of a 4-input logic circuit

O = (R1 + R2 ⊕R3)R4 ,

which can be directly realized by a single 4-input complex
logic gate as shown in Fig. 3(B), instead of cascading multiple
two-input gates.

III. FORMALISM OF RECOMBINASE-BASED LOGIC GATES

A. Syntax of Well-Formed Sequences

We define the following syntax to formalize the DNA
sequences of logic gates constructed with recombinases. Here
the basic elements composing a legal DNA sequence of
a recombinase-based logic gate are “atomic terms,” includ-
ing (inverted/non-inverted) transcription factors, (inverted/non-
inverted) promoters, (inverted/non-inverted) genes, and tar-
geting sites of recombinases. The syntax of DNA sequence
forming a legal recombinase-based logic gate can be defined
as follows.

Definition 1: An atomic term in a DNA sequence is a
transcription terminator T , a promoter P , a gene G, an

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

3

GFP

GFP

GFP GFP

T

GFP GFP

(A) (B) (C)

(D) (E)

(F) (G) (H)

T

GFP

I1 R1

I3 R3

I2 R2 T

GFP

Fig. 2. Implementation of basic 3-input logic gates using recombinases. The inputs of each gate from top to down are recombinases R1, R2, and R3,
respectively; inducer Ii monitored by the cell activates the expression of Ri; the red, blue, and orange triangles denote the targeting sites of Ri, i = 1, 2, 3,
respectively.

(A)

(B)

GFP

I1 R1

I3 R3

I2 R2

I4 R4

O

R1

R2

R3
R4

O

Fig. 3. (A) Schematic illustration of a 4-bit non-basic logic function O =
(R1 +R2 ⊕R3)R4 (B) Corresponding implementation using recombinases.

inverted transcription terminator

T

, an inverted promoter

P

,
or an inverted gene

G

. The syntax of an atomic term can be
expressed in Backus-Naur Form as

〈atomic term〉 ::= P |

P

| T |

T

| G |

G

. (1)

Let the targeting sites attP and attB of recombinase r in
a DNA sequence be denoted as “{r” and “}r,” respectively.
In the sequel, the subscripts of {r and }r may be omitted for
brevity when they are clear from the context or immaterial
to the discussion. Note that targeting sites “{” and “}” of a
recombinase must appear in a pair.

Definition 2: The syntax of a well-formed sequence (wfs)
is recursively defined as follows.

〈wfs〉 ::= 〈atomic term〉
| {〈wfs〉}ri
| 〈wfs〉〈wfs〉.

(2)

In this paper we concentrate on the special case of one-
gene wfs (1g-wfs), where only one gene G, which is nei-
ther inverted nor sandwiched by targeting sites, appears in
the wfs at the end of the sequence serving as the output.
For example, {T}r1G,

P

{T}r1G, {{

P

{T}r1}r2}r3G, and
{{{P}r5{

T

}r4}r6{{

P

{T}r1}r2}r3}r7G are 1g-wfs’s. Notice
that under the 1g-wfs setting, the logic gate has a single output
and the gene can only be transcribed in one direction from left
to right.

A pair of targeting sites of a recombinase is called basic
if it only flanks an atomic term. Otherwise, it is called non-
basic. We call a 1g-wfs basic if it contains only basic pairs of
targeting sites, and non-basic if it contains some non-basic pair
of targeting sites. For example, {P}r1{T}r2{

T

}r3{

P

}r4G
is a basic 1g-wfs. In contrast, {P

T

}r1G, {{

P

}r1}r2G, and
{T{

T

}r1{P}r2

P

}r3G are non-basic 1g-wfs’s.
Furthermore, a non-basic pair of targeting sites can be

nested. That is, a non-basic pair of targeting sites can be
flanked by another pair of targeting sites. For instance,
{P{T{

T

}r1{P}r2

P

}r3

T

}r4G has nested two pairs of target-
ing sites targeted by the recombinases r3 and r4.

We discuss the logic functions induced by basic and non-
basic 1g-wfs’s in the following.

B. Semantics of Well-Formed Sequences

1) Basic well-formed sequences: We first study some re-
duction rules of basic 1g-wfs’s. Let σ be the DNA sequence
of a basic 1g-wfs excluding the output gene, that is, σ is a
basic wfs without any gene. We denote a wfs without any
gene as 0g-wfs. Because σ is made of components P ,

P

, T ,

T

, {P}ri , {

P

}ri , {T}ri , and {

T

}ri for any component C in
σ, the sequence σ can be decomposed into

σ = σ1Cσ2,

where σ1 and σ2 are two 0g-wfs’s, if non-empty. We show
that the logic gate induced by the 1g-wfs σG can be further
reduced to an equivalent form according to the type of the
component C.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

4

When C is a transcription terminator T , then σ equals

σ1Tσ2G ≡ σ2G. (3)

This equivalence holds because any transcription that starts
from σ1 to gene G is always blocked by the transcription
terminator T in the middle, making σ1T a don’t-care and thus
removable.

When C is an inverted terminator

T

, then σ equals

σ1

T

σ2G ≡ σ1σ2G. (4)

This equivalence holds because the inverted terminator

T

never
blocks the transcription and is thus removable.

When C is a promoter P , then σ equals

σ1Pσ2G ≡ Pσ2G. (5)

This equivalence holds because no matter whether there is a
transcription that starts from σ1 to G or not, a transcription can
always start from the promoter P . Therefore, σ1 is a don’t-care
and thus removable.

When C is an inverted promoter

P

, then σ equals

σ1

P

σ2G ≡ σ1σ2G. (6)

This equivalence holds because the transcription that begins
at

P

proceeds across σ1 in the direction from right to left, it
does not pass through G. As a result, the expression of G can
not be initiated by

P

and thus

P

can be removed from the
sequence.

When C is {P}ri , {
P

}ri , {T}ri , or {
T

}ri , since an atomic
term A is equivalent to {A}r for recombinase r being in low
concentration (denoted R = 0 by treating r as a Boolean
variable R of value 0) or {

A

}r for recombinase r being in
high concentration (denoted R = 1 by treating r as a Boolean
variable R of value 1), the reduction rules for C can be easily
extended from the previous rules as summarized below.

σ1{T}rσ2G ≡

{
σ2G, for R = 0

σ1σ2G, for R = 1
(7)

σ1{

T

}rσ2G ≡

{
σ1σ2G, for R = 0

σ2G, for R = 1
(8)

σ1{P}rσ2G ≡

{
Pσ2G, for R = 0

σ1σ2G, for R = 1
(9)

σ1{

P

}rσ2G ≡

{
σ1σ2G, for R = 0

Pσ2G, for R = 1
(10)

With the above analysis, we can derive the corresponding
Boolean function of a given 1g-wfs. Consider the 1g-wfs
σG with the sequence σ targeted by recombinases ri, i =
1 · · ·n. Activating the expression of gene G requires the
recombinases ri’s have adequate (high or low) concentra-
tions so that the 1g-wfs σG effectively reduces to PG. The
Boolean function induced by σG is determined through a
series of decisions made by ri’s. In essence, it corresponds
to a decision list [23]. To illustrate, consider the example
σ = {T}r5{P}r4{

T

}r3{

P

}r2{T}r1 . The decision list induced
by the 1g-wfs σG is shown in Fig. 4. Note that given

a sequence without non-basic targeting sites, the decisions
always start from the rightmost to the leftmost components
because a component closer to the gene may overwrite the
effects imposed by the components on its left and thus it is
of higher priority. Therefore, the Boolean function of σG is
determined starting from R1 to R5. In order to reduce σ to P
to express gene G, first we must require R1 to be 1. Otherwise
if R1 = 0, σ becomes equivalent to a null sequence no matter
what other Ri’s are. Next, if we let R2 be 1, we can have an
equivalent sequence equal to P as wished. Otherwise we can
let R2 be 0 and look for other possibilities for the reduction
to P . If R2 = 0, we can easily tell that the only possibility
occurs when R3 and R4 are both 0 and that the logic of R5

never affects the reduction. Collectively, the logic function of
the gate σG is derived as R1 · (R2 +R3 ·R4), where symbol
“+” denotes Boolean disjunction, symbol “·” denotes Boolean
conjunction, and symbol “ ” or “!” denotes Boolean negation.
In the sequel, we sometimes omit the conjunction symbol “·”
in a Boolean expression.

1

1
1

1

1

1

0

0

0

0

0

0

0
0

0

Fig. 4. Decision list corresponding to 1g-wfs
{T}r5{P}r4{

T

}r3{

P

}r2{T}r1G. Node labelled Ri is the decision
for the logic value of Ri. Nodes labelled 0 (resp. 1) stand for gene G cannot
(resp. can) be expressed. The sequences beside nodes are the equivalent
sequences after the corresponding (partial) decisions.

In general, we can systematically convert any basic 1g-wfs
to its corresponding logic function. To achieve this conversion,
the operator Ω over a 1g-wfs is defined in Table I. For an
empty sequence ⊥, we define Ω[⊥] = 0. E.g., for the 1g-
wfs {T}r5{P}r4{

T

}r3{

P

}r2{T}r1G, its Boolean function is
derived by

Ω[{T}r5{P}r4{

T

}r3{

P

}r2{T}r1]

= R1(Ω[{T}r5{P}r4{

T

}r3{

P

}r2)

= R1(R2 + (Ω[{T}r5{P}r4{

T

}r3]))

= R1(R2 + (R3 (Ω[{T}r5{P}r4])))

= R1(R2 + (R3 (R4 + (Ω[{T}r5]))))

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

5

TABLE I
OPERATORS FOR PARSING BASIC 1G-WFS σCG, WITH (NON-EMPTY)

0G-WFS σ, COMPONENT C , AND GENE G, TO LOGIC FUNCTION.

component C operator Ω[σC]

T 0 · (Ω[σ])

P 1 + (Ω[σ])

{T}r R · (Ω[σ])

{P}r R + (Ω[σ])

T

1 · (Ω[σ])

P

0 + (Ω[σ])

{

T

}r R · (Ω[σ])

{

P

}r R+ (Ω[σ])

= R1(R2 + (R3 (R4 + (R5(Ω[⊥])))))

= R1(R2 + (R3 (R4 + (R5(0)))))

= R1(R2 + (R3R4)).

2) Non-basic well-formed sequences: We extend the above
derivation of Boolean function to non-basic 1g-wfs’s by having
the operator Ω over a 0g-wfs {σ}r (which can be basic or non-
basic) defined as

Ω[{σ}r] = R · Ω[σ] +R · Ω[σ], (11)

where σis the inverted sequence of σ. To understand Eq. (11),
consider a 1g-wfs σG with only one pair of non-basic targeting
sites. Suppose σ = {σ1}r, where σ1 is a basic 0g-wfs. Then
σ is equal to σ1 when R = 0 and to σ1 , the inverted sequence
of σ1, when R = 1. For example, the logic function for
{{T}r5{P}r4{

T

}r3{

P

}r2{T}r1}r6G can be obtained by

Ω[{{T}r5{P}r4{

T

}r3{

P

}r2{T}r1}r6]

= R6Ω[{T}r5{P}r4{

T

}r3{

P

}r2{T}r1] +

R6Ω[{

T

}r1{P}r2{T}r3{

P

}r4{

T

}r5]

= R6 (R1(R2 + (R3 (R4 + (R5(0)))))) +

R6(R5 (R4 + (R3(R2 + (R1 (0))))))

= R6R1(R2 + R3R4) +R6R5 (R4 +R3R2).

For a 1g-wfs with multiple (possibly nested) non-basic
pairs of targeting sites, its logic function can also be directly
derived by the Ω operator. For example, the logic function for
{{P}r4{{

T

}r3{

P

}r2}r5{T}r1}r6G can be obtained by

Ω[{{P}r4{{

T

}r3{

P

}r2}r5{T}r1}r6]

= R6 Ω[{P}r4{{

T

}r3{

P

}r2}r5{T}r1] +

R6Ω[{

T

}r1{{P}r2{T}r3}r5{

P

}r4]

= R6 (R1Ω[{P}r4{{

T

}r3{

P

}r2}r5]) +

R6(R4 + Ω[{

T

}r1{{P}r2{T}r3}r5])

= R6 (R1(R5 Ω[{P}r4{

T

}r3{

P

}r2] +

R5Ω[{P}r4{P}r2{T}r3])) +

R6(R4 + (R5 Ω[{

T

}r1{P}r2{T}r3] +

R5Ω[{

T

}r1{

T

}r3{

P

}r2]))

= R6 (R1(R5 (R2 + Ω[{P}r4{

T

}r3]) +

R5(R3Ω[{P}r4{P}r2]))) +

R6(R4 + (R5 (R3Ω[{

T

}r1{P}r2]) +

T GFP

GFP

T

GFP

GFPT GFP

Fig. 5. A 1g-wfs with two pairs of targeting sites interlocking with each
other. The red and blue pairs denote the targeting sites of recombinase r1 and
r2, respectively. The effective 1g-wfs’s after the inversions induced by r1 and
r2 are shown in the red and blue panels, respectively, which are followed by
their equivalent simplified sequences.

R5(R2 + Ω[{

T

}r1{

T

}r3])))

= R6 (R1(R5 (R2 + (R3 Ω[{P}r4])) +

R5(R3(R2 + Ω[{P}r4])))) +

R6(R4 + (R5 (R3(R2 + Ω[{

T

}r1])) +

R5(R2 + (R3 Ω[{

T

}r1]))))

= R6 (R1(R5 (R2 + (R3 (R4 + 0))) +

R5(R3(R2 + (R4 + 0))))) +

R6(R4 + (R5 (R3(R2 + (R1 · 0))) +

R5(R2 + (R3 (R1 · 0)))))

= R6R1(R5 (R2 + R3R4) +R5(R3(R2 + R4)))

+R6(R4 + R5R3R2 +R5R2).

Non-basic pairs of targeting sites can be exploited to ef-
ficiently construct special Boolean functions. One of such
special functions is the parity function. An n-input odd parity
function can be realized by the 1g-wfs

{· · · {︸ ︷︷ ︸
n

P

}r1 · · · }rnG.

When there is an odd number of Ri’s equal to 1, the 1g-
wfs reduces to sequence PG and gene G can be expressed.
Otherwise it reduces to sequence G and gene G cannot be
expressed. On the other hand, the n-input even parity function
can be realized by the 1g-wfs

{· · · {︸ ︷︷ ︸
n

P}r1 · · · }rnG.

Note that in the formation rule of well-formed sequences
in Eq. 2, a pair of targeting sites appears inductively. A
DNA sequence, e.g., {r1{r2

P

}r1T}r2G shown in Fig. 5, with
interlocking pairs of targeting sites is not included in the
definition of Eq. (2). Such a sequence is excluded due to
the fact that the inversions caused by interlocking pairs of
targeting sites may result in nondeterministic behavior. For
example, in Fig. 5 the expression of GFP is nondeterministic
when both r1 and r2 are of high concentrations. If recombinase
r1 inverts the sequence flanked by the red triangles first,
the terminator T can no longer be inverted by recombinase
r2, and thus GFP cannot be expressed. In contrast, if the
inversion is made by recombinase r2 first, then GFP can
be expressed. Depending on which recombinase acts first,
the output of GFP is nondeterministic. Although sequences
with interlocking pairs of targeting sites can exhibit interesting
nondeterministic behaviors with memory, how to construct
systems with such sequences is out of the scope of this work.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

6

(A)

A

B

A

B

Z

R1

R2

ZB

A

(B)

T

Fig. 6. (A) Logic circuit of Boolean function Z = (A+B)(A⊕B). (B) The
corresponding DNA implementation of the circuit in (A) with gate cascade. A
and B denote the recombinase inputs of the overall circuit. The genes R1 and
R2 encode the recombinases r1 and r2, respectively, which are the inputs to
the downstream AND gate. The protein encoded by the gene Z is the output
of the circuit.

IV. CONSTRUCTION OF MULTI-LEVEL
RECOMBINASE-BASED LOGIC CIRCUITS

With the recombinase-based logic gates built from 1g-
wfs’s, we can cascade them to implement arbitrary complex
multi-level circuits. For example, the logic function Z =
(A+B)(A⊕B) can be implemented with the two-level circuit
shown in Fig. 6(A), which is composed of an OR-gate, an
XOR-gate, and an AND-gate. One possible DNA implemen-
tation of Z with cascade can be derived by converting each
gate to their 1g-wfs realizations as shown in Fig. 6(B). The
1g-wfs’s that encode the genes R1, R2, and Z correspond to
the OR, XOR and AND gates, respectively. The recombinases
r1 and r2 as the inputs to the AND gate are the intermediate
signals.

Because the basic 1g-wfs gates can implement decision list
functions, they form a functionally complete set of primitive
logic gates that can be composed to implement any Boolean
function. Therefore the 1g-wfs gates can be collected as
a library for the synthesis of complex logic circuits. By
leveraging conventional logic synthesis tools in electronic
design automation (EDA), recombinase-based logic circuits
can be synthesized with the flow shown in Fig. 7. Given
a Boolean function or circuit netlist as the input, it is first
optimized by technology-independent techniques for circuit
simplification. The simplified circuit is further optimized by
technology-dependent techniques for technology mapping us-
ing the primitive gates in the given standard cell library. To
achieve recombinase-based logic circuit synthesis, the main
task is to provide the library while all other optimization tasks
can be done using existing logic synthesis tools.

In this work, we adopt ABC [22], an industrial-strength
logic synthesis tool developed at UC Berkeley, for circuit
synthesis and optimization. Given a circuit netlist, we first
apply ABC to perform technology-independent optimization
on the netlist, e.g., Boolean minimization to minimize the
number of product terms and literals. We then use ABC
to perform technology mapping to implement the area or
performance optimized netlist using the 1g-wfs gates in the
library.

To illustrate the synthesis flow, we consider implement-
ing ISCAS benchmark circuit c17 shown in Fig. 8 with
recombinase-based genetic circuit realization. The circuit con-

Input circuit netlist

Technology-independent
optimization

Technology-dependent
optimization

Recombinase-based
logic circuit

Library

Fig. 7. Logic synthesis flow for the implementation of recombinase-based
logic circuit

A

B

C
D

E

Y

Z

Fig. 8. Circuit diagram of ISCAS benchmark c17. c17 circuit consists of six
NAND gates with five inputs {A,B,C,D,E} and two outputs {Y, Z}.

sists of five inputs A, B, C, D, and E, and two outputs Y
and Z with functions{

Y = AB + (BC)D

Z = (BC)D + (BC)E.
(12)

For area-driven synthesis of benchmark c17, there are
44 DNA gates defined by their 1g-wfs’s with up to three
recombinase inputs. They are collected as the library as shown
in Fig. 9. According to the experiment in [12], where the
promoters and transcription terminators used are roughly of
the same length, we treat the area cost of both promoter and
transcription terminator as unity. Therefore, the area cost of a
DNA gate is defined as the number of atomic terms, excluding
the output gene, that appear in the 1g-wfs of the gate. For
example, the gate c3 1 corresponding to a 3-input OR gate has
three inverted promoters as shown in Fig. 2(D). Hence, the area
cost of c3 1 is counted as 3 units. By providing the c17 netlist
and the library to ABC, the tool can perform optimization
and technology mapping to find an area-optimized circuit
composed of DNA gates of the library.

Fig. 10 shows the result described in Verilog language of
the synthesized c17 recombinase-based circuit using library
gates listed in Fig. 9. The synthesized circuit comprises gates
c2 4, c2 5, c3 14, and c3 25, and the total area cost is 10
units. Note that the naive DNA circuit implementation of c17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

7

NAME AREA FUNCTION NAME AREA FUNCTION NAME AREA FUNCTION
c1 1 1 O = a c3 5 3 O = a+(b*(c)) c3 19 3 O = a*(!b+(c))
c1 2 1 O = !a c3 6 3 O = a+(b*(!c)) c3 20 3 O = a*(!b+(!c))
c2 1 2 O = a+(b) c3 7 3 O = a+(!b*(c)) c3 21 3 O = a*(b*(c))
c2 2 2 O = a+(!b) c3 8 3 O = a+(!b*(!c)) c3 22 3 O = a*(b*(!c))
c2 3 2 O = !a+(b) c3 9 3 O = !a+(b+(c)) c3 23 3 O = a*(!b*(c))
c2 4 2 O = !a+(!b) c3 10 3 O = !a+(b+(!c)) c3 24 3 O = a*(!b*(!c))
c2 5 2 O = a*(b) c3 11 3 O = !a+(!b+(c)) c3 25 3 O = !a*(b+(c))
c2 6 2 O = a*(!b) c3 12 3 O = !a+(!b+(!c)) c3 26 3 O = !a*(b+(!c))
c2 7 2 O = !a*(b) c3 13 3 O = !a+(b*(c)) c3 27 3 O = !a*(!b+(c))
c2 8 2 O = !a*(!b) c3 14 3 O = !a+(b*(!c)) c3 28 3 O = !a*(!b+(!c))
c3 1 3 O = a+(b+(c)) c3 15 3 O = !a+(!b*(c)) c3 29 3 O = !a*(b*(c))
c3 2 3 O = a+(b+(!c)) c3 16 3 O = !a+(!b*(!c)) c3 30 3 O = !a*(b*(!c))
c3 3 3 O = a+(!b+(c)) c3 17 3 O = a*(b+(c)) c3 31 3 O = !a*(!b*(c))
c3 4 3 O = a+(!b+(!c)) c3 18 3 O = a*(b+(!c)) c3 32 3 O = !a*(!b*(!c))
zero 0 O = CONST0 one 1 O = CONST1

Fig. 9. Library of DNA gates with specification of area cost. The library contains 44 different cells and each cell corresponds to a DNA logic gate defined
by a 1g-wfs with up to three inputs. The variables a, b, and c in a function specification represents the recombinase inputs to a gate, and the variable O
denotes the gate output.

circuit by converting the digital logic gates in Fig. 8 to the
corresponding DNA gates results in a total area cost of 12
units. Compared to the naive implementation, the area cost of
the circuit synthesized by ABC technology mapping decreases.
The logic functions of Y and Z in the synthesized circuit can
be easily verified to be consistent with Eq. (12), implying the
correctness of the synthesis result. The DNA circuit of module
c17 in Fig. 10 is plotted in Fig. 12(A).

module c17 (A, B, C, D, E, Y, Z);
input A, B, C, D, E;
output Y, Z;
wire n7, n8;
c2_4 g0(.a(B), .b(A), .O(n7));
c2_5 g1(.a(C), .b(B), .O(n8));
c3_14 g2(.a(n7), .b(D), .c(n8), .O(Y));
c3_25 g3(.a(n8), .b(E), .c(D), .O(Z));

endmodule

Fig. 10. Synthesized c17 circuit in Verilog description.

module c17_1 (A, B, C, D, E, Y, Z);
input A, B, C, D, E;
output Y, Z;
wire n7, n8;
c2_5 g0(.a(B), .b(C), .O(n7));
c2_7 g1(.a(n7), .b(D), .O(n8));
c3_5 g2(.a(n8), .b(A), .c(B), .O(Y));
c3_25 g3(.a(n7), .b(D), .c(E), .O(Z));

endmodule

Fig. 11. Manually designed c17 circuit in Verilog description.

Note that there can be more than one area-optimized circuit
of a logic function. For comparison, in Fig. 11 we show
another manually designed DNA implementation of c17 circuit

whose area cost is 10 units as well. The corresponding DNA
circuit is plotted in Fig. 12(B). Notice that the two circuits
in Fig. 12 differ not only in their constituent logic gates, but
also in their logic depths. The circuit of Fig. 12(A) is of two
logic levels, whereas that of Fig. 12(B) is of three logic levels.
There are six longest paths in the former circuit:

A→ n7→ Y,

B → n7→ Y,

B → n8→ Y,

B → n8→ Z,

C → n8→ Y,

C → n8→ Z.

They involve a cascade of two logic gates. On the other hand,
there are two longest paths in the latter circuit:{

B → n7→ n8→ Y,

C → n7→ n8→ Y.

They involve a cascade of three logic gates. Although these
two circuits have the same area cost, the circuit of Fig. 12(A) is
preferred due to its better performance. In the experiments, we
will synthesize circuits with area or performance optimized.

V. EXPERIMENTAL EVALUATION

To demonstrate the feasibility of the proposed synthesis
flow, we experiment on other 67 ISCAS benchmark circuits
using recombinase-based DNA gates. We expanded the library
such that it includes all 684 DNA gates with decision list
functions up to five inputs. In the library, the area cost of a
gate is determined by the number of atomic terms, excluding
the output gene, appearing in its corresponding 1g-wfs. We
use a simple unit delay model for all the logic gates.

The experiment results of 54 (out of the 67) circuits are
shown in Table II. The numbers of primary inputs/outputs,
the number of inverters, and the number of logic gates
(with the number of included buffers, if non-zero, reported

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

8

n7

n8T

YT

Z

T

A

B

C DE

n7

n8

T

YT

Z

T

A
B

C

D E

T

(A) (B)

Fig. 12. DNA circuit implementations of c17 benchmark circuit. (A) Implementation of the circuit in Fig. 10 synthesized by tool ABC; (B) Implementation
of the circuit in Fig. 11 designed manually for comparison. In both (A) and (B), symbols A, B, C, D, and E indicate the recombinase inputs, the proteins
encoded by the genes Y and Z are the outputs of the circuit, and the DNA gates encoding recombinases n7 and n8 and proteins Y and Z are the gates g0,
g1, g2, and g3 in the modules c17 and c17 1, respectively.

in parentheses) are listed Columns 2, 3, and 4, respectively.
The circuits were synthesized under two optimization set-
tings: one for area optimization and the other for delay
optimization. The results of area optimization are reported in
Columns 5–7 and those of delay optimization are reported in
Columns 8–10. For each synthesized circuit, its number of
DNA gates, total area, and gate level are shown. In the naive
implementations of benchmark circuits by simply converting
the digital logic gates to the corresponding DNA gates, the
total area of a DNA circuit can be roughly calculated as
"#inverter" + 2 × "#gate". Compared to the naive
implementation, the circuits synthesized by ABC have much
less area cost. Taking circuit b18 for example, we observe
that the total area of the naive implementation is about 202110
which is much larger compared to the area 101870 of the area-
optimized implementation and 105328 of the delay-optimized
implementation. On the other hand, comparing area and delay
optimized b18 circuits, delay optimization reduces the number
of gate levels from 137 to 51 at cost of increasing area by 3500
units.

VI. CONCLUSIONS

In this paper, we generalized the two-input recombinase-
based DNA logic gates to multi-input cases. We formal-
ized the syntax of recombinase-based logic gate construc-
tion, and obtained the Boolean function semantics of well-
defined DNA sequences of recombinase-based logic gates.
We also showed how to synthesize multi-level recombinase-
based logic circuits using existing logic synthesis tools. Ex-
perimental results demonstrate the feasibility of our proposed
methods. As recombinase-based logic circuits have been used
in clinical biomarker detection, our results may automate
complex recombinase-based circuit construction for advanced
biomedical applications. With more and more evidence that
DNA inversion can be mediated by genome editing tools such
as the CRISPR/Cas9 system, we anticipate broad applications
of recombinase-based logic gates in the future.

REFERENCES

[1] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic
toggle switch in Escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–
342, 2000.

[2] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338,
2000.

[3] J. Hasty, M. Dolnik, V. Rottschäfer, and J. J. Collins, “Synthetic gene
network for entraining and amplifying cellular oscillations,” Physical
Review Letters, vol. 88, no. 14, p. 148101, 2002.

[4] E. Fung, W. W. Wong, J. K. Suen, T. Bulter, S.-g. Lee, and J. C. Liao,
“A synthetic gene–metabolic oscillator,” Nature, vol. 435, no. 7038, pp.
118–122, 2005.

[5] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring,
and J. Hasty, “A fast, robust and tunable synthetic gene oscillator,”
Nature, vol. 456, no. 7221, pp. 516–519, 2008.

[6] A. E. Friedland, T. K. Lu, X. Wang, D. Shi, G. Church, and J. J. Collins,
“Synthetic gene networks that count,” Science, vol. 324, no. 5931, pp.
1199–1202, 2009.

[7] A. Tamsir, J. J. Tabor, and C. A. Voigt, “Robust multicellular computing
using genetically encoded NOR gates and chemical ‘wires’,” Nature, vol.
469, no. 7329, pp. 212–215, 2011.

[8] B. Wang, R. I. Kitney, N. Joly, and M. Buck, “Engineering modular and
orthogonal genetic logic gates for robust digital-like synthetic biology,”
Nature Communications, vol. 2, p. 508, 2011.

[9] T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, and C. A. Voigt, “Genetic
programs constructed from layered logic gates in single cells,” Nature,
vol. 491, no. 7423, pp. 249–253, 2012.

[10] J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, and D. Endy, “Amplifying
genetic logic gates,” Science, vol. 340, no. 6132, pp. 599–603, 2013.

[11] M. B. Kopniczky, S. J. Moore, and P. S. Freemont, “Multilevel regulation
and translational switches in synthetic biology,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 9, no. 4, pp. 485–496, 2015.

[12] P. Siuti, J. Yazbek, and T. K. Lu, “Synthetic circuits integrating logic
and memory in living cells,” Nature Biotechnology, vol. 31, no. 5, pp.
448–452, 2013.

[13] A. Courbet, D. Endy, E. Renard, F. Molina, and J. Bonnet, “Detection
of pathological biomarkers in human clinical samples via amplifying
genetic switches and logic gates,” Science Translational Medicine, vol. 7,
no. 289, p. 289ra83, 2015.

[14] H. J. Lee, J. Kweon, E. Kim, S. Kim, and J.-S. Kim, “Targeted
chromosomal duplications and inversions in the human genome using
zinc finger nucleases,” Genome Research, vol. 22, no. 3, pp. 539–548,
2012.

[15] A. Gupta, V. L. Hall, F. O. Kok, M. Shin, J. C. McNulty, N. D. Lawson,
and S. A. Wolfe, “Targeted chromosomal deletions and inversions in
zebrafish,” Genome Research, vol. 23, no. 6, pp. 1008–1017, 2013.

[16] D. F. Carlson, W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot,
M. Christian, D. F. Voytas, C. R. Long, C. B. A. Whitelaw, and S. C.
Fahrenkrug, “Efficient TALEN-mediated gene knockout in livestock,”

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

9

TABLE II
RESULTS OF TECHNOLOGY MAPPING OF ISCAS BENCHMARK CIRCUITS

circuit name
benchmark profile area optimization delay optimization

PI/PO # inverter # gate
(buffer)

DNA gate area # level # DNA gate area # level

b03 34/34 16 106 91 217 7 79 228 4

b04 77/74 105 547 373 852 22 358 881 8

b06 11/15 7 32 25 56 6 24 62 3

b07 50/57 61 322 257 583 23 235 615 8

b08 30/25 26 123 90 224 12 85 233 5

b09 29/29 24 116 106 228 10 96 240 5

b10 28/23 32 140 100 260 11 96 298 4

b11 38/37 148 578 333 788 25 301 829 8

b12 126/127 113 831 707 1648 15 673 1786 6

b13 63/63 52 237 172 381 12 153 401 4

b14 277/299 1531 8236 2851 6947 124 2791 7749 18

b17 1452/1512 4474 26303 15344 37726 104 14802 39178 28

b18 3357/3343 20372 90869 43018 101870 137 40277 105328 51

b20 522/512 3068 16614 6119 14497 128 6111 16545 21

b21 522/512 3089 16938 6173 14724 121 6147 16631 21

b22 767/757 4491 24671 9302 22107 124 9286 24908 21

c432 36/7 40 120 79 200 25 91 276 11

c499 41/32 40 162 407 794 21 335 833 11

c880 60/26 63 320 (26) 234 530 26 208 553 8

c1355 41/32 40 506 (32) 394 781 19 328 878 10

c1908 33/25 277 603 (162) 336 690 28 271 736 13

c2670 233/140 321 872 (196) 409 956 19 400 1002 9

c3540 50/22 490 1179 (223) 566 1473 36 553 1649 14

c5315 178/123 581 1726 (313) 942 2202 25 908 2333 12

c6288 32/32 32 2384 1825 3709 89 1502 3995 38

c7552 207/108 876 2636 (534) 1149 2496 59 1084 2754 11

s208 19/10 35 61 39 100 8 39 105 3

s298 17/20 44 75 55 125 7 52 138 3

s344 24/26 59 101 82 178 11 67 175 4

s349 24/26 57 104 84 179 11 67 175 4

s382 24/27 59 99 78 172 8 70 191 3

s386 13/13 41 118 71 186 7 61 195 3

s400 24/27 56 106 80 173 9 76 220 3

s420 35/18 74 122 79 202 11 72 196 4

s444 24/27 62 119 75 169 9 74 210 3

s510 25/13 32 179 116 311 8 102 324 4

s526 24/27 52 141 88 202 11 79 223 3

s641 54/43 272 107 94 217 17 82 232 6

s713 54/42 254 139 90 212 16 85 237 6

s820 23/24 33 256 130 353 8 129 394 4

s832 23/24 25 262 132 358 9 135 406 4

s838 67/34 149 241 163 415 12 142 398 5

s1196 32/32 141 388 243 647 17 236 734 6

s1238 32/32 80 428 278 734 17 259 790 7

s1423 91/79 167 490 341 775 50 313 815 13

s1488 14/25 103 550 299 820 12 272 910 4

s1494 14/25 89 558 303 829 11 279 920 4

s5378 214/228 1775 1004 844 1843 14 780 1849 7

s9234 247/250 3570 2027 1065 2379 20 986 2442 9

s13207 700/790 5378 2573 2006 4075 26 1818 4153 9

s15850 611/684 6324 3448 2224 4946 35 2131 5018 16

s35932 1763/2048 3861 12204 6776 14953 9 5565 14718 5

s38417 1664/1742 13470 8709 6147 14319 23 5858 14551 10

s38584 1464/1730 7805 11448 7066 16905 37 6243 16433 11

Proceedings of the National Academy of Sciences, vol. 109, no. 43, pp.
17 382–17 387, 2012.

[17] A. Xiao, Z. Wang, Y. Hu, Y. Wu, Z. Luo, Z. Yang, Y. Zu, W. Li,
P. Huang, X. Tong, Z. Zhu, and B. Zhang, “Chromosomal deletions and

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

10

inversions mediated by TALENs and CRISPR/Cas in zebrafish,” Nucleic
Acids Research, vol. 41, no. 14, p. e141, 2013.

[18] R. B. Blasco, E. Karaca, C. Ambrogio, T.-C. Cheong, E. Karayol, V. G.
Minero, C. Voena, and R. Chiarle, “Simple and rapid in vivo generation
of chromosomal rearrangements using CRISPR/Cas9 technology,” Cell
Reports, vol. 9, no. 4, pp. 1219–1227, 2014.

[19] P. S. Choi and M. Meyerson, “Targeted genomic rearrangements using
CRISPR/Cas technology,” Nature Communications, vol. 5, p. 3728,
2014.

[20] J. Li, J. Shou, Y. Guo, Y. Tang, Y. Wu, Z. Jia, Y. Zhai, Z. Chen,
Q. Xu, and Q. Wu, “Efficient inversions and duplications of mammalian
regulatory DNA elements and gene clusters by CRISPR/Cas9,” Journal
of Molecular Cell Biology, vol. 7, no. 4, pp. 284–298, 2015.

[21] T.-Y. Chiu, C.-H. Hsieh, and J.-H. R. Jiang, “Realization of large logic
circuits with long-term memory using CRISPR/Cas9 systems,” in Proc.
International Workshop on Bio-Design Automation (IWBDA), 2016.

[22] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. International Conference on Computer Aided
Verification (CAV). Springer, 2010, pp. 24–40.

[23] R. R. Rivest, “Learning decision lists,” Machine Learning, vol. 2, no. 3,
pp. 229–246, 1987.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088930doi: bioRxiv preprint

https://doi.org/10.1101/088930

	Introduction
	Preliminaries
	Formalism of Recombinase-Based Logic Gates
	Syntax of Well-Formed Sequences
	Semantics of Well-Formed Sequences
	Basic well-formed sequences
	Non-basic well-formed sequences

	Construction of Multi-Level Recombinase-Based Logic Circuits
	Experimental Evaluation
	Conclusions
	References

