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Although we perceive a richly detailed visual world, our ability to identify individual objects 1 
is severely limited in clutter, particularly in peripheral vision. Models of such crowding have 2 
generally been driven by the phenomenological misidentifications of crowded targets: 3 
using stimuli that do not easily combine to form a unique symbol (e.g. letters or objects), 4 
observers typically confuse the source of objects and report either the target or a 5 
distractor, but when continuous features are used (e.g. orientated gratings or line 6 
positions) observers report a feature somewhere between the target and distractor. To 7 
reconcile these accounts, we develop a hybrid method of adjustment that allows detailed 8 
analysis of these multiple error categories. Observers reported the orientation of a target, 9 
under several distractor conditions, by adjusting an identical foveal target. We apply new 10 
modelling to quantify whether perceptual reports show evidence of positional uncertainty, 11 
source confusion, and featural averaging on a trial-by-trial basis. Our results show that 12 
observers make a large proportion of source-confusion errors. However, our study also 13 
reveals the distribution of perceptual reports that underlie performance in this crowding 14 
task more generally: aggregate errors cannot be neatly labelled because they are 15 
heterogeneous and their structure depends on target-distractor distance.  16 
 17 
Throughout the entire visual field, vision is constrained by multiple bottlenecks in visual processing 18 
that limit the information reaching our awareness. Initially, information is lost to physiological 19 
factors such as the eyes’ optics and retinal nerve fiber density, and neural selective sensitivity to 20 
spatio-temporal patterns 1,2. However, our ability to identify even a simple object, such as a letter 21 
or an oriented grating, is far worse than predicted from these factors when the object is surrounded 22 
by clutter 3,4. These identification failures, referred to as “crowding”, occur even though adaptation 23 
after-effects demonstrate that the object’s features have been encoded, at least in primary visual 24 
cortex 5-7. Thus, our ability to consciously access the identity of an object is constrained by 25 
information processing capacity, not simply by retinal physiology or sensitivity limitations of the 26 
visual system. 27 
 28 
Crowding, the inability to recognise an object in visual clutter, influences many aspects of vision. It 29 
is generally agreed to occur across the entire visual field 8, although it is markedly more difficult to 30 
measure at the fovea 9. As discussed in a review by Pelli and Tillman 4, crowding affects all basic 31 
object recognition tasks, predicts reading speed and dyslexia, and is diagnostic of foveal deficits 32 
present in amblyopia 10. Furthermore, it limits visibility of naturalistic images 11-13, and interacts with 33 
saccadic and smooth pursuit eye movements in non-trivial ways 14-19. There have been several 34 
recent reviews of crowding that summarize very well its ubiquity 4,20-22, as well as examples in 35 
which object recognition is seemingly unaffected by parameters that cause crowding in other 36 
instances e.g. 23.  37 
 38 
The spatial extent of crowding is quite similar across paradigms. Perceptual errors increase with 39 
eccentricity and decrease as the distance between target and distractor increases. The precise 40 
target-flanker distance at which crowding is alleviated at a given eccentricity, often referred to as 41 
Bouma’s constant, is somewhat variable across studies 8, and changes dynamically according to 42 
the duration and relative timing of target and distractors 19,24-28. Despite this variability, the term 43 
“crowding” is typically taken to refer to any target identification interference that depends on target-44 
distractor proximity 29.45 
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Although there are many fascinating aspects of crowding, we focus on fundamental findings. By 46 
viewing Figure 1, the reader can experience firsthand three phenomenal aspects of crowding that 47 
arise with stimuli similar to those used in our experiments. Following standard convention, we term 48 
these phenomena: 1) positional uncertainty 30,31, 2) feature averaging 32, and 3) source confusion 49 
33,34. In this figure we present the same target stimulus, a Landolt C 1, in a series of distractor 50 
conditions. An observer’s goal is to locate the orientation of the gap section as accurately as 51 
possible. If the reader fixates the spots in succession from top to bottom, they may note that the 52 
apparent clarity of the correspondingly-coloured target orientation is affected differently in each 53 
condition. The target gap is clearest in the top row, but its position is less clear when fixating the 54 
yellow spot below, perhaps because the solid ring distractor adds noise to the positional 55 
mechanisms encoding the target orientation 35. When fixating the pink spot, the target and 56 
distractor gaps may perceptually blend together, shifting the perceived target orientation toward 57 
the distractor orientation e.g. 36. When fixating the green spot, it is not immediately clear which of the 58 
multiple gaps is the target, and it may be easy to confuse a distractor gap for a target gap 37. The 59 
changes in target visibility while viewing the yellow, pink, and green stimuli demonstrate, in order, 60 
positional uncertainty, feature averaging, and source confusion. 61 

 62 
Figure 1. Examples of stimuli in our experiments that produce qualitatively different 63 
perceptual outcomes. From top to bottom, rows represent the unflanked, no-gap flanker, 64 
one-gap flanker, and two-gap flanker conditions. Stimuli are drawn to scale, but were white 65 
on a grey background in the experiment. Data in later figures follow the colour conventions 66 
shown here. 67 
 68 
The perceptual phenomena experienced in cluttered displays are typically revealed across studies 69 
employing different methodologies. Changes in positional uncertainty and feature averaging are 70 
found in experiments in which an observer is required to make a spatial judgment about a 71 
continuous property of the target, such as its orientation or relative position, for examples, see 36,38. 72 
Feature substitutions – mistaking a distractor element for a target – are mostly found in paradigms 73 
in which the observer is required to report the categorical identity of target such as a letter; trials in 74 
which the observer reports a distractor identity instead of the target reveal source confusions 75 
33,34,39, which may be independent of an increase in positional uncertainty 40-42. 76 

                                                
1 Note that our target is a modified version of a Landolt C. A true Landolt C has a gap section formed by parallel lines, whereas the gap 
section in our stimulus is formed by non-parallel lines. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/088898doi: bioRxiv preprint 

https://doi.org/10.1101/088898
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

It is important to note that distinct categories of errors, such as averaging and substitution errors, 77 
are descriptors of results, not descriptors of a mechanism per se. Indeed, even the term crowding 78 
refers to the result of some visual process and not a mechanism. The underlying cause of 79 
crowding has previously been explained by various computational models 11,22,36-38,43-45 and higher-80 
level mechanistic hypotheses 23,46. Population code models, in which all visual features 81 
probabilistically contribute to perceptual reports, can produce a wide variety of data 47, including 82 
so-called averaging and substitution errors 37. We have thus argued that the different classes of 83 
errors reported across the crowding literature are actually arbitrary categories of the output of a 84 
single mechanism. In the present report, therefore, we use the terms “substitution” and “averaging” 85 
as a convenient way to describe patterns in our data, but not to indicate hypothesised 86 
mechanisms. Our aim in the present study is to shed further light on the cause of crowding using a 87 
single paradigm that produces multiple perceptual phenomena. Here we use experiment and 88 
modelling to quantify changes in positional uncertainty, averaging, and source confusions in visual 89 
clutter.  90 
 91 
Methods 92 
This experiment accorded with the protocols reviewed and approved by our local institutional 93 
review board. We tested three highly experienced psychophysical observers, including the two 94 
authors, all of whom gave informed consent. In figures, we refer to the participant naïve to the 95 
specific purposes of this experiment as N1, and to the authors as A1 (PJB) and A2 (WJH). All 96 
observers previously participated in two similar crowding experiments 37.  97 
 98 
An observer sat 57 cm from the display with their head stabilised by a chin and headrest. The 99 
display was a CRT monitor (1280 x 1024 resolution, 85 Hz). We programmed the experiment with 100 
the Psychophysics Toolbox Version 3 48,49 in MATLAB (MathWorks). Stimuli were white (100 101 
cd/m2) on a gray (50 cd/m2) background. The target was centered 10° to the right of the fixation 102 
spot, had a 2° diameter, and a line width of 0.4°. The gap width, measured at the midpoint of the 103 
line width, was 0.4°. In the one-gap and two-gap flanking conditions, the size of the gaps remained 104 
constant across flanker diameters. For all flanking conditions, the line width remained constant 105 
(0.4°). A flankers’ outer edge was separated from the target’s outer edge by 0.4°, 0.92°, 1.62°, 106 
2.58°, 3.9°, or infinity (ie. no flanker). We express flanker size as the flanker radius as a proportion 107 
of the eccentricity of its centre, giving 0.14 ϕ, 0.19 ϕ, 0.26 ϕ, 0.36 ϕ and 0.49 ϕ, where ϕ is the 108 
flanker eccentricity (10°). The flanker condition was selected randomly from trial-to-trial.  109 
 110 
The orientations of flankers were constrained in the following way to produce maximal crowding 111 
effects 37. In the one-gap and dual-gap flanker conditions, the flanker orientation was drawn from a 112 
normal distribution, centred on the target orientation and with a standard deviation of 22.5°. Within 113 
this range, we expect maximum levels of crowding. For the dual-gap flanker condition, a second 114 
flanker gap was drawn from a normal distribution centred 180° from the first flanker gap, with a 115 
standard deviation of 22.5°. 116 
 117 
Each trial began when an observer pressed the space bar, which triggered the display of a small 118 
spot in the centre of the screen and the target (with or without flanks) for 500 ms. Immediately 119 
following the offset of the target, a Landolt C was presented in the centre of the display, and 120 
observers could rotate this clockwise or anti-clockwise by pressing the right or left arrow key 121 
respectively. To report an orientation, they pressed the space bar, and the next trial would begin. 122 
Observers were instructed to be as accurate as possible without rushing. They could take a break 123 
at any time by withholding a report. All observers completed 320 trials per session (20 repetitions 124 
of each target-flanker combination), for five sessions, giving a total of 1600 trials, or 100 trials per 125 
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target-flanker condition. Each session took approximately 15 – 20 minutes. 126 
 127 
Results 128 
For all conditions, report error is defined as the difference between the reported orientation and the 129 
target orientation, with positive errors indicating a report that was more clockwise than the target. 130 
Because in our experiments increasing the flanker size increases target-flanker separation, we use 131 
the terms “flanker size” and “target-flanker separation” interchangeably. 132 
 133 
No-gap flanker condition 134 
Because the no-gap flanker has no features that could be substituted or averaged with the target, 135 
results from this condition allow us to examine clearly changes in positional uncertainty. In the no-136 
gap flanker condition, observers’ report errors clustered around 0° for all target-flanker separations 137 
(Fig. 2A). We used the Circular Statistics Toolbox2 to find the circular standard deviation of 138 
observers’ reports. We refer to this measure as perceptual error, which is plotted in degrees 139 
separately for each observer in Figure 2B-D as a function of the flanker size. Consistent with the 140 
crowding literature, all participants’ perceptual error was higher than the unflanked condition 141 
(dashed lines) for the two smallest flanker sizes. Observers N1 and A2 in particular show the 142 
characteristic, approximately linear improvement in performance with increasing flanker size. 143 
Performance in the largest flanker condition was similar to unflanked performance for all 144 
observers. 145 
 146 

 147 
Figure 2. Results from the no-gap flanker condition. A) Average frequencies of each report 148 
error size (25 bins; bin width = 15°), fit with circular distributions. To improve visibility, the 149 
data have been offset slightly along the x-axis, and the x-axis has been truncated to ±90°. 150 
Only a total of 4 errors greater than ±90° were made by all observers across all no-gap 151 
flanker conditions. The inset legend shows the target-flanker separation condition. Error 152 
bars show one standard error. B – D) Perceptual error (the circular standard deviation of 153 
report errors) plotted as a function of flanker size for each participant. Flanker size is 154 
expressed as flanker radius divided by the eccentricity of its centre (i.e. in units of Bouma’s 155 
constant). The dashed line indicates perceptual error for the unflanked condition. Error bars 156 
show 95% bootstrapped confidence intervals.157 

                                                
2 http://uk.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--
directional-statistics- 
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One-gap flanker condition 158 
In the one-gap flanker condition, we have previously shown that observers’ reports correspond to 159 
the distribution of weighted responses to the target and flanker orientations 37. Thus, reports may 160 
include a proportion of responses at the target orientation, the flanker orientation and their mean 161 
orientation. Quantifying reports with a unimodal circular standard deviation measure as used for 162 
the no-gap flanker condition above, is inappropriate in such a case. For a detailed explanation from 163 
the working memory literature, see 50. We express report errors as a function of target-flanker 164 
orientation difference (see Fig. 3A and Appendix Figure A1A). Under a first analysis (see Appendix 165 
A), we fit linear models to the data: reports at the target orientation have a slope of zero, reports at 166 
the flanker orientation fall on the diagonal with unity slope, and reports at the average orientation 167 
fall on the diagonal with a slope of 0.5. For all observers for the two most crowded conditions, the 168 
slopes were close to 0.5 and reduce to 0 at larger target-flanker separations. However, if these 169 
data were composed of noisy target and noisy flanker reports as described above and as has been 170 
argued previously 41, the slope of a linear fit to crowded data may give a spurious interpretation 171 
favoring the averaging model. We further applied maximum likelihood mixture modelling as 172 
described by Bays et al 50, as well as Monte Carlo simulations, but these alternative analyses failed 173 
to return the true proportions of underlying report types of simulated data with known distributions. 174 
We thus used a simplified approach that labels each datum according to its distance from each 175 
model prediction, as described below.  176 
 177 
To quantify report errors in the one-gap flanker condition, we measured the distance of all report 178 
errors from each of three underlying model predictions that correspond to target reports, averaged 179 
reports, or substitution reports, and labelled each datum according to the nearest model (see Fig. 180 
3A). We then quantified report types as a proportion of all trials from each condition. These 181 
proportions are shown for all target-flanker separations in Figure 3B-D with symbols indicating 182 
observers as per the legend. The ordinate labels on the different panels correspond to different 183 
model predictions. Note that this analysis fits data simultaneously to all model predictions, and so 184 
summing across panels for one flanker size for a single observer gives 1. The pattern is very 185 
similar for all observers: with increasing flanker size, the proportion of target reports increases, the 186 
proportion of average reports is relatively stable, and the proportion of substitution reports 187 
decreases. Note that this pattern of results indicates that the response distribution is multi-modal, 188 
since the proportions of data for each error type changes non-monotonically. Although the 189 
proportion of target reports saturates around 0.6 (Fig. 3B), this is likely an underestimate due to a 190 
limitation of our analysis for distributions when the response standard deviation is large and the 191 
target-flanker orientation difference is small: our simulations revealed that the modelled proportion 192 
of target reports is accurate when the proportion of other model components is high (greater than 193 
~0.3), but the proportion of target reports is underestimated when the contribution from other 194 
model components is minimal. For small flanker sizes, the conditions under which we expect 195 
relatively poor performance, the proportion of each report type is likely more accurate than for 196 
larger flanker sizes. Based on our previous work and the crowding literature, it is likely that 197 
observers’ reports are barely, if at all, influenced by the flanker for the largest flanker condition (for 198 
example, see Fig. 2). 199 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2016. ; https://doi.org/10.1101/088898doi: bioRxiv preprint 

https://doi.org/10.1101/088898
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 200 
Figure 3. Results from the one-gap flanker condition. A) Raw report errors from the naïve 201 
participant. Solid, dashed, and dotted lines show target, averaging, and substitution 202 
models, respectively. Data are attributed to each model according to proximity. B-D) 203 
Proportion of report type as a function of flanker size for all observers. Report type is 204 
shown on the ordinate across panels. Data for different observers have been horizontally 205 
offset slightly for clarity.  206 
 207 
Two-gap flanker condition 208 
In the two-gap flanker condition, one flanker gap orientation was normally distributed around the 209 
target orientation (“near gap”; s.d. = 22.5°) and the second flanker gap orientation was distributed 210 
180° from the first flanker gap (“far gap”; s.d. = 22.5°). Because of the relatively narrow report error 211 
distributions even in the presence of a single flanker gap (e.g. Fig. 3A), we can with some 212 
confidence delineate which errors are associated with the near gap and which with the far gap. In 213 
Figure 4A, we show the raw report errors for the naïve observer. Report errors form two clusters: 214 
one cluster centred on the y-axis at approximately 0° and another at approximately ±180°. We 215 
arbitrarily defined reports with an absolute error greater than 90° as far-gap reports. These reports 216 
are shown above and below the top and bottom dashed lines, respectively, of Figure 4A. The 217 
proportion of far gap reports for each flanker size and each observer are shown in Figure 4B-D. 218 
For all observers, the proportion of far-gap flanker errors is greatest for the smallest flanker size, 219 
and gradually decreases as the flanker size increases. 220 
 221 

 222 
Figure 4. Report errors in the two-gap flanker condition. A) Raw report errors from the naïve 223 
participant. Report errors greater than 90° or less than -90° (dashed lines) were classified as 224 
trials in which observers misreported the far-flanker gap rather than the target or near-225 
flanker gap. B-D) The proportion of such far gap reports as a function of flanker size for all 226 
observers. Errors bars are 95% confidence intervals. 227 
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We next divided the two-gap flanker condition data into two subsets for further analysis. First, we 228 
examined only those report errors within 90° of the target orientation. We performed the same 229 
analysis as we did for the one-gap flanker condition. Results are shown in Figure 5, and are highly 230 
similar to the results from the one-gap flanker condition in Figure 3. We also performed simple 231 
linear fits to the raw data, the results of which (misleadingly) favour an averaging model (see 232 
Appendix Fig. A2).  233 
 234 

 235 
Figure 5. Results from the one-gap flanker condition. Data are shown as per Figure 3. A) 236 
Raw report errors from the naïve participant, focusing on only those errors within 90° of the 237 
target. B-D) Proportion of report type as a function of flanker size.  238 

Second, we performed the same modelling on report errors that were greater than 90° from the 239 
target orientation. Due to the small number of observations in this analysis (Fig. 4), we pooled 240 
observers’ data. We re-centered this subset of data by subtracting 180° from the orientation 241 
difference between the target gap and far flanker gap, as well as from the report error. The pooled 242 
errors corresponding to the far flanker gap are shown in Figure 6A. Because we re-centered these 243 
data, an error of 0° corresponds to a report of the target’s polar opposite orientation, whereas data 244 
falling on the line of unity are reports following the far flanker gap orientation. As in the results 245 
above, with increasing flanker size, the proportion of target reports increases, the proportion of 246 
average reports is relatively stable, and the proportion of substitution reports decreases. In 247 
contrast to the results above, the proportion of target reports reached at the largest flanker size. 248 
However, there was only a single trial that had an error greater than 90° for the largest flanker 249 
condition, so this proportion necessarily had to be one or zero. Similarly, there were only two trials 250 
in the condition with the second largest flanker size, greatly restricting the possible proportions of 251 
report types. 252 
 253 

 254 
Figure 6. Results from the two-gap flanker condition for report errors greater than 90° from 255 
the target with re-centered data (see text). Data are shown as per Figure 3. A) Raw report 256 
errors pooled across observers. B-D) Proportion of report type as a function of flanker size.257 
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Discussion 258 
We used a method of adjustment to quantify perceptual error in peripheral vision under novel 259 
crowded conditions. In all conditions, performance depended on the distance between the target 260 
and flanker, in line with the vast crowding literature 4. Based on the phenomenological responses 261 
and appearance of crowded stimuli, three general classes of mechanism have been advanced to 262 
account for crowding: 1) positional uncertainty 30, 2) feature averaging 32, and 3) source confusion 263 
33. These models are not necessarily mutually exclusive and image processing based approaches 264 
have been advanced that incorporate elements of each of these mechanisms (refs 11 & 13), but it 265 
has been difficult to reconcile which best accounts for the data because of the use of different 266 
methodologies and stimuli across studies supporting each account. Furthermore, with image 267 
processing based models that produce foveal performance deficits with synthetic images that 268 
simulate peripheral vision, it is not clear which combinations of these underlying processes 269 
accounts for perceptual performance 11,51,52. The experimental design and complementary 270 
modelling employed here provides a novel way to classify the frequency of each error type with the 271 
same stimuli and observers. Our results reveal that all error types characterise crowding with 272 
Landolts, but their proportions vary with the distance between the target and flanking stimuli. 273 
 274 
In the no-gap flanker condition, the crowding we observed at relatively small target-flanker 275 
separations is likely caused exclusively by an increase in orientation uncertainty (for example, ref 276 
30). In this condition, there are no flank features for averaging or substitution to occur, yet, as 277 
shown in Figure 2, we found a reliable increase in the circular standard deviation of perceptual 278 
errors with decreasing target-flanker separation, see also 37. This result is unlikely due to a form of 279 
classical masking, such as meta-contrast masking, because perceptual reports were not randomly 280 
distributed in the presence of close flankers 53. It is also difficult to account for these errors with an 281 
attentional account of crowding, in which observers’ attentional resolution is too coarse to 282 
individuate the target gap 5: even in the smallest flanker condition, observers’ reports cluster 283 
around the actual target position, indicating that they could indeed attend to the target gap, albeit 284 
with greater perceptual error that is directly attributable to an increase in orientation variance (Fig. 285 
2). We suggest that this orientation noise can be attributed to the solid flanking ring increasing the 286 
bandwidth of a population code that encodes the target orientation (see below and ref 37).   287 
 288 
The results of the one-gap and two-gap flanker conditions also support recent proposals that 289 
crowding may best be accounted for by a population code. Rather than conforming neatly to a 290 
single report error type, we found errors could be accurate, follow the flanker gap, or some 291 
average of the two. These data are thus difficult to reconcile with simple averaging or substitution 292 
models. Van den Berg et al 47 showed that many hallmarks of crowding can be explained by a 293 
biologically inspired model that simulates the responses of populations of neurons tuned to 294 
orientation within a fixed region of space (ie. a receptive field). Crowded stimuli create systematic 295 
shifts in the population code, so that when the population code is decoded, the decoded signal is 296 
prone to error. We further showed that an idealised population code can, for a given crowded 297 
stimulus, produce accurate, averaged, or substituted report errors in a probabilistic fashion 37. We 298 
thus argued that there is no averaging or substitution mechanism per se, but instead that 299 
perceptual reports are drawn from the population response to the stimuli. Such a process is distinct 300 
from any single phenomenon such as source confusion, averaging or substitution but instead 301 
results from the broad spatial bandwidth of early stage filters.  302 
 303 
Critically, the results from the present study show that averaging of features is not compulsory, in 304 
contrast to previous work 32. On a number of trials in which a flanker gap is present, observers can 305 
recover the target orientation with a precision similar to that observed with no flanker gap (Fig. 3). 306 
With only a single report, it is impossible to know if, on a single trial, an observer perceived both 307 
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the target orientation and the flanker orientation, their average, or if the frequencies of these 308 
percepts varied across trials. We previously asked participants to report both the target and flanker 309 
orientations in an experiment similar to the present report, and found that participants were 310 
generally capable of reporting both elements, though they often reversed feature positions 37. 311 
Taken together, these data reveal that perceptual reports in clutter are probabilistic, but relatively 312 
fine detail can be recovered. 313 
 314 
It is clear from our data that observers often report an orientation closer to the flanker orientation 315 
instead of the target orientation (Fig. 4). However, our findings suggest the proportion of 316 
substitution-type errors is substantially greater than the proportion of substitution errors that occur 317 
when whole letter stimuli are used 39. It is likely that this discrepancy can be explained by the task 318 
differences. Letter report paradigms limit the response range and so the observer is forced to 319 
select the most similar letter, even if the perceived stimulus does not match any of the possible 320 
responses. Our response method does not suffer from this limitation. 321 
 322 
Our results thus provide new evidence revealing that the component features of visual objects can 323 
be individuated even far in the periphery, although their relative positions and orientations may 324 
appear noisy and confusable across trials. The level of detail made available by the visual system 325 
has been heavily debated both within the crowding literature and more generally. Our data suggest 326 
one possible reason for this apparent conflict in the literature. Note that our analyses suggest all 327 
observers have very high rates of substitution-type reports under crowded conditions: combining 328 
the proportion of far-flanker gap substitutions (Fig. 4) and proportion of near-gap errors (Fig. 5), 329 
observers made approximately 50% - 70% substitution-type errors in the most crowded conditions. 330 
Such performance may be misinterpreted in alternative forced choice experiments (AFC), a more 331 
common psychophysical paradigm in which an observer is forced to categorise a target as being 332 
one of usually two to four alternatives. In these experiments, such a high proportion of substitution-333 
type reports could render performance at or close to chance, leaving it unclear if a participant was 334 
randomly guessing, reporting an average stimulus or reporting what they thought was the target on 335 
some trials and the flanker on other trials. This is especially true in experiments with simple stimuli 336 
such as lines or Gabors, though it is less problematic with letter stimuli e.g. 34,39. 337 
 338 
In conclusion, our findings show that relatively fine featural detail is not necessarily lost during 339 
early visual processing, but the precision of each perceptual report is corrupted. The aggregate of 340 
errors made when viewing crowded displays cannot be characterised as simply being accurate, 341 
averaged or substituted. The variety of report error types that occur within the same paradigm, as 342 
demonstrated here, provides a continued challenge to models of visual crowding. 343 
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Appendix A – Supplementary Analyses  
 
Prior to the mixed-model analyses for the one-gap and two-gap flanker conditions presented in the 
Results section, we performed the following linear analyses.  
 
One-gap flanker condition 
Shown in Figure A1A are the naïve observer’s report errors and linear fits as a function of target-
flanker orientation difference. Note that a linear fit with a slope of 1 would indicate the observer’s 
reports followed the flanker gap closely, a slope of 0 would indicate the observer’s reports were not 
influenced by the flanker, and a slope of 0.5 conforms to the average of target and flanker 
orientations. In Figure A1B-D we plot the slope parameter for all conditions from all observers for 
the one-gap flanker condition. Slope parameters were close to 0.5 for the two smallest flanker 
sizes, and generally decreased as the flanker size increased. For all observers, the slopes were 
approximately 0 for the largest flanker condition. However, these analyses do not describe the data 
in full (see Results). 
 

 
Figure A1. Results from linear fits in the one-gap flanker condition. A) Example raw data 
from the naïve participant. Lines show linear fits for each target-flanker separation, with 
colour shading indicating conditions as in Fig. 2A. To improve visibility, we have truncated 
the x-axis and y-axis. B-D) Slope parameters as a function of flanker size for all observers. 
Errors bars are 95% confidence intervals. 
 
Two-gap flanker condition (near-gap) 

 
Figure A2. Results from the two-gap flanker condition for report errors less than 90° from 
the target. A) Raw data from the naïve participant. The x-axis indicates the orientation 
difference between the target gap and the nearest flanker gap. Data presented as in Fig. 
A1A. B-D) Slope parameters as a function of flanker size for all observers. Errors bars are 
95% confidence intervals. 
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