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In microcanonical molecular dynamics simulations, fast-folding proteins CLN0251 and Trp-

cage2 can autonomously fold to conformations with Cαα  root mean square deviations 

(RMSDs) of 1.0–1.4 Å from the experimentally determined native conformations3. However, 

the folding times of CLN025 and Trp-cage predicted from the simulations3 are more than 4–

10 times longer than the experimental values4,5, indicating an accuracy gap between 

experiment and simulation for folding speed. Here I report how combining a new protein 

simulation method6 and a revised AMBER forcefield7 results in accurate folding of CLN025 

and Trp-cage in 40 distinct, independent, unrestricted, unbiased, and isobaric–isothermal 

molecular dynamics simulations. According to a survival analysis of these simulations using 

a Cαα -and-Cββ  RMSD cutoff of 0.98 Å, the simulated folding times of CLN025 at 293 and 

300 K and Trp-cage at 280 and 300 K are 279 ns (95% CI: 204–380 ns), 198 ns (95% CI: 146–

270 ns), 2.4 µµs (95% CI: 1.8–3.3 µµs), and 0.8 µµs (95% CI: 0.6–1.0 µµs), respectively. The 

corresponding experimental values are 261 ns, 137 ns, 2.4 µµs, and 1.4 µµs, respectively4,5. These 

results show that CLN025 and Trp-cage now can autonomously fold in silico as fast as they 

do in experiments, indicating that the accuracy of folding simulations begins to overlap with 

the accuracy of folding experiments. This represents a step forward in combining simulation 

with experiment to develop algorithms that predict structure and dynamics of a globular 

protein from its sequence for artificial intelligence of biomedical research. 

 How fast can fast-folding proteins autonomously fold in silico? This question is important 

because experimental folding times (τs)4,5,8 are rigorous benchmarks for evaluating the accuracy 

of protein folding simulations9-11. Presumably due to approximations in the empirical potential 

energy functions with a set of parameters that are used in simulations of protein folding, the 

simulated τs reported to date have been considerably longer than the experimental τs. For 

example, early molecular dynamics (MD) simulations of fast-folding proteins using a distributed 

computing implementation with implicit solvation yielded τs that were reportedly consistent 
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with the corresponding experimental values12,13. Those simulated τs were derived by using 

cutoffs for Cα RMSD (CαRMSD) of 2.5–3.0 Å13 and 3.622 Å12 from the experimentally 

determined native conformations to identify conformations that constitute the native structural 

ensembles. If CαRMSD cutoffs of <2.0 Å were used, the τs estimated from those simulations 

would be considerably longer than the experimental values according to the reported 

sensitivities of the simulated τs to CαRMSD cutoffs12,13. For another example, advanced 

microcanonical MD simulations predicted τs of fast-folding proteins CLN0251 and Trp-cage2 to 

be 600 ns at 343 K and 14 µs at 335 K, respectively3. These τs were derived from the 

microcanonical simulations with the most populated conformations of CLN025 and Trp-cage 

that have respective stringent CαRMSDs of 1.0 Å and 1.4 Å from the experimentally determined 

native conformations3. Based on the predicted τs at 335 K and 343 K, the simulated τs of 

CLN025 and Trp-cage at 300 K are conceivably more than 4–10 times longer than the 

experimental τs (137 ns for CLN025 and 1.4 µs for Trp-cage) at 300 K because the experimental 

τs reportedly increase as temperature decreases4,5. Therefore, how fast can fast-folding proteins 

fold in silico equates to how accurate protein folding simulations can be. The reported τs to 

date suggest that fast-folding proteins cannot autonomously fold in silico as fast as they do in 

experiments and there is an accuracy gap between simulation and experiment for protein 

folding speed. 

 To narrow the gap I developed a new protein simulation method that uses uniformly scaled 

atomic masses to compress or expand MD simulation time for improving configurational 

sampling efficiency or temporal resolution, respectively6,14,15. As explained in Ref. 6, uniformly 

reducing all atomic masses of a simulation system by tenfold can compress the simulation time 

by a factor of 

 

10  and hence improve the configurational sampling efficiency of the low-mass 
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simulations at temperatures of ≤340 K. This method consequently enables miniprotein folding 

simulations to be performed on personal computers such as Apple Mac Pros under isobaric–

isothermal conditions under which most experimental folding studies are performed. Also the 

kinetics of the low-mass simulation system can be converted to the kinetics of the standard-mass 

simulation system by simply scaling the low-mass time with a factor of 

 

10 . Aided by the low-

mass simulation method, I subsequently developed a revised AMBER forcefield—an empirical 

potential energy function with a set of revised parameters—that has shown improvements in (i) 

autonomously folding fast-folding proteins, (ii) simulating genuine localized disorders of folded 

globular proteins, and (iii) refining comparative models of monomeric globular proteins7,16,17. 

Hereafter the combination of the revised AMBER forcefield with the low-mass simulation 

method is termed FF12MC7.  

 I also reported the use of the open-source R survival package, which has been widely used in 

preclinical and clinical studies18, to predict τs of fast-folding proteins from their sequences6,7. In 

performing zebrafish toxicology experiments, I observed that even though all fish with nearly 

the same body weights received an intraperitoneal injection of the same dose of the same toxin, 

the times-to-death of 20 toxin-treated fish varied widely in each experiment. In some 

experiments a few fish did not even succumb to the toxin. Yet, the mean times-to-death and 

their 95% confidence intervals (95%CIs) obtained from the R survival package varied slightly 

among different experiments. The resemblance of the live and dead states of the zebrafish to the 

unfolded and folded states of a protein inspired me to use the R survival package to predict τs 

from sequences as follows7: Perform 1) 20–40 distinct and independent MD simulations of a fast-

folding protein sequence using FF12MC to obtain 20–40 sets of instantaneous conformations in 

time, wherein the sequence adopts a fully extended backbone conformation, 2) a cluster analysis 

of all instantaneous conformations from the 20–40 sets to obtain the average conformation of 

the largest conformation cluster as the native conformation of the protein, and 3) a survival 
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analysis using the 20–40 sets of instantaneous conformations in time and the average 

conformation to determine τ and its 95%CI. One advantage of this method is the rigorous 

estimation of the mean and 95%CI of τ from a set of simulations—a few of which did not 

capture a folding event. Another advantage is that the τ prediction does not require the 

assumption that the protein must follow a two-state folding mechanism. By examining a plot of 

the natural logarithm of the nonnative state population of the protein versus time-to-folding, one 

can determine the hazard function for the nonnative state population of the protein. If the plot 

reveals an exponential decay of the nonnative state population over simulation time, then the 

protein follows a two-state folding mechanism in the simulations.   

 To determine how fast CLN025 autonomously folds in silico using the methods outlined 

above, 40 distinct, independent, unrestricted, unbiased, isobaric–isothermal, and 3.16-µs (of the 

standard-mass time) classical MD simulations of CLN025 were performed at 300 K using 

FF12MC. A fully extended backbone conformation of CLN025 was used as the initial 

conformation of the 40 simulations. All simulations described hereafter are 40 distinct, 

independent, unrestricted, unbiased, isobaric–isothermal, and classical MD simulations with 

FF12MC using a fully extended backbone conformation as the initial conformation of the 

protein for the 40 simulations. Also all simulation times described hereafter are the standard-

mass simulation times. A cluster analysis of the simulations revealed that the average 

conformation in the largest cluster adopted a β-hairpin conformation (Fig. 1B). This average 

conformation had CαRMSD of 0.87 Å and Cα and Cβ RMSD (CαβRMSD) of 0.94 Å relative 

to the average conformation (Fig. 1A) of 20 NMR-determined conformations of CLN025 (PDB 

ID: 2RVD)1. It is worth noting that CαβRMSD includes main-chain and side-chain structural 

information and is hence more stringent to measure structural similarity than CαRMSD. Using 

the average conformation of the largest cluster as the predicted native conformation of CLN025, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2016. ; https://doi.org/10.1101/088849doi: bioRxiv preprint 

https://doi.org/10.1101/088849
http://creativecommons.org/licenses/by/4.0/


 6 

the first time-instant at which CαβRMSD of the full-length CLN025 sequence reached ≤0.98 Å 

was recorded as an individual folding time for each of the 40 simulations (Table S1A). Using the 

40 individual folding times as times-to-folding, a survival analysis predicted the τ of CLN025 to 

be 198 ns (95%CI = 146–270 ns; n = 40) at 300 K (Table 1). Plotting the natural logarithm of the 

nonnative state population of CLN025 versus time-to-folding revealed a linear relationship with 

r2 of 0.97 (Fig. 2), which indicates that CLN025 follows the two-state folding mechanism. These 

results agree with the experimental studies showing that the folding of CLN025 follows a two-

state folding mechanism with a τ of 137 ns at 300 K, which was obtained from Fig. 6 of Ref. 4. 

To substantiate the agreement between the experimental and computational τs of CLN025 at 

300 K, the 40 CLN025 simulations were repeated at 293 K. Using the same CαβRMSD cutoff 

and the same predicted native conformation, a survival analysis showed that CLN025 followed 

the two-state folding mechanism (r2 = 0.94; Fig. 2) with a τ of 279 ns (95%CI = 204–380 ns; n = 

40) at 293 K (Table 1), showing again an agreement with the experimental τ of 261 ns at 293 K 

that was also obtained from Fig. 6 of Ref. 4.  

 To determine how fast Trp-cage autonomously folds in silico, 40 9.48-µs MD simulations of 

the Trp-cage TC10b sequence were performed at 280 K. The average conformation of the 

largest cluster of the simulations (Fig. 1D) had CαRMSD of 1.69 Å and CαβRMSD of 1.86 Å 

from the average conformation (Fig. 1C) of 28 NMR-determined conformations (PDB ID: 

2JOF)2. Using the CαβRMSD cutoff of 0.98 Å and the average conformation as the predicted 

native conformation, a survival analysis showed that TC10b followed the two-state folding 

mechanism (r2 = 0.94; Fig. 2) in the simulations with a τ of 2.4 µs (95% CI = 1.8–3.3 µs; n = 40) 

at 280 K (Table 1). This is consistent with the τ of 2.4 µs at 280 K that was obtained from Fig. 4 

of NMR ln Kf in Ref. 5. Repeating the 40 simulations of TC10b at 300 K, using the same 

simulation conditions and the same criteria to define the native structural ensemble, revealed 
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the two-state folding mechanism (r2 = 0.96; Fig. 2) and led to a shortened τ of 0.8 µs (95% CI = 

0.6–1.0 µs; n = 40; Table 1), which is also consistent with the experimental τ of 1.4 µs at 300 K5. 

 In the above studies, the average conformation of the largest cluster was used as the 

predicted native conformation, and a full-length CαβRMSD cutoff of 0.98 Å from the average 

conformation was used to identify conformations that constitute the native structural ensemble. 

The use of the average rather than the representative conformation of the largest cluster may 

unrealistically shorten the simulated τ, whereas the use of an “overly” stringent CαβRMSD 

cutoff of 0.98 Å may unrealistically lengthen the simulated τ. To address these concerns, all τs 

in Table 1 were re-estimated from the same simulation data using both the average and 

representative conformations with RMSD cutoffs varying from 0.98 Å to 1.40 Å. As apparent 

from Table S2, the τs of CLN025 and Trp-cage are insensitive to the change from the average to 

the representative conformation, and these τs are also insensitive to the variation of the 

CαβRMSD cutoff within 0.98–1.40 Å. Therefore, the concerns about the definition of the 

native structural ensemble are unwarranted. 

 In this context, it is evident from the present data that an agreement between the 

experimental and computational τs was achieved within a factor of 0.69–1.75 (Table 1) when 

folding simulations were performed using FF12MC. While additional folding simulations and 

95%CIs for experimental τs are needed to conclusively answer the question of how fast can fast-

folding proteins fold in silico, the present data show that CLN025 and Trp-cage now can 

autonomously fold in simulations as fast as they do in experiments, indicating that the accuracy 

of folding simulations begins to overlap with the accuracy of folding experiments. This finding 

represents an important step forward in combining computation with experiment to develop 

algorithms that predict structure and dynamics of a globular protein from its sequence for 

artificial intelligence of biomedical research. 
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METHODS 

MD simulations. A fast-folding protein in a fully extended backbone conformation was solvated 

with the TIP3P water19 with surrounding counter ions and/or NaCls and then energy-minimized 

for 100 cycles of steepest-descent minimization followed by 900 cycles of conjugate-gradient 

minimization to remove close van der Waals contacts using SANDER of AMBER 11 (University 

of California, San Francisco). The resulting system was heated from 0 to a temperature of 280–

300 K at a rate of 10 K/ps under constant temperature and constant volume, then equilibrated 

for 106 timesteps under constant temperature and constant pressure of 1 atm employing isotropic 

molecule-based scaling, and finally simulated in 40 distinct, independent, unrestricted, 

unbiased, isobaric–isothermal, and classical MD simulations using PMEMD of AMBER 11 with 

a periodic boundary condition at 280–300 K and 1 atm. The fully extended backbone 

conformations (viz., anti-parallel β-strand conformations) were generated by MacPyMOL 

Version 1.5.0 (Schrödinger LLC, Portland, OR). The numbers of TIP3P waters and surrounding 

ions, initial solvation box size, and ionizable residues are provided in Table S3. The 40 unique 

seed numbers for initial velocities of Simulations 1–40 are listed in Table S4. All simulations 

used (i) a dielectric constant of 1.0, (ii) the Berendsen coupling algorithm20, (iii) the Particle 

Mesh Ewald method to calculate electrostatic interactions of two atoms at a separation of >8 Å21, 

(iv) Δt = 1.00 fs of the standard-mass time7, (v) the SHAKE-bond-length constraints applied to all 

bonds involving hydrogen, (vi) a protocol to save the image closest to the middle of the “primary 

box” to the restart and trajectory files, (vii) a formatted restart file, (viii) the revised alkali and 

halide ions parameters22, (ix) a cutoff of 8.0 Å for nonbonded interactions, (x) the atomic masses 

of the entire simulation system (both solute and solvent) were reduced uniformly by tenfold, 

and (xi) default values of all other inputs of the PMEMD module. The forcefield parameters of 

FF12MC are available in the Supporting Information of Ref. 6. All simulations were performed 

on an in-house cluster of 100 12-core Apple Mac Pros with Intel Westmere (2.40/2.93 GHz).  
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Folding time estimation. The τ of a miniprotein was estimated from the mean time-to-folding 

in 40 distinct, independent, unrestricted, unbiased, isobaric–isothermal, and classical MD 

simulations using survival analysis methods18 implemented in the R survival package Version 

2.38-3 (http://cran.r-project.org/package=survival). A CαβRMSD cutoff of 0.98 Å was used to 

identify conformations that constitute the native structural ensemble. For each simulation with 

conformations saved at every 105 timesteps, the first time-instant at which CαβRMSD reached 

≤0.98 Å was recorded as an individual folding time (Table S1). Using the Kaplan-Meier 

estimator23,24 [the Surv() function in the R survival package], the mean time-to-folding was first 

calculated from a first set of simulations each of which captured a folding event. If a parametric 

survival function mostly fell within the 95% confidence interval (95% CI) of the Kaplan-Meier 

estimation for the first set of simulations, the parametric survival function [the Surreg() function 

in the R survival package] was then used to calculate the mean time-to-folding of the first set of 

simulations and the mean time-to-folding of a second set of simulations that were identical to 

the first set except that the simulation temperature of the second set was changed.  

 

Cluster analysis and data processing. The conformational cluster analyses of CLN025 and 

TC10b were performed using CPPTRAJ of AmberTools 16 with the average-linkage algorithm25, 

epsilon of 2.0 Å, and root mean square coordinate deviation on all Cα and Cβ atoms (see Table 

S5). No energy minimization was performed on the average conformation of any cluster. The 

linear regression analysis was performed using the PRISM 5 program.  
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Table 1. Experimental and computational folding times of CLN025 and Trp-cage (TC10b) 

 Folding time (µs)  
Fast-folding protein Experimental Computational E/C 
  Mean 95%CI  
CLN025 at 293 K 0.261 0.279 0.204–0.380 0.94 
CLN025 at 300 K 0.137 0.198 0.146–0.270 0.69 
TC10b at 280 K 2.4 2.4 1.8–3.3 1.00 
TC10b at 300 K 1.4 0.8 0.6–1.1 1.75 

The experimental folding times of CLN025 and TC10b were obtained from the Arrhenius plots 

of Refs. 4 and 5. Each computational folding time was predicted from 40 distinct, independent, 

unrestricted, unbiased, isobaric–isothermal, and 3.16-µs (for CLN025) or 9.48-µs (for TC10b) 

molecular dynamics simulations with FF12MC using a parametric survival function and a Cα-

and-Cβ root mean square deviation of 0.98 Å from the average conformation of the largest 

conformation cluster of the simulations to identify conformations that constitute the native 

structural ensemble. E/C: Experimental folding time divided by computational folding time. 

95%CI: 95% confidence interval.  
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Fig. 1. Native conformations of CLN025 and Trp-cage (TC10b) derived from experiments 

and simulations. (A) The average of 20 CLN025 NMR structures. (B) The average 

CLN025 conformation of the largest cluster in the simulations using FF12MC. (C) The 

average of 28 Trp-cage NMR structures. (D) The average Trp-cage conformation of the 

largest cluster in the simulations using FF12MC.  
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Fig. 2. Plots of the natural logarithm of the nonnative state population of CLN025 and Trp-

cage (TC10b) over time-to-folding. The individual folding times were taken from Table 

S1A.  
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