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Abstract

Many multicellular systems problems can only be understood by studying how cells
move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of
many interacting cells as they respond to and influence their microenvironment. The
ideal “virtual laboratory” for such multicellular systems simulates both the biochemical
microenvironment (the “stage”) and many mechanically and biochemically interacting
cells (the “players” upon the stage).

PhysiCell—physics-based multicellular simulator—is an open source agent-based
simulator that provides both the stage and the players for studying many interacting
cells in dynamic tissue microenvironments. It builds upon a specialized multi-substrate
biotransport solver so that modelers can link cell phenotype to multiple diffusing
substrates and signaling factors. It includes biologically-driven sub-models for cell
cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility “out
of the box,” allowing modelers to concentrate on microenvironment-driven hypotheses.
The C++ code has minimal dependencies, making it simple to maintain across platforms.
PhysiCell has been parallelized with OpenMP, and its performance scales linearly with
the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop
workstations; larger simulations are attainable on single HPC compute nodes.

We demonstrate PhysiCell by simulating impact of necrotic core biomechanics, 3-D
geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and
ductal carcinoma in situ (DCIS) of the breast. PhysiCell is a powerful multicellular
systems simulator that will be continually improved with new sub-models, capabilities,
and performance improvements. It also represents a significant independent code
base for replicating results from other simulation platforms. The PhysiCell source
code, examples, documentation, and support are available under the BSD license at
http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.

Author Summary

This paper introduces PhysiCell: an open source, agent-based model for 3-D multicellular
simulations. It includes a standard library of sub-models for cell fluid and solid volume
changes, cell cycle progression, apoptosis, necrosis, and mechanics. The code is directly
coupled to a specialized biotransport solver to simulate many diffusing substrates and
cell signals. Each cell can release diffusing signals, and dynamically update its phenotype
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according to its microenvironmental conditions. Users can customize or replace the
included sub-models.

PhysiCell was designed to work on a variety of platforms (Linux, OSX, and Windows)
with a minimum number of software dependencies. Its computational cost scales linearly
in the number of cells. It is feasible to simulate 500,000 cells on current quad-core
desktop workstations, and millions of cells on single HPC compute nodes. In this paper,
we demonstrate PhysiCell to test the impact of necrotic core biomechanics, 3-D geometry,
and stochasticity on hanging drop tumor spheroids (HDS) and ductal carcinoma in situ
(DCIS) of the breast.

We developed PhysiCell to help the scientific community tackle multicellular systems
biology problems involving many interacting cells in multi-substrate microenvironments.
PhysiCell also represents an important independent, cross-platform code base for repli-
cating simulation results from other simulation platforms.

Introduction 1

Many significant multicellular systems processes—such as tissue engineering, evolution 2

in bacterial colonies, and tumor metastasis—can only be understood by studying how 3

individual cells grow, divide, die, and interact [1–5]. Tissue-scale dynamics emerge as cells 4

are influenced by biochemical and biophysical signals in the microenvironment, even as 5

the cells continually remodel the microenvironment. Thus, the ideal “virtual laboratory” 6

for multicellular systems biology must simultaneously simulate (1) the dynamics of 7

many mechanically and biochemically interacting cells, and (2) tissue microenvironments 8

with multiple diffusing chemical signals (e.g., oxygen, drugs, and signaling factors) [5]. 9

We recently published and open sourced the first part of such a platform: BioFVM, a 10

biotransport solver that can efficiently simulate secretion, diffusion, uptake, and decay 11

of multiple substrates in large 3-D microenvironments, even on desktop workstations [6]. 12

We now introduce and release as open source PhysiCell: a mechanistic off-lattice agent- 13

based model built on top of BioFVM to simulate the tissue-scale behaviors that emerge 14

from basic biological and biophysical cell processes. 15

Prior work and goals for PhysiCell 16

Several major computational frameworks are available for studying 3-D multicellular 17

systems. CompuCell3D [7] and Morpheus [8] use cellular Potts methods to simulate 18

cells and their morphologies. They are very user-friendly packages with graphical model 19

editors, integrated ODE and PDE solvers, and support for molecular-scale sub-models, 20

but they currently cannot scale to large numbers (105 or more) of cells. TiSim (part 21

of the CellSys package [9]) can simulate many more cells by using a cell-centered, 22

off-lattice approach. However, it is currently closed source, and its executables are 23

restricted to a limited set of simulation types. Chaste [10] is a powerful, well-developed 24

framework for multicellular modeling with integrated PDE and ODE solvers, and both 25

cell- and vertex-based simulations of 105 or more cells. However, its complex codebase 26

has many dependencies that can impede participation by new developers; it is only 27

cross-platform compatible by virtual machines. Biocellion [11] can simulate billions of 28

cells on cluster computers, but it is closed source, and its restrictive user license has 29

hindered adoption. Most of these platforms offer a general-purpose pre-compiled “client” 30

that can load models and settings from an XML file; this helps overcome difficulties 31

stemming from complex dependencies. See the supplementary materials for a detailed 32

software comparison. 33

These platforms typically require users to write their own code for all cell activities, 34

by scripting basic built-in functions. (e.g., build a cell cycle model from API functions 35
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to overwrite cell volume and duplicate agents when appropriate.) As configured “out 36

of the box,” none have built-in models for cell cycling, apoptosis, and necrosis, even 37

though these fundamental behaviors are needed in many multicellular simulations. Only 38

CompuCell3D and Morpheus have built-in volume regulation features. None of these 39

packages include transport solvers that are tailored to biology and will efficiently scale to 40

3-D simulations with many diffusable factors–a key requirement in reconciling secretomics 41

with single-cell and multicellular systems biology, particularly as we work to understand 42

cell-cell communication involving many cell-secreted factors. 43

PhysiCell aims to balance computational speed, built-in standard functionality, 44

flexibility, and codebase simplicity. It includes a built-in library of standardized cell 45

cycle and cell death models co-developed with biologists and modelers here and in the 46

MultiCellDS standardization process [12, 13], force-based cell-cell interaction mechanics, 47

and volume regulation. Users can replace any of these built-in models with their own, 48

and they can dynamically assign custom functions to any agent at any time. Through 49

BioFVM, PhysiCell can couple cell phenotype to many diffusable substrates. It is the 50

only simulation package to explicitly model the cell’s fluid content. It can simulate 51

systems of 105 − 106 cells on desktop workstations, and 106 or more cells on single 52

HPC compute nodes. All this functionality and performance is achieved with only two 53

external dependencies, and a fully cross-platform C++ codebase that we have compiled 54

and tested on Linux, OSX, and Windows. 55

PhysiCell will help its users to test the behaviors that emerge from basic biological 56

and physical processes, and to evaluate model predictions against multicellular data [14]. 57

It also serves as a powerful, independent codebase to cross-validate model predictions in 58

Chaste, Biocellion, TiSim, and other platforms. 59

Design and Implementation 60

PhysiCell is designed to study the dynamics and interactions of thousands or millions 61

of cells in 3-D microenvironments, with microenvironment-dependent phenotypes. It 62

uses a lattice-free, physics-based approach to reduce grid-based artifacts. It provides 63

optimized, biologically realistic functions for key cell behaviors, including: cell cycling 64

(multiple models for in vitro and in vivo-focused simulations) cell death (apoptosis 65

and necrosis), volume regulation (fluid and solid biomass; nuclear and cytoplasmic sub- 66

volumes), and cell-cell mechanical interactions. This allows users to focus on modeling 67

microenvironment-dependent triggers of standard cell processes, rather than coding 68

these basic processes. However, to maintain flexibility, PhysiCell is written in a modular 69

manner so that users can extend, rewrite, or replace its functions. Users can also 70

create custom rules, and assign them to individual agents. It is fully coupled to a fast 71

multi-substrate diffusion code (BioFVM) that solves for vectors of diffusing substrates, 72

so that users can tie cell phenotype to many diffusing signals. 73

PhysiCell was built by extending the Basic Agent class in BioFVM [6] (a static, non- 74

moving object that can secrete and uptake substrates) into a fully dynamic Cell class 75

with changing cell volume, cycle progression, death processes, and mechanics. This allows 76

the cells to directly and efficiently interface with the multi-substrate microenvironment. 77

PhysiCell is written in cross-platform compatible C++ and is self-contained (with 78

minimal dependencies). It can be compiled in any C++11 compiler with OpenMP 79

support. This simplifies installation and improves the reproducibility of the experiments. 80

We have tested PhysiCell on Windows through MinGW-w64, and on OSX and Linux via 81

g++. PhysiCell’s only external dependencies are pugixml [15] (for XML parsing) and 82

BioFVM [6] for 3-D multi-substrate diffusion. For the user’s convencience, compatible 83

versions of pugixml and BioFVM are included in every download. 84

The code has been parallelized in OpenMP to make use of multi-core desktop 85
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workstations and HPC compute nodes. In testing, its performance scales linearly in the 86

number of cells. Simulations of up to 106 cells are feasible on desktop workstations, and 87

simulations beyond 106 cells are possible on typical HPC compute nodes. 88

Agent-based cell model 89

PhysiCell implements key cell-scale processes—cell cycling and death, volume changes, 90

mechanics, and motility—and lets users link the parameters of these processes to 91

microenvironmental conditions. PhysiCell then scales these basic cell-scale hypotheses to 92

simulate thousands or millions of cells, from which tissue-scale behavior emerges. Here, 93

we summarize the key functions. For each sub-model, see the supplementary materials 94

for the full equations, further biological motivation, and reference parameter values. 95

Cell characteristics and state Cell agents have a variety of phenotypic properties, 96

including position (xi), volume (and sub-volumes), cell cycle or death status, and 97

mechanics (adhesive, deformation, and motility) parameters. See the supplementary 98

materials for a list of all the cell agents’ attributes and functions to access/update them. 99

Below, we describe standardized, built-in models to update these properties. The models 100

can be replaced by user-defined functions; the supplied models serve as biophysically 101

reasonable default functions that capture the key aspects of these processes. 102

Cell volume Each cell tracks V (total volume), VF (total fluid volume), VS (total 103

solid volume), VNS (nuclear solid volume), VCS (cytoplasmic solid volume), VN (total 104

nuclear volume), and VC (total cytoplasmic volume). Key parameters include nuclear 105

solid, cytoplasmic solid, and fluid rate change parameters (rN, rC, and rF), the cell’s 106

“target” fluid fraction fF, target solid volume V ∗
NS, and target cytoplasmic to nuclear 107

volume ratio fCN. These parameters are updated as the cell progresses throuh its current 108

cycle or death process. (See Cell cycling and Cell death.) 109

Cell mechanics and motion We model cell mechanics and motion as in our prior 110

work [16]: we update each cell’s position xi by calculating its current velocity vi based 111

upon the balance of forces acting upon it. The main forces include cell motility, drag- 112

like forces, and cell-cell and cell-matrix interaction forces: adhesion and “repulsion” 113

(resistance to deformation and/or volume exclusion [17]). As in prior cell-centered 114

models [16,18,19], we apply an inertialess assumption to explicity solve for each cell’s 115

velocity. We model adhesion and repulsion with interaction potentials that depend upon 116

each cell’s size, maximum adhesion distance, adhesion and repulsion parameters, and 117

distance to other cells [16]. 118

Cell cycling PhysiCell includes a cell cycle modeling framework, where each cell cycle 119

model is a collection of phases {Xk}, transition rates {rij} between the phases, and a 120

cell division phase transition. As in [16], we use the phase transition rates to calculate 121

the phase change probabilities in any time interval [t, t+ ∆t]. Some cell cycle models 122

can also replace the stochastic phase transitions with deterministic transitions. 123

Each cell agent tracks its current cell cycle phase Sk and its total time spent in 124

that phase (tk). Users can change the transition rates at any time, in part based upon 125

microenvironmental conditions (e.g., based upon oxygenation or cell contact). 126

As a concrete example, consider the “Ki67 Advanced” model from our prior work 127

calibrating oxygen-dependent growth to Ki67 data in ductal carcinoma in situ (DCIS) 128

[16,20,21]. The phases are K1 (Ki67+ cycling cells, prior to cell division), K2 (Ki67+ 129

cycling cells, after cell division), and Q (Ki67- quiescent cells). K1 and K2 have stochastic 130
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durations (with means T1 and T2). We model the transition rate from Q to K1 as 131

rQ1 =
1

TQ

max

{(
pO2 − pO2,hypoxia

pO2 − pO2,hypoxia

)
, 0

}
, (1)

where cells spend a mean time of TQ in the Q phase when pO2 = pO2. Cells double 132

V ∗
NS when transitioning from Q to K1 (to double their nuclear content), and they halve 133

V ∗
NS (and all the sub-volumes) when dividing into two daughter cells at the K1 −→ K2 134

transition. The full set of supported cell cycle models—along with reference parameter 135

values—is given in the supplementary materials. 136

Cell death PhysiCell currently includes models for two types of cell death: apoptosis 137

(programmed cell death) and necrosis (unprogrammed cell death) [22]. At any time, 138

each agent (with index i) has two death rates (rA,i for apoptosis, and rN,i for necrosis), 139

which can be continually updated. For any death rate ri and any time interval [t, t+ ∆t], 140

the cell has a probability of entering the corresponding death state D: 141

Prob
(
Si(t+ ∆t) = D

)
= 1− exp

(
−ri∆t

)
≈ ri∆t. (2)

Apoptosis: Upon entering the apoptotic state, we set fCN = 0 (to simulate shrinking 142

and blebbing of the cytoplasm), V ∗
NS = 0 (to simulate degradation of the nucleus), and 143

fF = 0 (to simulate the active elimination of water from the cell). The rates rN, rF, 144

and rC are set to match time scales of cell volume loss in apoptotic cells. The cell 145

is removed once its volume drops below a user-set threshold, or after mean duration of TA. 146

147

Necrosis: When a cell becomes necrotic, we set fCN = V ∗
NS = 0 to model cytoplasmic and 148

nuclear degradation. Early necrotic cells undergo oncosis (cell death-related swelling); 149

we model this by setting fF = 1. (Note that some regard oncosis as the actual death 150

process, and necrosis as post-mortem cell degradation [23, 24].) Once the cell volume 151

passes a critical threshold, it lyses, and we set fF = 0. The rate parameters rF, rN, and 152

rC are set to match expected time scales throughout necrosis [22]. PhysiCell includes 153

codes to trigger necrosis deterministically or stochastically: 154

155

Deterministic Necrosis: This implements a common model of necrosis (see the review [2]), 156

where cells instantly become necrotic whenever oxygenation pO2 drops below a threshold 157

value pO2,threshold, as in our earlier work [16]. This is equivalent to the letting rN →∞. 158

159

Stochastic Necrosis: This model updates our prior work [16], based upon in vitro 160

observations that cells can survive low oxygen conditions for hours or days. Here, 161

rN (pO2) =



0 if pO2,threshold < pO2

rN,max

(
pO2,threshold−pO2

pO2,threshold−pO2,crit

)
if pO2,crit < pO2 ≤ pO2,threshold

rN,max if pO2 ≤ pO2,crit.

(3)

That is, necrotic death begins when pO2 < pO2,threshold, and the death rate ramps 162

linearly until saturating at a maximum rate rN,max for pO2 < pO2,crit. Equivalently, 163

cells survive on average 1/rN,max time in very low oxygen conditions [16]. 164

Numerical implementation 165
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Overall program flow Fig. 1 outlines PhysiCell’s overall program flow. After initial- 166

izing the microenvironment (through BioFVM) and cells, PhysiCell repeats the main 167

program loop, which: 168

1. saves the simulation state (as needed), 169

2. runs BioFVM to update the microenvironment, 170

3. updates the cell phenotype parameters (by sampling the microenvironment), 171

4. advances the cell cycle/death state and runs the cell volume model, 172

5. calculates the force-based cell velocities, and runs any custom functions. 173

6. uses the velocities to update the cell positions, and 174

7. updates the current simulation time. 175

Several steps (marked with a red ‖ symbol) are parallelized with OpenMP. See the 176

supplementary material for further numerical details. 177

Estimated computational cost scaling We now assess the computational effort 178

needed for each iteration in the main program loop. (See Fig. 1.) Step 2 (save simulation 179

data), Step 4 (update phenotypes), and Step 6 (update positions) clearly entail a constant 180

amount of work for each cell. Thus, summing these steps over all cells n(t) requires O(n) 181

work. By prior analysis, BioFVM (Step 3) also scales linearly in n(t) [6]. 182

Step 5 (update velocities) is the most computationally expensive step. In straight- 183

forward implementations, each cell tests for mechanical interaction with n − 1 other 184

cells, giving an O(n2) total computational cost at each time step. However, the IDS 185

(see Key code optimizations) restricts interaction testing to a smaller set N (i). In the 186

supplementary material, we show that each N (i) has at most Nmax cells. Thus, Step 5 187

has a fixed maximum cost for each cell, and the cost of the loop scales linearly in n. 188

Key code optimizations To prevent computational costs from scaling quadratically 189

in the number of cells, we designed a cell-cell interaction data structure (IDS) that 190

efficiently estimates a set N of possible neighbor cells for each cell agent. See the 191

supplementary material for further detail. 192

PhysiCell uses OpenMP to parallelize most loops over the list of cells. This includes 193

sampling the microenvironment, updating cell phenotype parameters, advancing the 194

cell cycle or death model, advancing the volume model, running any custom function, 195

and calculating the cell velocity. We do not parallelize loops that change the IDS: cell 196

division, cell removal, and updating the cell position. 197

We defined three separate computational step sizes to take advantage of the multiple 198

time scales of the multicellular system: ∆tdiff for biotransport processes, ∆tmech for 199

cell mechanics and motion, and ∆tcells for cell cycle, death, and volume processes. We 200

update each process according to its own time step, rather than at each simulation step. 201

Fig. 2 illustrates how the multiple times steps reduce the computational cost. See the 202

supplementary materials for further detail and the default step sizes for cancer biology. 203

Convergence and validation testing 204

We performed convergence testing on all the major components of PhysiCell. BioFVM 205

was previously tested as first-order accurate in ∆t, second-order accurate in ∆x, and 206

sufficiently accurate at ∆x = 20 µm and ∆tdiff = 0.01 to 0.05 min for tumor growth 207

problems [6]. We performed two tests for cell-cell mechanics and motion: First, we placed 208
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two cells in partial overlap, simulated their relaxation to equilibrium, and measured the 209

cell spacing at several times. Second, we created a compressed cluster of 50,000 cells, 210

simulated its mechanical relation to equilibrium, and measured its diameter at several 211

times. Both tests converged to first-order accuracy in ∆t at all measured times, showing 212

that PhysiCell converged in both short-time mechanical dynamics and in long-time 213

behavior. ∆tmech ∼ 0.1 min gives sufficent accuracy for typical cancer problems. 214

We simulated the volume model for a single proliferating, apoptotic, and necrotic cell, 215

and measured the sub-volumes at multiple times. It converged with first-order accuracy 216

in ∆t at all tested times, and ∆tcell = 6 min gave sufficient accuracy. We tested the 217

stochastic transition codes by simulating the Ki67-advanced cell cycle model and the 218

apoptosis death model (with stochastic duration), and measuring the sub-population 219

counts and population fractions over time for several values of ∆tcell. For each ∆t, we 220

performed 100 simulations and compared the mean solution behavior against known 221

coarse-grained ODE model behavior. ∆tcell = 6 min and 60 min both gave an excellent 222

match between the PhysiCell behavior and theory for all the compared curves. See the 223

supplementary materials for full testing results. 224

Performance testing (summary) 225

By our testing, recent quad-core desktop workstations (with hyperthreading, for 8 total 226

execution threads) can simulate 10-30 days in systems of up to 105 to 106 cells in 3 227

days or less (wall time). Single HPC compute nodes (typically two 6-8 core processors, 228

with hyperthreading and 24-32 execution threads) can simulate larger systems up to 229

∼2 million cells in about 2 days. Future releases of PhysiCell will address current 230

performance bottlenecks; see Availability and Future Directions. The Results will give a 231

demonstration of O(n) computational cost scaling. 232

Results 233

We demonstrated PhysiCell’s potential to simulate large multicellular systems—and 234

its ability to test the emergent tissue-scale effects of cell-scale hypotheses—on two 235

examples arising from cancer biology. For each example, we compared the impact of the 236

deterministic and stochastic necrosis models. (See Cell death above.) We used the Ki67- 237

advanced cell cycle model with deterministic K1, K2, and A phase durations. (See Cell 238

cycling.) We provide the parameter values in the supplementary materials, and the full 239

source code and postprocessing routines for both examples in every PhysiCell download. 240

Reference simulation outputs are available at http://PhysiCell.MathCancer.org. 241

Test platforms 242

We tested on (1) a desktop workstation (quad-core Intel i7-4790, 3.60 GHz, 8 execution 243

threads, 16 GB memory) with mingw-w64 (g++ ver. 4.9.1) on 64-bit Windows 7, and 244

(2) a single HPC compute node (dual 6-core Intel Xeon X5690, 3.47 GHz, 24 execution 245

threads, 48 GB memory) with g++ (ver. 4.8.4) on Ubuntu 14.04. The CPU architecture 246

was newer on the desktop (2014 Haswell) than on the HPC node (2011 Westmere). 247

Hanging drop tumor spheroids 248

Hanging drop spheroids (HDS)—a 3-D cell culture model where a small cluster or 249

aggregate of tumor cells is suspended in a drop of growth medium by surface tension—are 250

increasingly used to approximate 3-D in vivo growth conditions [25]. Unlike traditional 251

2-D monolayer experiments, HDSs allow scientists to investigate the impact of substrate 252
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gradients on tumor growth, particularly oxygen gradients. Their relatively simple 253

geometry makes them ideal for testing computational models. 254

We simulated HDS growth by placing an initial cluster of ∼ 2300 cells in an 8 mm3
255

fluid domain, with Dirichlet conditions pO2 = 38 mmHg (5% oxygen: physioxic conditions 256

[26]) on the computational boundary. The simulation results are shown in Fig. 3 for 257

deterministic necrosis (left column) and stochastic necrosis (right column), at 4, 8, and 258

16 days. In Fig. 4, we show the tumor diameter (left panel) and number of agents (right 259

panel) versus time. Both simulations reached ∼ 106 cells by 18 days. See the simulation 260

videos Video S1 and Video S2. 261

Deterministic versus stochastic necrosis Both models yielded similar dynamics. 262

Hypoxic gradients emerged quickly, limiting (pO2-dependent) cell division to the outer- 263

most portions of the tumors. This, in turn, lead the tumor diameters to grow linearly 264

(at similar rates); see Fig. 4. This matches our theoretical expectations for a spheroid of 265

radius R(t) whose growth is restricted to an outer layer of fixed thickness T : 266

d

dt
V (t) = c ·

growing region︷ ︸︸ ︷
4πR2(t) · T =⇒ d

dt

(
4

3
πR3(t)

)
= c · 4πR2(t) · T (4)

=⇒ d

dt
R(t) = cT = constant. (5)

In both models, the innermost portion of the necrotic core developed a network of 267

fluid voids or cracks. This phenomenon emerges from competing biophysical effects of 268

the multicellular system: necrotic cells lose volume, even as they continue to adhere, 269

leading to the formation of cracks. Similar cracked necrotic core structures have been 270

observed with in vitro hanging drop spheroids (e.g., [5, 27,28]). 271

There were notable differences between the models. The deterministic model had 272

a sharp perinecrotic boundary between the viable and necrotic tissues, whereas the 273

stochastic model demonstrated a perinecrotic transition zone with substantial mixing 274

of viable and necrotic cells. Because cells do not immediately necrose in the stochastic 275

model, it retained a center of quiescent viable cells longer than the deterministic model. 276

The growth curves for the deterministic and stochastic models appear to diverge after 277

approximately 8 days, when the deterministic necrotic core is better defined with more 278

cracks than the stochastic core. This may be due to differences in hypoxic gradients 279

(the tumor with more void spaces will have shallower oxygen gradients, and hence 280

more cell cycle entry), but further simulations would be required to rule out stochastic 281

effects. Interestingly, the stochastic model’s growth curve appears to run parallel to the 282

deterministic curve for later times, once its necrotic core becomes better defined. 283

Performance scaling Throughout the simulations, the computational cost (the wall 284

time required to simulate one hour) scaled approximately linearly with the number of 285

agents present in the simuation, on both the desktop workstation and the HPC node; 286

see Fig. 5. (See also Estimated computational cost scaling.) Increasing the number of 287

execution threads improved performance, even when running on slower processor cores. 288

See the right panel in Fig. 5, where moving from the newer 8-threaded machine to the 289

older 24-threaded machine improved performance by a factor of 2 to 2.5. 290

The simulations reached ∼ 106 cells on our HPC tests after 67 hours (deterministic, 17 291

simulated days) to 76 hours (stochastic, 18.2 simulated days) of wall time, including saving 292

full simulation output data once per simulated hour. See Fig. 4. The desktop workstation 293

simulated past 573,000 cells (about 14.6 days of simulated time) in approxiately 80 hours 294

of wall time. The desktop tests did not run out of memory, and the simulations can be 295

completed to the full 18 days and 106 cells if needed. 296
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Ductal carcinoma in situ (DCIS) 297

DCIS is a pre-malignant breast condition where epithelial cells (“tumor cells”) divide 298

abnormally to fill the breast duct lumen. Oxygen can only reach the tumor cells by 299

diffusion from outside the duct, leading to the emergence of hypoxia and an inner 300

necrotic core. See [16, 20, 21] for further biological and clinical discussion. As in [16], we 301

approximate a partly-filled breast duct as a 3-D “test tube” with a level set function 302

representation. Cell adhere to cells and the duct wall; cells and the duct wall push 303

against cells to resist deformation. Oxygen diffuses from the duct wall and is consumed 304

by tumor cells. The rate of cycle entry increases linearly with pO2 (see Cell cycling). 305

In Fig. 6, we show DCIS simulations in a 1 mm segment of breast duct (317.5 µm 306

diameter), using deterministic necrosis (left side) and stochastic necrosis (right side), 307

plotted at 10 and 30 days. See also Video S3 and Video S4. 308

Comparison of necrosis models; comparison with the spheroid example As 309

in the HDS example, the deterministic model had a sharp, smooth perinecrotic boundary, 310

whereas the stochastic model demonstrated a perinecrotic boundary region with mixed 311

viable and necrotic cells. In the stochastic model, proliferation halted in the duct center, 312

but necrosis appeared later. The perinecrotic mixing effect was most pronouced at the 313

leading edge of the tumor, where tissue was transitioning from non-hypoxic/non-necrotic 314

to necrotic. Areas with longer-term hypoxia had smoother necrotic boundaries. This 315

effect did not emerge in the HDS example due to its symmetry. 316

Interestingly, the mechanical “cracks” seen in the tumor spheroids do not appear 317

here, because the breast duct compresses the necrotic core to collapse any fluid-filled 318

voids. This shows the importance of the 3-D geometry and the biophysical impact of the 319

basement membrane, as well as the need to account for such effects when approximating 320

in vivo conditions with bioengineered model systems. 321

Both models gave approximately the same growth rate of ∼ 1 cm/year (Fig. 7, left). 322

We cannot select one model over the other based solely upon continuum-scale, coarse- 323

grained outputs. However, we could further assess the models by comparing their distinct 324

differences in multicellular-scale patterning to DCIS pathology. This further highlights 325

the need and potential for multicellular modeling in evaluating cell-scale hypotheses. 326

Comparison with prior 2-D modeling results In 3D, neither necrosis model 327

reproduced the mechanical “tears” between the proliferative rim and the necrotic core 328

predicted by earlier 2-D simulations [16]; this is because more viable tissue is fluxing 329

into smaller necrotic areas in the 3-D geometry compared to the 2-D geometry. 330

Availability and Future Directions 331

PhysiCell is available from PhysiCell.MathCancer.org and physicell.sf.net under 332

the (3-clause) BSD license. A tutorial on using the code is included with every PhysiCell 333

download, along with several examples. 334

Numerical improvements The biggest code bottleneck is cell-cell interaction testing: 335

cell volume can vary by a factor of 100, and hence the cell diameter (and interaction 336

distance) can vary by a factor of 50. The number of cells in the list of interacting 337

neighbors N (i) scales inversely with the minimum cell volume; see the supplementary 338

material. Future versions of PhysiCell will introduce a nested mesh interaction testing 339

structure to more accurately estimate N (i) in regions with small cells. 340
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Scientific improvements We will implement additional cell cycle models as the 341

MultiCellDS standard emerges, including several based on flow cytometry data. We will 342

introduce new built-in models for cell motility, and potentially new cell death models 343

(e.g., autophagy). We plan to add cell more advanced cell mechanics models (e.g., as 344

in [9, 29]), and to extend PhysiCell to include extracellular matrix mechanics. 345

User-focused improvements In the coming months, we will publish a series of blog 346

posts and code samples at http://MathCancer.org/blog/, similarly to our efforts for 347

BioFVM [30]. We will create an improved user-friendly API based upon user feedback, 348

and pre-compiled clients that can initiate simulations based upon a digital snapshot 349

(intitial arrangement of cells) and digital cell lines (self-contained, model-independent 350

sets of cell phenotype data), using the emerging MultiCellDS standard [12,13]. 351

Supporting Information 352

Video S1 353

3-D simulation of 18 days of hanging drop tumor spheroid growth from 2300 cells to 1.2 354

million cells, using the deterministic necrosis model. Available at: 355

https://www.youtube.com/watch?v=WMhYW9D4SqM 356

Video S2 357

3-D simulation of 18 days of hanging drop tumor spheroid growth from 2300 cells to 1 358

million cells, using the stochastic necrosis model. Available at: 359

https://www.youtube.com/watch?v=xrOqqJ_Exd4 360

Video S3 361

3-D simulation video of 30 days of DCIS growth in a 1 mm length of breast duct, using 362

the deterministic necrosis model. Available at: 363

https://www.youtube.com/watch?v=ntVKOr9poro 364

Video S4 365

3-D simulation video of 30 days of DCIS growth in a 1 mm length of breast duct, using 366

the stochastic necrosis model. Available at: 367

https://www.youtube.com/watch?v=-lRot-dfwJk 368

Supplementary materials 369

Extensive supplementary materials include: full mathematical model details, supporting 370

literature, and reference parameter values for MCF-7 cancer cells; expanded numerical 371

implementation details; convergence and validation testing results; full parameter values 372

for the main tests; and an expanded feature comparison of PhysiCell and other 3-D 373

multicellular simulation projects. 374
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Figure 1. Overall PhysiCell program flow. ‖ symbol: parallelized with OpenMP.

Figure 2. PhysiCell and multiple time scales: PhysiCell uses BioFVM to update
the microenvironment at the short green tick marks, corresponding to ∆tdiff . It updates
cell mechanics (including cell position) less frequently at the medium black tick marks
(∆tmech), and it runs the cell volume and cycle/death models least frequently at the
long red tick marks (∆tcell). Note that the time steps shown are for illustrative purpose;
the default step sizes are given in the supplementary materials.
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Figure 3. Hanging drop spheroid (HDS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 4, 8, and 16 days. Videos are
available at Video S1 and Video S2. Legend: Ki67+ cells are green before mitosis (K1)
and magenta afterwards (K2). Pale blue cells are Ki67- (Q), dead cells are red
(apoptotic) and brown (necrotic), and nuclei are dark blue.
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Figure 4. HDS growth: Left: The deterministic and stochastic necrosis models
both give approximately linear growth (left), but the HDS with deterministic necrosis
model grows faster (∼ 5% difference in diameter at day 18). Right: The HDS with
stochastic necrosis has fewer cells than the deterministic model (∼ 26% difference in cell
count at day 18), due to its delay in necrosis. The difference in cell count is larger than
the difference in tumor diameter because most of the difference lies in the number of
necrotic cells, and necrotic cells are smaller than viable cells.

Figure 5. HDS computational cost scaling: Left: Wall-time vs. cell count for
the stochastic (red) and deterministic (blue) necrosis necrosis models on a single HPC
compute node. Both models show approximately linear cost scaling with the number of
cell agents. right: Wall time vs. cell count for stochastic necrosis model on the desktop
workstation (orange) and the single HPC node (green).
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Figure 6. Ductal carcinoma in situ (DCIS) simulations with deterministic
necrosis (left) and stochastic necrosis (right), plotted at 10 and 30 days (multiple views).
Videos are available at Video S3 and Video S4. The figure legend is the same as Fig.3.

Figure 7. DCIS growth: The deterministic and stochastic necrosis models both
result in linear DCIS growth at approximately 1 cm/year (left), even while their cell
counts differ by 21% by the end of the simulations (right).
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