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Abstract

While RNA-Seq has enabled great progress towards
the goal of wide-scale isoform-level mRNA quan-
tification, short reads have limitationswhen resolv-
ing complex or similar sets of isoforms. As a result,
estimates of isoform abundance carry far more un-
certainty than those made at the gene level. When
confronted with this uncertainty, commonly used
methods produce estimates that are often high-
variance—small perturbations in the data often pro-
duce dramatically different results, confounding
downstream analysis. We introduce a newmethod,
Isolator, which analyzes all samples in an experi-
ment in unison using a simple Bayesian hierarchical
model. Combined with aggressive bias correction,
it produces estimates that are simultaneously accu-
rate and show high agreement between samples. In
a comprehensive comparison of accuracy and vari-
ance, we show that this property is unique to Isola-
tor. We further demonstrate that the approach of

modeling an entire experiment enables new analy-
ses, which we demonstrate by examining splicing
monotonicity across several time points in the de-
velopment of human cardiomyocyte cells.

1 Introduction

Since its introduction, RNA-Seq has rapidly become
a preferred method of studying gene expression,
having proved to be reliable, reproducible, and in-
creasingly affordable. In principle, RNA-Seq enables
measurements of expression at a scale and resolu-
tion than has previously been impractical or impos-
sible. Rather than relying on an often vaguely de-
fined notion of a gene, expression of specific iso-
forms or exons can be measured. In practice this
promise is difficult to realize, with methods de-
signed to detect changes in splicing rarely concur-
ing [14].

Regardless, splicinghasbeen repeatedly shownto
be a essential regulatory mechanism, and particu-
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larly important in development and differentiation
[8]. We examine alternative splicing in heart devel-
opment in two contexts in Sections 2.6 and 2.7.
Most RNA-Seq procotocols produce short reads

(typically 30 to 150 nucleotides, often paired-end).
Because a short read is often compatible withmany
isoforms, the signal produced from sequencing
must be deconvoluted, requiring a certain level of
algorithmic sophistication. This problem was tack-
led early on andwith great success by Cufflinks [25],
and indeed many of the methods developed in the
interim have followed from the same basic model
of RNA-Seq in which transcripts are represented as
particular distributions over possible reads, and the
problem is then to infermixing coefficients (relative
expression values) inducing a mixture model that
best explains the data [18].
We built on this work, implementing a new

method called Isolator. Though it retains the same
underlying model of RNA-Seq, we approach the
problem from the perspective that isoform-level
estimates possess a degree of uncertainty that
renders unregularized maximum likelihood point-
estimates alone a fundamentally inadequate solu-
tion to the problem. As the purpose of gene expres-
sion studies is to compare expression betweenmul-
tiple samples, our goal, beyond maximizing a nar-
row definition of accuracy, is to provide a tool that
effectively accounts for this uncertainty in a coher-
ent and reliable manner.
Rather than estimating expression of individual

samples, Isolator uses a hierarchicalmodel of an en-
tire experiment, for example, including all samples
and time points in a time series. In addition to infer-
ring expression values for the individual samples,
we introduce parameters representing condition-
wise and experiment-wise expression and splicing,
as well as per-transcript variance parameters that
are shared across conditions. As expression studies
often use only a small number of replicates, shared
variance parameters allows us to make more accu-
rate estimates of biological variability.
An efficientMarkov chainMonte Carlo algorithm

is used to generate samples over the parameters of
this model, which are saved in an HDF5-based for-
mat [24]. The output from the sampler can then

be processed to produce point estimates, credible
intervals, posterior probabilities, and diagnostics.
Thoughdesigned to be runonmultiple samples con-
currently, Isolator can be run as a conventional tool
on individual samples.

The broad effect of this model is to encode the
common assumption that genes tend to be similarly
expressed and similarly spliced between replicates,
and to a lesser extent between conditions. In the ab-
sence of sufficient evidence to the contrary, this in-
formative prior shrinks estimates towards a base-
line of no change, producing more conservative es-
timates of effect size than would be obtained by
using, for example, a flat Dirichlet prior. This fea-
ture of the model is particularly important for ro-
bust treatment of low-expression transcripts. With
few reads there is little power to determine splic-
ing patterns. Considering the samples in isolation
will often produce very different estimates. Statis-
tical tests based on these estimates, without consid-
ering the full posterior distribution, make approxi-
mations by either disregarding the relative or com-
positional nature of the data and assuming indepen-
dence, or by relying on asymptotic properties that
may not hold when a gene is not deeply sequenced.

In addition to this hierarchical model, we attempt
to aggressively correct for technical effects. The
naive model of RNA-Seq assumes fragments are
sampled uniformly at random from transcripts in
proportion to their abundance. Early on, this was
shown to be far from an accurate description of real
sequencing data [6]. Though severe at nucleotide
resolution, gene level expression estimates are only
moderately affected by this bias, as it tends to av-
erage out over long transcripts. When one consid-
ers expression at the isoform level, attempting to
correct for this nonuniformity becomes vital, as the
difference between two isoforms is often only a few
nucleotides.

We previously developed an efficient and versa-
tile model to account for sequence specific bias that
commonly occurs at the ends of fragments [7]. In
Isolator, we supplemented this with methods ac-
counting for 3’ bias, fragment GC-content bias, and
positional bias caused by end-effects of fragmenta-
tion.
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Isolator is available under a per-
missive open source license at:
https://github.com/dcjones/isolator

2 Results

The convention for evaluating the accuracy of RNA-
Seq analysis methods has consisted chiefly of com-
paring point estimate accuracy in simulations, sup-
plementedwith comparisons to qPCR or other tech-
nologies. Tuning methods exclusively to maximize
accuracyon simulateddata risks solvingonly an ide-
alized mathematical model of RNA-Seq while dis-
regarding noise, bias, and nonuniformity. As no
gold standard for whole-transcriptome isoform-
level estimation exists, we adopt a multifaceted ap-
proach, focusing onmeasuring the variance of esti-
mates, along with overall accuracy.
Comparisons of gene or transcript expression

are sensitive to how one chooses to measure sim-
ilarity. Because gene expression typically varies
across many orders of magnitude, measurements
like the Pearson correlation, L1 or L2 distance, or
root-mean-square error are often dominated by the
most highly expressed genes. Recognizing this,
a popular alternative is Spearman’s rank correla-
tion, which conversely can overemphasize the ma-
jority of transcripts, which have no, or very low
expression. These issues are discussed in depth
by Lovell et al [15], who propose measurements of
proportionality as a more meaningful metric. We
adopt their “proportionality correlation”, defined
as pcor(x, y) = 2cov(log(x), log(y))/(var(log(x)) +
var(log(y))), where is cov(x) and var(x) give the
covariance and variance of x, respectively. Simi-
lar to other measures of correlation, proportional-
ity correlation varies from -1 to 1, with 1 indicating
perfect proportionality, and -1 perfect reciprocality.
Zeros are accounted for by converting all measure-
ments to transcripts per million (TPM) and adding
0.1. (Results were found to be fairly insensitive to
theprecise additive constantusedhere (Supplemen-
tary Section 4.1)). Though we believe proportion-
ality correlation is a superior approach, much of
this analysis was also conducted using Spearman’s

rank correlation in Supplementary Section 4.2, and
largely agrees with the results shown here.

Many methods have been proposed to aid in the
analysis of RNA-Seq experiments. We limit our
discussion specifically to those that seek to esti-
mate the relative abundance a set of known tran-
scripts. These include, non-exhaustively, Cufflinks
[25], RSEM [12], eXpress [22], BitSeq [4], Sailfish [21],
Salmon (a refinement of Sailfish currently in devel-
opment), and Kallisto [1].

RSEM was used to produce both maximum like-
lihood and posterior mean estimates, which we la-
bel “RSEM/ML” and “RSEM/PM”, respectively. This
is not an exhaustive account of such methods,
but does represent a wide variety of popular ap-
proaches. The same read alignments were used
for all methods other Sailfish, Salmon, and Kallisto,
which are “alignment-free”, using built-in approx-
imations to full alignment (Supplementary Section
2).

2.1 Agreement with qPCR and spike-in
controls

Spike-in controls and qPCR are far more limited
than RNA-Seq, measuring only the abundance of
specific loci in the case of qPCR, or known pro-
portions of simple artificial transcripts with spike-
in controls. However, both are considered reliable
enough to serve as proxy gold standards for gene-
level expression estimates.

We use data generated by the Sequencing Qual-
ity Control Consortium (SEQC) [3], consisting of
four reference samples (labeled A, B, C, and D). The
RNA-seq methods were run using approximately
25 million reads per sample, obtaining estimates
that were then compared to qPCR in Figures 1a and
1b, and the known ERCC spike-in mixtures in Fig-
ure 1c. In each of these we find that Isolator pro-
duces the highest correlation of the methods com-
pared, though sometimes by a small margin. De-
spite two different technologies, and two different
sets of genes, the qPCR benchmarks agree closely,
ranking the methods nearly identically. Cufflinks,
eXpress, Salmon, and RSEM/ML typically perform
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similarly to each other, with BitSeq, Kallisto, Sail-
fish, and RSEM/PM trailing slightly. Results are sim-
ilar with ERCC spike-in controls, the notable excep-
tions being Kallisto and Sailfish, which show higher
accuracy, and eXpress, which shows lower accu-
racy compared to their relative rankings in the qPCR
benchmarks.

2.2 Estimate coherence

The four SEQCsamples consist of two commercially
available reference RNA samples, labeled A and B,
and two synthetic samples formed bymixing A and
B in specific proportions. Sample C is composed of
75% A and 25% B, while sample D is 25% A and
75% B. If we estimate transcript abundance for
each sample, producing estimates a, b, c, d, then for
these estimates to be in agreement (“coherent”, in
our terminology)we should expect c ≈ 0.25a+0.75b,
and similarly d ≈ 0.75a + 0.25b. In other words,
mixing RNA then estimating transcript abundance
should be approximated by estimating transcript
abundance then mixing estimates.
To capture the notion of coherence, wemeasured

the closeness of this approximation using propor-
tionality correlation (Figure 1d).
Results from RSEM are particularly informa-

tive. We generated maximum likelihood and poste-
rior mean estimates using the same aligned reads.
Merely switching the estimate from the former
to the latter increased the correlation by approxi-
mately 5%. This stands in contrast to comparisons
to qPCR which suggest reduced accuracy of poste-
riormean estimates, demonstrating that coherence
and accuracy, while related, are two separate axis of
comparison.
Estimates made at the gene level (Supplementary

Table 2) agree with these results, but are of uni-
formly higher correlation and show amuch smaller
gap between posterior mean and maximum likeli-
hood estimate. Methods reporting posterior mean
estimates (Isolator, BitSeq, RSEM/PM) again show
the highest correlation and are in very close agree-
ment.

2.3 Batch effects

We further examined the question of estimate vari-
ance by comparing the same samples sequenced on
different flow cells and at different sites, again us-
ing data from the SEQC. We used 10 samples from
the larger SEQC dataset, each consisting of a sin-
gle lane from two separate flowcells sequenced at
five different sites, all on Illumina HiSeq 2000 in-
struments, and compared pairwise agreement be-
tween estimates from these samples (Figure 2a). In
the interest of a more fair comparison, Isolator was
run on each sample in isolationwithout sharing any
information.

These correlations are somewhat smaller than
those in Table 1d, largely because of shallower se-
quencing: in Table 1d five flowcell lanes were com-
bined, totaling ~25 millions reads per sample, here
only one lane (~5 million reads) was used. Never-
theless, we again see posterior mean estimates (as
in Isolator, BitSeq, and RSEM/PM) with significantly
higher agreement between pairs.

When accounting for batch effects, bias correc-
tion methods can have a significant impact. To ex-
amine the efficacy of bias correction, we disabled
this functionality on those methods that support it,
repeated the experiment, andmeasured the change
in pairwise correlation (Figure 2b). We see that bias
correction is largely beneficial for eachmethod. Iso-
lator, Salmon, and Cufflinks show similar improve-
ments with bias correction, though in a few cases
Cufflinks slightly decreases agreement. Kallisto
show a consistent, but very slight improvement.
BitSeq’s bias correction sometimes has a very pos-
itive effect, but other times a negative or even dis-
astrous effect. Estimates from the “MAY 2” samples
in particular had far worse agreement with other
samples with bias correction enabled. Here bias
correction has dramatic and detrimental effects on
some number of transcripts, driving the correlation
to negative numbers.

While this benchmark is informative, it should be
considered a lower bound on the batch effects and
bias found in real experiments: these samples were
sequenced at different labs, but using the same
instrument model (HiSeq 2000) and from libraries
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(a) Comparison of estimates to TaqMan qPCR

Method A B C D

Isolator 0.903 0.908 0.890 0.883

eXpress 0.901 0.902 0.884 0.874

Cufflinks 0.900 0.901 0.865 0.872

Salmon 0.899 0.897 0.882 0.871

RSEM/ML 0.899 0.896 0.881 0.870

Kallisto 0.893 0.885 0.874 0.860

BitSeq 0.875 0.865 0.863 0.848

Sailfish 0.879 0.857 0.854 0.834

RSEM/PM 0.878 0.866 0.864 0.848

(b) Comparison of estimates to PrimePCR qPCR

Method A B C D

Isolator 0.878 0.866 0.839 0.851

Cufflinks 0.870 0.856 0.799 0.841

eXpress 0.870 0.855 0.829 0.840

Salmon 0.866 0.852 0.826 0.836

RSEM/ML 0.865 0.851 0.825 0.835

BitSeq 0.840 0.821 0.802 0.813

Kallisto 0.858 0.840 0.817 0.826

Sailfish 0.844 0.814 0.797 0.802

RSEM/PM 0.840 0.822 0.803 0.811

(c) Comparison of estimates to ERCC spike-in controls

Method A B C D

Isolator 0.980 0.979 0.981 0.983

Salmon 0.976 0.975 0.978 0.979

Kallisto 0.972 0.972 0.973 0.976

Sailfish 0.970 0.969 0.969 0.972

Cufflinks 0.967 0.969 0.972 0.974

RSEM/PM 0.943 0.949 0.944 0.949

RSEM/ML 0.941 0.948 0.945 0.951

BitSeq 0.940 0.949 0.943 0.946

eXpress 0.931 0.939 0.935 0.942

(d) Consistency of SEQC sample estimates

Method c vs 0.75a + 0.25b d vs 0.25a + 0.75b

Isolator 0.978 0.978

BitSeq 0.967 0.967

RSEM/PM 0.968 0.967

Sailfish 0.932 0.925

RSEM/ML 0.922 0.919

Salmon 0.916 0.914

Kallisto 0.907 0.902

eXpress 0.903 0.899

Cufflinks 0.870 0.916

Figure 1: Benchmarksmeasuring the accuracy and coherence of estimatesmade from Sequencing Quality
Control (SEQC) dataset using a variety of methods. All numbers are reported in proportionality corre-
lation. (a) correlation between gene level quantification of 806 genes using TaqMan qPCR and RNA-Seq
quantification. (b) correlation between gene level quantification of 18,353 genes using PrimePCR qPCR and
RNA-Seq quantification. (c) correlation betweenknownproportions of 92 ERCC spike-in controls andRNA-
Seq quantification. (d) correlation between transcript-level estimates for the mixed SEQC samples C and
D and weighted averages of estimates for A and B, corresponding to the mixture proportions for C and D.
Sample C consists of 3/4 A and 1/4 B and sample D is 1/4 A and 3/4 B. Consistent estimates of transcript
expression in A, B, C, and D should agree with these mixture proportions.
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Figure 2: a A heatmap showing pairwise proportionality correlation between samples sequenced on two
flowcells each at five sites, from centrally prepared libraries. Flowcells are numbered arbitrarily 1 or 2
and sequencing sites are abbreviated with three letter codes: Australian Genome Research Facility (AGR),
Beijing Genome Institute (BGI), Cornell University (CNL), Mayo Clinic (MAY), and Novartis (NVS). Median
proportionality correlation is listed below each heatmap. b The absolute change in correlation induced
by enabling bias correction for methods that support it. For clarity this plot excludes points for BitSeq
estimates of ”MAY2”, as bias correction has an extremely detrimental effect on these. Mean improvement
in correlation was 0.008 with Salmon, 0.007 with Cufflinks, 0.006 with Isolator, 0.003 with Kallisto, 0.002
with eXpress, and -0.164 with BitSeq.

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2016. ; https://doi.org/10.1101/088765doi: bioRxiv preprint 

https://doi.org/10.1101/088765
http://creativecommons.org/licenses/by/4.0/


prepared centrally. The fact that technical effects
were so clearly present even under such controlled
circumstances suggests that reproducibility should
not be taken for granted in RNA-Seq experiments,
particularly when it comes to batch effects.

2.4 Accuracy in simulated data

To more directly demonstrate Isolator’s capacity to
produce more accurate estimates by modeling en-
tire experiments, we simulated a simple RNA-Seq
experiment consisting of two conditions each with
three replicates. Expression values were gener-
ated froma two-component log-normalmodelwith
parameters fit to Cufflinks estimates of data from
Kuppusamyet al [10]. Wegenerated 10million, 100nt
paired-end simulated RNA-Seq reads per sample us-
ing rlsim [23].
In this benchmark, Isolator significantly improves

on existing methods (Table 1). It has the unique ad-
vantage of sharing information between replicates.
With the assumption that genes tend to be similarly
spliced between replicates, we are able to more ef-
fectively resolve transcript expression in complex
loci. Kallisto, Salmon, RSEM/ML, and Cufflinks all
perform very similarly. While comparisons to qPCR
showed eXpress and Cufflinks with a significant ad-
vantage over RSEM/ML, Kallisto, and Bitseq, effec-
tive bias correction is less important in simulated
data, plausibly explaining the difference. Although
rlsim models some forms of bias, technical effects
inRNA-Seq arenot entirely understood, so these are
likely understated in its model.

2.5 Agreement between two sequencing
technologies

RNA-Seq reads become more informative with
length and quantity. We compared data from the
same sample sequenced twice, once with 300nt
paired-end reads on a MiSeq sequencer and again
with 100nt paired-end reads using a NextSeq 500,
yielding approximately 4.5 million and 11 million
reads, respectively. To elucidate the effect of
deeper sequencing, we sampled without replace-

Method Correlation

Isolator 0.919

Kallisto 0.887

Salmon 0.886

RSEM/ML 0.881

Cufflinks 0.881

eXpress 0.825

Sailfish 0.816

RSEM/PM 0.806

BitSeq 0.796

Table 1: Proportionality correlation betweenground
truth and estimates produced by eachmethod using
simulated RNA-Seq reads.

ment smaller subsets of the 11 million NextSeq 500
reads and measured correlation between estimates
made using these subsamples with estimates from
theMiSeq data (Figure 3).

Isolator shows the highest correlation, but only
when sequencing depth exceeds a fewmillion reads
(below which would be unusually shallow sequenc-
ing for an RNA-Seq experiment) where it overtakes
eXpress by a small margin. The outliers in the this
test are BitSeq and RSEM/PM. The former shows
extremely high correlation with small numbers of
reads, but contrary to all other methods, correla-
tion rapidly decreases with sequencing deeper than
1 million reads. When posterior mean estimates
are generated from a model using a uninformative
prior, as is the casewithBitSeq, transcriptswith few
or no reads may produce estimates that are highly
influenced by transcript length, which plausibly ex-
plains this phenomenon. Yet, RSEM/PM does in-
crease in correlation monotonically with sequenc-
ing depth, though the correlation remains very low.
Even using all 11 million reads, RSEM/PM had a cor-
relation of only 0.567 (data not shown).
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Figure 3: Proportionality correlation between esti-
mates from 4.5 million 300nt MiSeq reads and pro-
gressively larger numbers of NextSeq 500 reads.
For clarity, correlations for RSEM/PM are excluded
as they were much lower than the other methods.

2.6 Case study: findingmonotonic differ-
ential splicing

Splicing has been known to play an important role
in developing hearts. Specific splicing changes dur-
ing maturation have been shown to be conserved
across chicken and mouse, and influenced by ex-
pression of CELF and MBNL [9]. Recently, stress-
induced switching between two mutually exclusive
isoforms of KHK has been shown to be driver of
pathological cardiac hypertrophy [16].
We previously used Isolator to analyze splic-

ing dynamics in human cardiomyocyte cells dur-
ing maturation [10]. By modeling the entire RNA-
Seq experiment and saving samples generated dur-
ing sampling, Isolator is uniquely able to compute
posterior probabilities corresponding to arbitrar-
ily complex questions, within the confines of the
model. As this experiment consisted of a number
of samples from a number of conditions and time
points, it did not easily lend itself to analysis using
pairwise tests.
We instead searched for differential splicing

events by computing the probability of “monotonic
splicing“, whichwe defined as a splicing change that
that is consistently observed to occur in the same

direction between immature (H7 cells at day 20 and
at day 30 infectedwith an empty vector) andmature
samples (H7 1 Year, adult heart, and fetal atrium and
ventricle). To compute the posterior probability of
monotonic splicing, we simply count the number of
samples from themodel in which this pattern is ob-
served, and divide by the total number of samples
generated (350, in this case).

This approach identified 272 probable (posterior
probability > 0.5) differential splicing events. We
chose seven high probability candidates (ACOT9,
IMMT, LTBP4, OBSL1, OSBPL1A, PALM, and TNNT2)
to validate with qPCR (Supplementary Section 3.1),
by measuring the expression of specific exons pre-
dicted to change in splicing. Five of these candi-
dates (ACOT9, LTBP4, OBSL1, OSBPL1A, and TNNT2)
showed a clear gradient between H7 day20, fetal,
and adult tissue.

We analyzed the same data with the other seven
methods. Exon-level fold change estimates gener-
ally agree between RNA-Seq methods, though far
less so between RNA-Seq and qPCR, which could be
caused by poor gene annotations or yet unidenti-
fied technical effects. Principal component analysis
using transcript expression estimates also demon-
strates some revealing differences (Supplementary
Section 3.2).

2.7 Case study: novel mechanisms of cell
fate specification identified by gene
splice variants

Very little is known about the role of splice variants
in mediating cell fate specification even though it
has been shown that 92-95% of genes are differen-
tially spliced in a cell or tissue specific manner [26,
20]. In order to identify novel mechanisms of cell
fate specification inmesoderm developmentwe be-
gan by analyzing RNA-seq data to determine differ-
ences in splice variants between human embryonic
stem cell (hESC) derived cardiac progenitor cells
(CPCs) and two endothelial lineages, hESC-derived
endocardial endothelial cells (EECs) and hemogenic
endothelial cells (HECs) as we have described pre-
viously [19]. 84 genes were identified as differen-
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Figure 4: a Hierarchical clustering of the dominant splice variant for 84 differentially spliced genes. Blue
arrows indicate genes with known function in endothelial or heart development. Red arrows indicate
genes in the class of receptors that bind VEGF. b Two dimensional principle component analysis in meso-
dermal progenitor populations showing discrete separation of populations entirely based on differences in
splice variants. cAnalysis of gene ontology showing enriched categories found in 84 differentially spliced
genes. dHeat map showing expression of annotated isoforms of NRP1. e Read coverage over isoforms of
NRP1. f Schematic diagram of protein domains encoded by splice variant variants of NRP1.
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tially spliced (defined here as a > 0.3 shift in relative
transcript abundance with > 0.5 posterior probabil-
ity) between these populations (Figure 4a). Principle
component analysis indicated that splice variants,
independent of gene expression levels, delineate
endothelial populations relative to the CPCs (Figure
4b). Furthermore, these data indicate that splice
variants alone are sufficient to differentiate these
closely related lineages. Gene ontology analysis of
the 84 differentially spliced genes showed appro-
priate enrichment for categories associatedwith al-
ternative splicing (Figure 4c). Upon closer examina-
tion, we identified neuropilin-1 (NRP1) as an excel-
lent candidatemolecule that showed highly distinct
expression profiles of splice variants between the
cardiac and hemogenic endothelial lineages (Figure
4d-f).

NRP1 plays a versatile set of roles involving regu-
lationof signaling pathways thatmediate angiogen-
esis, axon guidance, cell survival, migration, and cell
invasion in a wide range of developmental states
and tissue types [27]. It is a single pass trans-
membrane molecule that has multiple extracellular
functional domains that interact with VEGF and/or
semaphorin molecules [2]. NRP1 has been impli-
cated in endothelial [11] and cardiac [5] development
but the specific splice variants involved in mediat-
ing these processes has not been elucidated. Results
shown here indicate that the cardiac splice variant
contains all functional domains involved in bind-
ing VEGF and semaphorin 3a (Figure 4d-f). This is
consistent with studies showing the requirement
for NRP1 in mediating the activities of VEGF and
semaphorins in cardiac development [5]. In contrast,
we show that splice variants expressed in endothe-
lial populations include truncated versions that ei-
ther lack the semaphorin binding CUB domains and,
in the case of HECs, express a secreted version of
NRP1 (Figure 4d-f). This suggests that VEGF and
not semaphorin 3a is the primary mechanism of
signaling through NRP1 in endothelial development
[11]. These results provide the first evidence to our
knowledge that NRP1 splice variantsmay be key de-
terminants of fate determination inmesoderm pat-
terning.

3 Discussion

To assess the suitability of Isolator we have com-
pared it to large number of alternative methods us-
ing a wide variety of benchmarks, with a partic-
ular focus on estimation variance and coherence.
Data generated by the SEQC is ideally suited to ex-
amine this question, and indeed our analysis agrees
with their results. The SEQC compared Cufflinks
and BitSeq and found BitSeq to produce more con-
sistent, less variable estimates. We took a closer
look at this phenomenon, controlling for alignment
method by using the same set of alignments for
every method (excluding the alignment-free meth-
ods Salmon, Sailfish, and Kallisto), and comparing
a wider variety of methods. In this broader con-
text it becomes clear that this separation is a con-
sequence of the choice in estimators. Unmoderated
maximum likelihood methods, though often accu-
rate (i.e. low bias), frequently demonstrate less con-
sistency (i.e. high variance) than methods that use
MCMCsampling and report posteriormeans orme-
dians. This is underappreciated but should be un-
surprising. Because of the ambiguity of sequencing
data, the likelihood functions for relative expres-
sion are often nearly plateaus. Maximum likelihood
estimates are thus precarious compared to poste-
rior mean estimates. Neither estimate is inherently
more correct, and robust analysis should make use
of the full posterior distribution, but we argue that
posterior mean or median estimates are more use-
ful in practice because they tend to have lower vari-
ance.

Excluding Isolator, methods that report poste-
riormean estimates show seemingly poor accuracy.
This is largely driven by low-expression transcripts.
A transcript with no reads has a maximum likeli-
hood expression of zero, but its likelihood is posi-
tive over a range of non-zero values, so the poste-
rior mean must necessarily also be positive. With a
flat, or “non-informative,” prior, expression values
for these low-expression transcripts are often quite
high and highly determined by transcript length.
Isolator avoids this problem by using a model with
informative priors: namely encoding assumptions
that most transcripts have low expression and that
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expression and splicing tend to be similar between
samples. In this way, it is able to avoid what seems
like a tradeoff and produces estimates that are both
relatively low bias and low variance.
Fully Bayesian methods like the one presented

here possess a degree of subjectivity that some-
times give researchers pause. Although we have
found the results from Isolator to be insensitive to
precise values given to hyperparameters, they are
chosen in advance and with a degree of arbitrari-
ness. What is often ignored is that the alternative,
methods based on unregularized maximum likeli-
hood estimates, in practice often necessitate amore
insidious form of subjectivity: contriving cutoffs
to filter out unreliable point estimates of low ex-
pression genes or transcripts. While the priors in
Bayesian methods are purely explicit, ad hoc filter-
ing of unregularized estimates can often be a form
of off-the-books subjectivity–critical to the results,
yet unmentioned or only alluded to in manuscripts.
In this paper we have described a method that

effectively shares information between samples in
RNA-Seq experiments while rigorously quantifying
uncertainty, leading tomore accurate results across
a wide range of benchmarks. We believe this work
indicates a natural direction towards more reliable
and powerful studies of transcriptomics, which fu-
turework can followby scaling thismethodology to
larger numbers of samples, allowing for more flex-
ible models, and accounting for more forms of un-
certainty and technical effects.

4 Online Methods

4.1 Hierarchical Modeling of RNA-Seq ex-
periments

Input to Isolator consists of gene annotations in
GTF/GFF format, one or more sorted BAM [13] file,
and optionally a reference sequence, which if pro-
vided is used in bias correction.
To model RNA-Seq experiments we use a hi-

erarchical model consisting of three levels: sam-
ples or replicates, conditions, and the experiment,
with any number of conditions, and any number

of replicates within those conditions. We model
condition-wise andexperiment-wise expression for
each transcript using a Gamma distribution, param-
eterized by mean and shape. Shape, which capture
biological variability, are shared across conditions.

We further parameterize the model to capture
splicing. Despite the compositional nature, for ef-
ficiency purposes we use independent Normal dis-
tributions the model splicing rates at the condition
and experiment level, where a splicing rate is an iso-
forms proportion relative to total expression of the
its gene.

Parameters are updated in sequence using aGibbs
sampling approach. The output generated by Iso-
lator consists of each sample of every parameter
serialized in an HDF5-based format, along with ba-
sic diagnostic information. Point estimates, sum-
mary statistics, and posterior probabilities can then
be calculated from this output using a secondary
command (isolator summarize).

4.2 Efficient Sampling

The isoform quantification or deconvolution prob-
lem is most easily thought of as an additive mixture
model in which the component distributions (the
isoforms) are known, but the mixture coefficients
(isoform abundances) must be inferred. The stan-
dard approach to this problem is either expectation
maximization (EM) if the maximum likelihood solu-
tion is desired, or Gibbs sampling if, as we are, es-
timating the posterior distribution. We have taken
a different approach and instead rely on slice sam-
pling [17].

The trade-offs between slice sampling and Gibbs
sampling for the isoformquantification problemare
subtle. Subsequent samples drawn fromaslice sam-
pler are generally less autocorrelated than those
drawn from a Gibbs sampler. As a result, fewer
samples need to be generated to adequately explore
a distribution. However, each of these samples is
more computationally expensive to compute, so one
might compensate for autocorrelation in a Gibbs
sampler by drawing more samples in less time. It
is not obvious, then, that one approach is inherently
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more efficient than the other.
Because the likelihood function in this problem

is simple, and we sample from the posterior proba-
bility directly, without introducing latent variables,
we are afforded some optimization opportunities
not available in a Gibbs sampler. Specifically, we
implement the likelihood function using SIMD (sin-
gle instruction, multiple data) instructions, which
are available nearly all CPUs from the last decade.
This, in combination with some numerical approx-
imations, allow us to compute the likelihood func-
tion over an order of magnitude faster, than a
more straightforward implementation. Run time
for Isolator is generally significantly less than that
of other sampling based implementations, though
alignment-free, maximum-likelihood methods like
Salmon and Kallisto remain themost efficientmeth-
ods (Supplementary Figure 1)

4.3 Correcting for Bias

Isolator attempts to model and correct for multiple
factors that can conflate the transcript expression
estimates.
Perhaps the most prominent source of nonuni-

formity is sequence specific bias present at frag-
ment ends. A probable contributor of this bias is
cDNA synthesis by random priming, which is part
of popular RNA-Seq protocols such as Illumina’s
TruSeq kit. We have previously published a model
that successfully accounts for such effects by train-
ing a sparse graphical model [7].
Beyond this sequence context bias, there is resid-

ual fragment GC-bias, which may be an artifact of
PCR amplification. We observe that fragments with
very high or very low GC-content are less likely to
be sequenced than expected, even after accounting
for sequence bias. We model this by binning frag-
ments by GC content, computing expected and ob-
served frequencies, and adjusting by their ratio.
Selection of polyadenylated transcripts is a com-

mon step mRNA-Seq, used to avoid sequencing in-
trons, partially degraded transcripts, and ribosomal
RNA. This can cause enrichment of reads at the 3’
end of transcripts if only partial transcripts are cap-

tured. To model the effect we fit a one parameter
model inwhich a transcript is truncated at any posi-
tionwith probability p. The probability of observing
a fragment ending at a position k, counting from the
3’ end, is then proportional to the probability that
the transcript was not truncated before k, which is
(1 − p)k . When fit, p is typically quite small, on the
order of 10−5, inwhich case this correction has little
effect on transcripts shorter that several kilobases.

Lastly, subtle implications arise from random
fragmentation steps in many protocols. Existing
statistical models assume fragments are sampled
uniformly at random from a transcript. However,
this does not exactly match the implications of ran-
dom fragmentation in which, under an ideal model,
breakpoints rather than fragments are introduced
uniformly at random. For a fragment to beobserved
it must pass size selection and have fallen between
two breakpoints, or one breakpoint and the end of
the transcript. Since the ends of a transcript act as
fixed breakpoints, the result is some enrichment of
fragments at either end of the transcript. We com-
pute this enrichment exactly for various transcript
length, and use interpolation to approximate the ef-
fect.
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