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Abstract 
Immune checkpoint inhibitors are promising treatments for patients with a variety of 
malignancies. ​Toward understanding the determinants of response to immune checkpoint 
inhibitors, it was previously demonstrated that somatic mutation burden is associated with 
benefit and a hypothesis was posited that neoantigen homology to pathogens may in part 
explain the link between somatic mutations and response. To further examine this hypothesis, 
we reanalyzed cancer exome data obtained from a previously published study of 64 melanoma 
patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of those 
patients. ​We found that the predictive accuracy does not increase as analysis narrows from 
somatic mutation burden to predicted MHC Class I neoantigens, expressed neoantigens, or 
homology to pathogens.​ ​Further, the association between somatic mutation burden and 
response is only found when examining samples obtained prior to treatment. Neoantigen and 
expressed neoantigen burden are also associated with response, but neither is more predictive 
than somatic mutation burden. Neither the previously-described tetrapeptide signature nor an 
updated method to evaluate neoepitope homology to pathogens were more predictive than 
mutation burden. 
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Introduction 
Checkpoint blockade therapies are improving outcomes for patients with metastatic solid tumors 
(1–4)​. As only a subset of patients respond, there is a critical need to identify determinants of 
response. Expression of program death-ligand one (PD-L1) is the lead companion diagnostic for 
PD-1/PD-L1 blockade therapies, but sensitivity and specificity are limited ​(5–7)​. Recent studies 
have demonstrated an association between elevated tumor mutation burden and benefit from 
checkpoint blockade therapies ​(8–11)​. 

In a recent study of melanomas treated with checkpoint blockade agents targeting 
cytotoxic T-lymphocyte associated protein 4 (CTLA-4) ​(8)​ the authors present the hypothesis 
that responding tumors may share features with each other or with infectious agents, and that 
such resemblance may predict response. In the present report, we performed a reanalysis of 
the data in that study using updated methods and integrating new RNA sequencing data from a 
subset of​ ​24​ ​samples. 

We found that in this small dataset, nonsynonymous mutation burden was associated 
with clinical benefit from therapy in samples collected prior to, but not after treatment with 
CTLA-4 blockade. Predicted neoantigen burden and percentage of C to T transitions 
characteristic of ultraviolet damage were associated with, but did not outperform mutation 
burden. We developed a publicly available tool, Topeology 
(​https://github.com/hammerlab/topeology​) to compare neoantigens to known pathogens. Neither 
the resemblance of tumor neoantigens to known antigens, nor the previously published 
tetrapeptide signature outperformed mutation burden as a predictor of response. 
 

Materials and Methods 

Patient Samples 
All analyzed samples were collected in accordance with local Internal Review Board policies as 
described in ​(8)​ and summarized in Table 1. 34 patients had tumor samples collected prior to 
initiating CTLA-4 blockade and 30 patients had samples collected after initiating CTLA-4 
blockade. Clinical benefit was defined as progression-free survival lasting for greater than 24 
weeks after initiation of therapy. 9 discordant lesions were present, where overall patient benefit 
did not match individual tumor progression. See Table 1 for a cohort summary and 
Supplementary Information (“Clinical patient data”) details about this patient cohort. 
 

Mutation Calls  
Single nucleotide variants (SNV) were called with an ensemble of four variant callers: Mutect, 
Strelka, SomaticSniper, and Varscan as previously described ​(9)​. Insertions and deletions 
(indels) were called using Strelka with default settings​. 
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HLA Typing 
HLA types were determined by ​ATHLATES​  for all samples using exome sequence data and 
confirmed with ​seq2HLA​  for samples that had RNA-Seq available (24 samples). 
 

Neoepitope Prediction 
Somatic SNVs that occurred a single base away from other somatic SNVs were combined into 
larger variants containing both SNVs. For each somatic variant we used Topiary 
(​https://github.com/hammerlab/topiary​) to generate the predicted 8-11mer amino acid product 
resulting from somatic alterations (SNV or indel), including predicted neoepitopes generated 
from combined SNVs. Each variant was linked to its corresponding coding DNA sequence 
(CDS) from Ensembl based on its B37 coordinates. The CDS sequence was re-translated with 
the mutated DNA residue producing the mutated peptide product. NetMHCcons v1.1 generated 
a predicted binding affinity for all 8-11mers containing the mutated amino acid and all peptides 
with an IC50 score below 500nM were considered predicted neoepitopes. For variants longer 
than a single residue we looked at all 8-11mers generated downstream of the variant. 
Neoepitopes from ​(10)​ were generated from a separate pipeline as published. 
 

RNA-Seq  
The 24 tumor RNA samples were a subset of the published 64-sample dataset, and included 
those samples from the 64-sample set that had sufficient tissue for RNA isolation. Data from 
some of samples have been previously presented ​(12)​. Sequencing libraries were prepared 
from total RNA with the Illumina TruSeq mRNA library kit (v2) and then sequenced on the HiSeq 
2500 with 2x50bp paired reads, yielding 47-60M reads per sample (New York Genome Center). 
The RNA reads were aligned using the STAR aligner after which Cufflinks was used for gene 
quantification (FPKM). seq2HLA was also used to quantify HLA gene expression (RPKM). 
Allele-specific expression was measured by the fraction of RNA reads supporting the variants 
found in exome sequencing. 

Gene set enrichment analysis (GSEA) was performed using v2.2.0 of the software 
provided by Broad Institute (​http://www.broadinstitute.org/gsea/index.jsp​) and the Hallmark gene 
set collection that was used in the comparison was accessed on August 18, 2015 from the 
MSigDB website (​http://www.broadinstitute.org/gsea/msigdb/index.jsp​). The Hallmark gene set 
collection was extended by adding gene symbols corresponding to well-known peptides that are 
(i) tumor-specific; (ii) associated with differentiation; (iii) overexpressed in cancer cells. To do 
this, gene symbols were imported from the Cancer Immunity Peptide Database as gene sets 
that are compatible with the GSEA software. Before running the GSEA, the gene expression 
data (FPKM) were collapsed using official gene symbol identifiers and the median expression 
value used when multiple transcripts mapped to the same gene symbol. To normalize the data 
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further, non-informative genes with no variation (standard deviation of 0) across all samples 
were removed. Three GSEA analyses were conducted comparing: (i) pre-treatment benefiting 
vs. pre-treatment non-benefiting; (ii) pre-treatment benefiting vs. post-treatment benefiting; (iii) 
pre-treatment non-benefiting vs. post-treatment non-benefiting. In all these comparisons, the 
normalized gene expression values were used as the input matrix. The number of permutations 
was set to 1,000, restricting these permutations to gene set labels rather than the sample 
phenotype labels due to our sample size, and we kept the rest of the default options (see 
http://www.hammerlab.org/melanoma-reanalysis/gsea-results/​ for complete reports and 
instructions to replicate them). 
 

Neoantigen Homology  
We developed a tool, Topeology, to compare tumor neoepitopes to entries in the Immune 
Epitope Database (IEDB) ​(13)​, accounting for position, amino acid gaps, and biochemical 
similarity between amino acids. Epitopes were compared, and the comparison scored, using the 
Smith-Waterman alignment algorithm ​(14)​ supplied with a substitution matrix consisting of 
PMBEC correlation values derived from the PMBEC covariance matrix ​(15)​. We compared 
amino acids from position 3 to the penultimate amino acid of the peptide, assuming that the 
anchor residues would be necessary for MHC Class I presentation and would therefore not be 
“visible” to a T cell. A gap penalty equal to the lowest PMBEC correlation value was supplied 
(Figure 3B). Peptide comparisons were only considered if they were the same length. 
Smith-Waterman scores were normalized for length by dividing by the length of the peptide 
section being compared (Figure 3B). 

Peptides were only included for comparison if the mutant peptide score was greater than 
or equal to the wild type peptide score. In addition, an epitope from IEDB was only compared to 
a neoepitope if either (i) the patient’s HLA allele(s) presenting that neoepitope were listed as 
HLA alleles for the IEDB epitope or (ii) the IEDB epitope was a predicted binder for one of the 
patient’s alleles.  

In order to narrow down candidate epitopes to those with some evidence of biological 
relevance, peptides from IEDB were required to exhibit ​in vitro​  evidence of human T cell 
activation. Because many peptides showed different T cell responses depending on the assay 
used, at least 60% of the instances of that specific amino acid sequence found in IEDB were 
required to exhibit an activated T cell response in order for that peptide to be considered “T cell 
activating.” Peptides were required to be 8 to 11 amino acids in length and were filtered to 
remove allergens, zoonotic organisms not known to affect humans, and self-epitopes. Limited 
manual filtering of source organisms was also performed to ensure the exclusion of 
non-pathogenic antigens. Peptides from IEDB were evaluated both as a whole and as two 
groups: viral and nonviral pathogens. 

Predictive Model Evaluation 
To evaluate whether similarity to known pathogenic antigens can predict clinical benefit, we 
generated predictive models using logistic regression with ​ℓ1​ regularization. Only pre-treatment 
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samples were considered, and a single pre-treatment sample that was considered discordant 
was also excluded. One model attempted to predict clinical benefit for each sample based on 
the maximal similarity of the sample’s neoepitopes to each IEDB epitope, with a feature for 
every IEDB epitope. Another model did the same, but aggregated IEDB epitopes based on their 
source pathogens, resulting in a feature for every IEDB source pathogen. The maximal similarity 
to an epitope (or pathogen) is referred to as the “score” for that epitope (or pathogen) in Results. 
To generate two additional models, IEDB epitope features were averaged together to create a 
single-feature model, and the same method was applied to IEDB pathogen features. See 
Supplementary Information for a table of all models, including feature counts per model. 

We tested these predictive models using 1,000 rounds of bootstrapping in order to 
generate stable measures of performance, using 75% of the samples for training. For each 
round, we performed 100 inner rounds of bootstrapping to optimize the regularization strength 
and scaling hyperparameters using 75% of the outer training samples for hyperparameter fitting 
and 25% of the outer training samples for hyperparameter validation. Each inner and outer 
round of bootstrapping calculated the area under the curve (AUC) of the receiver operating 
characteristic. A baseline AUC, which was also calculated using the same bootstrapping 
procedure, used mutation burden in place of a logistic regression probability. Each of the 1,000 
AUC values generated by the outer bootstrap sampling was compared with the corresponding 
baseline mutation burden AUC for the same sampling, resulting in a distribution of differences 
between each pair. Confidence intervals, as described by ​(16)​ were taken from these AUC 
distributions and pairwise AUC difference distributions. 

We also created the same similarity scores and predictive models for the neoepitope 
predictions generated by ​(10)​. Because the pipelines were different, as well as the definitions of 
clinical benefit, these results are not fully comparable and are found in the supplementary 
materials (Supplementary Information). 
 

Tetrapeptide Signature Evaluation 
We evaluated the tetrapeptide signature approach from Snyder et al ​(8)​ using the above 
bootstrapping procedure. Because Snyder et al used validation data to impact signature 
creation, we did not validate the identical tetrapeptide signature generated in ​(8)​. Instead, in 
order to perform validation, we generated additional tetrapeptide signatures from discovery data 
alone, excluding any validation set filtering. We used the same candidate tetrepeptide 
generation approach used in ​(8)​ as opposed to our updated approach used above: positionality 
was not considered, HLA alleles were not considered, and IEDB peptides were not filtered by 
length. We repeated the analysis twice: once using the variant calls and cohort (n=64) from ​(8) 
and once using updated variant calls and only pre-treatment, non-discordant samples (n=33). 

The bootstrapping procedure considered 1,000 randomly sampled training sets. The 
signature rules from Snyder et al, which are as follows, were applied to each sampled discovery 
set to generate separate signatures: a tetrapeptide was added to the signature if it was present 
in either (i) neoepitopes from at least 3 different benefit patients or (ii) neoepitopes from 2 
benefit patients and a T cell activating epitope from IEDB. Tetrapeptides that occurred in 
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non-benefit patient neoepitopes were excluded from the signature. For each sampling round, 
these signature rules only considered the round’s discovery set so that each of the 1,000 
signatures generated could be tested against their associated validation sets. 

Performance was measured using a single binary value, as described by Snyder et al: 
whether or not a patient's neoepitopes contained any of the signature tetrapeptides. In this 
binary case, the receiver operating characteristic curve contains a single threshold. The AUC 
score defined by the area under the line segments that connect to this single threshold is equal 
to balanced accuracy, which is the metric we used in this case. We also evaluated the AUC 
using per-patient counts of signature tetrapeptides. 
 

Results 

Mutation and Expressed Mutation Burden are Associated with Outcome in 
Pre-Treatment Samples in Advanced Melanoma Patients Treated with 
CTLA-4 Blockade Using Updated Bioinformatic Analysis 
We reanalyzed the mutation burden of the melanoma tumors included in Snyder et al ​(8)​ using 
a modified system of four callers (as described in ​(9)​). Analyzing the data using this system 
increased the median nonsynonymous mutation burden of the group 1.9-fold from 248 to 471 
(original range 1-1878, to new range 6-3394) (Supplementary Figure 1A-B).  

In samples collected prior to treatment (n=34), mutation burden was higher in patients 
with clinical benefit (Figure 1A, median: 654 in benefiters versus 196.5 in non-benefiters, 
Mann-Whitney, p=0.0006), and elevated mutation burden was associated with overall survival 
(Supplementary Figure 1C, log-rank test, p=0.01). Of pre-treatment samples, one patient who 
otherwise experienced disease control had a progressing lesion resected, representing a 
discordant lesion (Methods). In patients whose tumor samples were collected after initiating 
CTLA-4 blockade (n=30), there was not a significant difference in the mutation burden between 
benefit and non-benefit groups (Figure 1B, median: 592 in benefiters versus 396 in 
non-benefiters, Mann-Whitney, p=0.19), and elevated mutation burden was not significantly 
associated with overall survival (Supplementary Figure 1D, log-rank test, p=0.29). 8 discordant 
lesions were present among post-treatment samples; when excluding patients with discordant 
lesions, there was still not a significant difference in the mutation burden between benefit and 
non-benefit groups (median: 592 in benefiters versus 392 in non-benefiters, Mann-Whitney, 
p=0.20) or a significant association with overall survival (log-rank test, p=0.39). In sum, mutation 
burden was associated with clinical benefit only in samples collected prior to treatment. 

In some previously published studies, insertion or deletion mutations (indels) have not 
been considered in calculating mutation and neoantigen burdens. Genetic alterations of greater 
than one amino acid can theoretically generate peptides that are substantially different from the 
wild type as a result of a shifted reading frame (termed neo-open reading frames, or neo-ORFs 
(17)​). The number of predicted neoantigens resulting from indels was also associated with 
outcome (median 9 and 6 in benefiters and non-benefiters, respectively, Mann-Whitney, 
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p=0.018), but comprised a very small minority of neoantigens (median of 0.8% of all predicted 
neoantigens, range 0-33.7%). The possibility remains that these transcripts or the resulting 
translated proteins are subsequently degraded ​(18)​. 

The previously published analysis did not find a correlation between the signature of 
ultraviolet DNA damage and clinical benefit. We reexamined this question using updated 
methods. A tumor was determined to have a UV signature when > 60% of mutations were C>T 
transitions at dipyrimidine sites ​(19,20)​. As expected, 36 of 44 (81%) tumors of cutaneous origin 
harbored the UV signature. Five out of six tumors with acral or uveal histology did not have a 
UV signature (although one did: ID 6819). In contrast to the originally published data, we found 
the rate of UV signature mutations correlated with clinical benefit (Figure 1C, Mann-Whitney, 
p=​0.003​) and overall mutation burden (Figure 1D, Spearman rho=​0.77​, p=4e-14).  

Two studies have investigated expressed neoantigens in human samples from patients 
treated with immunotherapy by examining the expression level of genes which harbored 
mutations ​(10,21)​. However, because many mutations do not result in expressed proteins, we 
examined allele-specific expression (see Methods) of mutations. The median rate at which 
genes containing mutations were expressed (FPKM > 0) in all samples was 37% (range 
20%-50%). Of all tumors with available RNA-Seq data (n=24), one post-treatment lesion was 
discordant. For tumors sampled prior to treatment with available RNA-Seq data (n=9), patients 
with long-term benefit had a higher number of mutations expressed in the RNA samples (Figure 
1A, Mann-Whitney, p=0.002). For tumors sampled after treatment (n=15), the difference in 
expressed mutation burden between benefiters and non-benefiters was not significant (Figure 
1B, Mann-Whitney, p=​0.46​). Predicting clinical benefit using expressed mutation burden among 
pre-treatment samples with RNA-Seq data (n=9) resulted in an AUC of 0.89, 95% CI [0.57, 
1.00], compared to a baseline mutation burden AUC of 0.94, 95% CI [0.67, 1.00] for those same 
samples. 
 

Predicted Neoantigens are Associated with Mutation Burden and Outcome  
In this updated analysis, in contrast to the neoantigen prediction approach employed in ​(8)​, 
NetMHCcons was applied to 8 to 11 amino acid stretches of predicted mutant peptides resulting 
from both single nucleotide variants (SNV) and indels. All predicted binders less than or equal to 
500nM were included, allowing for multiple potential neoepitopes from a single nucleotide 
variant or indel. Neoepitopes were predicted based on exome data and allele-specific 
expression was measured in tumors with RNA-Seq data. Tumors had a median of 943 (range 
3-6502) predicted neoantigens. Patients who derived clinical benefit had tumors with a higher 
median predicted neoantigen burden (median 1388, range 209-6502) than those who did not 
(median 819, range 3-4510) (Mann-Whitney, p=0.01). When considering only pre-treatment 
tumor samples (n=34), this held true: median predicted neoantigen burden was 1579 (range 
209-6502) in benefiters and 582.5 (range 3-2485) in non-benefiters (Mann-Whitney, p=0.002). 
There was no significant difference in predicted neoantigen burden among post-treatment tumor 
samples (n=30), with a median predicted neoantigen burden of 940 (range 539-1487) in 
benefiters and 982 (range 81-4510) in non-benefiters (Mann-Whitney, p=0.49). Using 
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neoantigen burden to predict clinical benefit resulted in an AUC of 0.67, 95% CI [0.54, 0.79] 
compared to a baseline mutation burden AUC of 0.72, 95% CI [0.58, 0.84]. Considering only 
pre-treatment samples resulted in an AUC of 0.80, 95% CI [0.64, 0.93] compared to a baseline 
mutation burden AUC of 0.83, 95% CI [0.69, 0.95] for those samples. There was no difference 
in the ratio of predicted neoantigens to single nucleotide variants in benefiting tumors versus 
non-benefiting (median of 2 versus 2.17, respectively). For those pre-treatment tumors with 
available RNA-Seq data (n=9), the median number of expressed, allele-specific neoantigens 
was 382.5 (88-725) in benefiters and 48 (1-401)​ ​ in non-benefiters (Figure 2A, Mann-Whitney, 
p=0.003), while there was no significant difference in those tumors collected after treatment 
(Figure 2B, Mann-Whitney, p=0.46). Among pre-treatment tumors (n=9), the AUC for expressed 
neoantigens was 0.79, 95% CI [0.35, 1.00] compared to a baseline AUC for mutation burden of 
0.94, 95% CI [0.67, 1.00]. There was no difference in the percent of expressed predicted 
neoantigens between benefiting (median 37.4%, range 29.9%-46.3%) and non-benefiting 
tumors (median 35%, range 14.9%-44.4%).  

The lack of correlation between benefit and mutation or neoantigen burden in 
post-treatment samples may suggest immunoediting of specific neoantigens such that the 
overall neoantigen burden is nearly maintained, but a small number of particularly important 
neoantigens have been selectively removed.  

 

Predicted Neoepitope Homology Does Not Outperform Mutation Burden as 
a Predictor of Response 
T cell receptors (TCR) are known to exhibit considerable degeneracy ​(22)​, with evidence in 
infectious diseases that T cells can cross-react to unknown antigens based on homology to 
antigens to which the host has not previously been exposed ​(23,24)​. In cancer, fatalities have 
been reported that resulted from cross-reactivity of tumor antigen-specific engineered T cell 
receptors ​(25)​. The current RNA-Seq data have been analyzed previously to suggest that an 
anti-viral interferon-related expression signature is associated with benefit from therapy ​(12)​. 
However, it is unknown whether T cell cross-reactivity plays a role in checkpoint blockade 
efficacy. 

The hypothesis that tumors that respond to checkpoint blockade might harbor recurrent 
motifs associated with response, either common to responders or homologous to known T cell 
epitopes remains a question of particular debate. In the initial description of the melanoma 
sequencing data ​(8)​, an algorithm was used to compare 4 amino acid stretches contained within 
nonamer neoantigens (a “tetrapeptide signature”), irrespective of position or HLA type. We 
directly evaluated that previous algorithm and separately performed a new comparison.  

First, we replicated the tetrapeptide signature approach used by Snyder et al inclusive of 
the same patients (n=64), variant calls, neoepitope predictions, and IEDB filtering criteria. Unlike 
Snyder et al, we did not allow held out data to influence the tetrapeptide signature (see 
Methods). When we categorized tumor samples as featuring or not featuring the tetrapeptide 
signature, this achieved an AUC of ​0.61, 95% CI [0.53, 0.71]​ compared to an associated 
mutation burden baseline AUC of ​0.76, 95% CI [0.63, 0.89]​. Similarly, using counts of signature 
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tetrapeptides rather than a binary representation of signature presence did not outperform 
mutation burden (Supplementary Information). ​In addition to directly replicating the approach 
and data used by Snyder et al, we performed a similar analysis​ using only pre-treatment, 
non-discordant samples as well as updated variant calls. The presence of tetrapeptide signature 
tetrapeptides achieved an AUC of 0.50, 95% CI [0.50, 0.50] compared to an updated mutation 
burden baseline of 0.85, 95% CI [0.69, 0.98]​. Using counts of signature peptides did not 
outperform mutation burden here, either ​(Supplementary Information)​.  

In summary, the originally derived tetrapeptide signature and the tetrapeptide signature 
generated using the revised mutation calling system did not outperform mutation burden as a 
predictor of clinical benefit, and using the revised system, was not better than random selection. 

Next, we created an automated tool, Topeology, for comparing tumor neoepitopes with 
pathogens from the Immune Epitope Database (IEDB) using sequence alignment of non-anchor 
residues. This alignment accounts for position, amino acid gaps, and biochemical similarity 
between amino acids (see Methods). We conducted comparisons of single amino acid 
substitution-based neoepitopes using this tool, considering only non-discordant, pre-treatment 
samples (n=33) (Figure 3A-B and Supplementary Figure 2). 

We explored the extent to which mutation burden may confound these similarity scores. 
When comparing tumor samples to IEDB pathogens (Supplementary Figure 2), mutation burden 
was highly correlated with the mean IEDB epitope similarity score for each sample (Figure 3C, 
Pearson r=0.97, p=6.3e-21). None of these models significantly outperformed the mutation 
burden baseline AUC of 0.85, 95% CI [0.69, 0.98] (Supplementary Information). We repeated 
this process using a dataset that includes the neoantigens predicted in a recently published 
study of 100 tumors from melanoma patients treated with ipilimumab, using the neoantigen 
predictions and definition of clinical benefit as defined in that study ​(10)​. With the caveat that 
these two neoantigen prediction pipelines were not the same, we found a similar result 
(Supplementary Information). 

Using any of the methods above, the comparison of tumor neoepitopes to pathogens 
was highly associated with mutation burden but did not outperform mutation burden as a 
predictor of response. 
 

Gene Set Enrichment Analysis of Bulk Tumor RNA Expression Illustrates 
Enrichment for Interferon Signaling and Metabolic Activity in Benefiting 
Tumors  
We sought to determine whether clinical benefit is also associated with an inflamed tumor milieu 
favorable for anti-tumor immune activation in the setting of CTLA-4 blockade, as previously 
described ​(26–29)​. 

When we applied the CIBERSORT method, which was originally developed to 
deconvolve lymphocyte subsets using microarray data ​(30)​, the measure of tumor immune 
infiltrate correlated with site of origin: resected tumor-containing lymph nodes exhibited a high 
Pearson correlation coefficient (range: 0.26-0.73) with immune infiltrate as compared to those 
resected from other primary or metastatic sites (range: -0.04-.32) (per-subtype scores in 
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Supplementary Figure 3). We next applied gene set enrichment analysis (GSEA) using the 50 
Hallmark gene sets provided by the MSigDB database ​(31,32)​. When we compared all 
benefiting tumors to non-benefiting tumors, the top 5 most statistically significant gene sets 
upregulated in benefiting tumors were interferon gamma, interferon alpha, allograft rejection, 
inflammatory response and complement (Supplementary Figure 4, FDR q-val < 0.005 for each). 
These data are consistent with previous studies ​(26)​. There were no significantly enriched gene 
sets when all pre-treatment lesions were compared to all post-treatment lesions. 

When we examined only pre-treatment tumors (n=9), benefiting tumors (n=4) were 
characterized by signals of active metabolism, including MTORC1 signaling, glycolysis, and fatty 
acid metabolism (FDR q-val < 0.05; see Supplementary Information for complete list) relative to 
non-benefiting (n=5). The UV response (FDR q-val < 0.05) and inflammatory response (FDR 
q-val < 0.05) gene sets were also significantly enriched. 

Discussion 
To date, studies conducted in three tumor types (melanoma ​(8,10)​, lung ​(9)​ and MSI-high 
cancers ​(11)​) have illustrated an association between mutation burden and response to 
checkpoint blockade immunotherapy.​ ​Here, we present a reanalysis of previously published 
data ​(8)​ and incorporate new expression data from a subset of patients in that 
study. Interestingly, predicted Class I candidate neoantigens did not outperform mutation 
burden as a predictor of response, even when RNA expression was considered. This finding 
reinforces the importance of other factors to response, including Class II neoepitopes (for which 
predictive tools remain suboptimal), signaling and cell populations in the tumor 
microenvironment, and other systemic factors. Furthermore, the ratio of predicted neoantigens 
to mutations was not significantly different in non-responding tumors, and post-treatment tumors 
did not exhibit a significant difference in mutation or neoantigen burden between benefiting and 
non-benefiting tumors. These findings suggest that immunoediting cannot be perceived when 
evaluating neoantigens in aggregate bioinformatically, but may be occurring at the level of 
individual neoantigens of particular importance. 

In an effort to better evaluate the hypothesis that neoantigens may resemble known 
pathogens, we created Topeology: a publicly available, biologically relevant tool for peptide 
comparison to facilitate comparison of T-cell cross-reactivity in any setting (cancer or otherwise). 
We evaluated neoantigens using both the previously published ​tetrapeptide signature and 
Topeology​. When either method was applied to two published datasets of melanoma patients 
treated with CTLA-4 blockade ​(8,10)​, we have found that resemblance of neoepitopes to 
pathogens is associated with but does not outperform mutation burden as a predictor of 
response to therapy. Therefore, while TCR cross-reactivity may be relevant on an individual T 
cell level, neither the tetrapeptide signature or neoepitope homology exhibits an indication for 
use as a biomarker, as both measures are highly associated with, and do not outperform, 
mutation burden. Topeology may be used to evaluate candidate peptides on an individual basis, 
for example in the exploration of the hypothesis that tumors generate “danger signals” 
recognizable to T cells ​(33)​. 
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These data confirm what immunologists have long known ​(34–36)​: a myriad of additional 
factors, ranging from the interferon gamma signaling seen in GSEA analysis ​(26)​, to systemic 
factors ​(37,38)​ must be integrated with mutation burden to improve our understanding of tumor 
response and resistance to checkpoint blockade therapy.  
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Figure Legends 
Figure 1. Mutation Burden and Ultraviolet Signature. 
A. Median and range of mutation burden and allele-specific expression of mutations in samples 
collected prior to treatment (for benefit versus no benefit, all (n=34, Mann-Whitney, p=0.0006), 
expressed (n=9, p=0.024)). In A and B, the first pair of bars represent mutation burden for all 
sequenced tumors; the second pair represent mutation burden in the subset of tumors for which 
RNA was available; the third represent the expressed mutations. In A-C, blue bars represent 
benefiting tumors; red bars represent non-benefiting tumors.  
B. Median and range of mutation burden and expressed mutations in samples collected after 
treatment (for benefit versus no benefit, all (n=30, Mann-Whitney, p=0.19), expressed (n=15, 
p=0.46)).  
C. Correlation between signature of DNA damage from ultraviolet (UV) exposure and clinical 
response (*Mann-Whitney, p=0.003). 
D. Correlation between UV signature and mutation count (Spearman rho=0.77, p=4e-14). 
 
Figure 2. Neoantigen Burden  
A. Median and range of neoantigen burden and allele-specific expression of neoantigens in 
samples collected prior to treatment (for benefit versus no benefit, all (n=34, Mann-Whitney, 
p=0.002), expressed (n=9, p=0.003)).  

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088286doi: bioRxiv preprint 

https://paperpile.com/c/jf1NlM/nWr9+EnU8+iC6R
https://paperpile.com/c/jf1NlM/iwJX
https://paperpile.com/c/jf1NlM/Cvtd+gYFt
http://www.hammerlab.org/melanoma-reanalysis
http://www.hammerlab.org/melanoma-reanalysis
https://github.com/hammerlab/topeology
https://github.com/hammerlab/topeology
https://github.com/hammerlab/topeology
https://github.com/hammerlab/topeology
https://doi.org/10.1101/088286
http://creativecommons.org/licenses/by/4.0/


 

B. Median and range of neoantigen burden and expressed neoantigens in samples collected 
after the initiation of treatment (for benefit versus no benefit, all (n=30, Mann-Whitney, p=0.49), 
expressed (n=15, p=0.46)). In A and B, blue bars represent benefiting tumors; red bars 
represent non-benefiting tumors. The first pair of bars represent predicted neoantigens for all 
sequenced tumors; the second pair represent predicted neoantigens in the subset of tumors for 
which RNA was available; the third represent the expressed neoantigens. 
 
Figure 3. Comparison of Neoepitopes 
A. Flow chart illustrating the process for tumor-to-pathogen neoepitope comparison by 
Topeology. 
B. An example comparison of the CPDKSTSTL neoepitope (tumor ID 0095) and its wild type 
peptide to the LPFEKSTVM Influenza A epitope from IEDB. In this case, the neoepitope results 
in a higher score (0.58) than the wild type peptide (0.42). Only bold amino acids are considered 
for alignment. Amino acids labeled black do not impact the final Smith-Waterman alignment 
score for this comparison. Amino acids labeled green are equivalent in both sequences while 
amino acids labeled orange are not.  
C. Averaged tumor-to-pathogen similarity scores were highly correlated with the log of mutation 
burden (Pearson r=0.97, p=6.3e-21). 
 
Table 1. Cohort Summary 
Features of tumors from patients with clinical benefit, no benefit, or in which a discordant lesion 
was resected. 

Group Benefit No Benefit Discordant 

N 27 28 9 

% Cutaneous 20/27 19/28 5/9 

OS 3.7 (1.6 - 7.3) 0.8 (.2 - 2.7) 4 (1.7 - 7.9) 

Age 65 (33 - 81) 58.5 (18 - 79) 68 (40 - 90)  

Mutations 611 (165 - 3394) 321 (6 - 1816) 549 (93 - 1336) 

Neoantigens 1388 (209 - 6502) 714.5 (3 - 4510) 1048 (197 - 2584) 
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A.Figure 3. B. Mutant:

CP  DKSTST L
    ||||
LP FEKSTV  M

Wildtype:

CP DESTST  L
    || ||
LP FEK-STV M

C.
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