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Abstract

Eco-evolutionary theory argues that population cycles in consumer-resource interactions are

partly driven by natural selection, such that changes in densities and changes in trait values3

are mutually reinforcing. Evidence that this theory explains cycles in nature, however, is almost

nonexistent. Experimental tests of model predictions are almost always impossible because of the

long time scales over which cycles occur, but for most organisms, even tests of model assump-6

tions are logistically impractical. For insect baculoviruses in contrast, tests of model assumptions

are straightforward, and baculoviruses often drive outbreaks of forest-defoliating insects, as in

the gypsy moth that we study here. We therefore used field experiments with the gypsy moth9

baculovirus to test two key assumptions of eco-evolutionary models of host-pathogen popula-

tion cycles, that reduced host infection risk is heritable and costly. Our experiments confirm the

two assumptions, and inserting parameters estimated from our data into the models gives cy-12

cles closely resembling gypsy moth outbreak cycles in North America, whereas standard models

predict unrealistic stable equilibria. Our work shows that eco-evolutionary models are useful

for explaining outbreaks of forest insect defoliators, while widespread observations of intense15

selection imposed by natural enemies on defoliators, and frequent laboratory observations of

heritable and costly resistance in defoliators, suggest that eco-evolutionary dynamics may play a

general role in defoliator outbreaks.18
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Introduction

Eco-evolutionary theory has shown that natural selection can help drive cycles in predator-prey

and other consumer-resource interactions, such that changes in trait values lead to changes in21

population densities, and vice versa (Abrams 2000). Recent work has focused in particular on

the case for which selection by the consumer drives selection in the resource (Ellner 2013), so that

increased consumer attacks lead to both decreases in resource densities and increased resource24

resistance, due to natural selection for increased resistance, while decreased attacks lead to both

increased resource densities and reduced resistance, due to a fitness tradeoff between resistance

and fecundity. Changes in population densities and changes in trait values are thus mutually27

reinforcing.

Eco-evolutionary cycles have been observed in models of predators and prey (Abrams and

Matsuda 1997; Doebeli 1997; Ellner et al. 2011; Schreiber et al. 2011), hosts and parasitoids (Sasaki30

and Godfray 1999), and hosts and pathogens (Dieckmann 2002), but whether the models can

explain population cycles in nature is unclear. Microcosm experiments have shown that eco-

evolutionary predator-prey cycles occur in the laboratory (Fussmann et al. 2000; Yoshida et al.33

2003), but laboratory conditions are often very different from field conditions, and field tests of

the theory are effectively nonexistent (Abrams 2000). Here we therefore test eco-evolutionary

theory using field data for the gypsy moth (Lymantria dispar) and its baculovirus.36

Cycles of the gypsy moth and other outbreaking insects occur over time scales of decades and

spatial scales of thousands of square kilometers, making full-scale experimental tests of model

predictions impractical (Liebhold and Kamata 2000). We therefore first tested model assump-39

tions, specifically the assumptions that resistance is heritable and costly. Notably, resistance in

the models is defined in terms of overall infection risk (Elderd et al. 2008), whereas evidence

of heritable and costly resistance in baculoviruses comes mostly from laboratory experiments42

that measure only infection risk given exposure (Boots and Begon 1993; Cory and Myers 2009;

Watanabe 1987). Experiments with other host-pathogen interactions have similarly considered
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only infection risk given exposure (Altizer et al. 2003). Previous work has therefore not provided45

robust tests of model assumptions.

An underlying problem is that overall infection risk is best measured in the field, but for

most host-pathogen interactions, field experiments are impractical. Meanwhile, for the few host-48

pathogen interactions for which experiments have measured infection risk in the laboratory or

the greenhouse (Auld et al. 2014, 2013; Henter and Via 1995; Herzog et al. 2007; Zbinden et al.

2008), there are no data demonstrating that population cycles occur in nature. For insect bac-51

uloviruses in contrast, field experiments are straightforward (Elderd 2013), and because of the

economic importance of the gypsy moth as an outbreaking forest pest, there are extensive data

documenting gypsy moth population cycles (Johnson et al. 2005).54

Previous efforts to explain these cycles, however, have met with limited success. Classical

insect-pathogen models require variability in host infection risk to prevent pathogen extinction,

but realistically high variability causes the models to produce a stable equilibrium instead of57

cycles (Dwyer et al. 2000). Extending classical models to allow pathogen transmission to be

affected by induced plant defenses leads to models that can explain gypsy moth cycles, but the

resulting host-pathogen/induced-defense models require particular spatial configurations of tree60

species (Elderd et al. 2013), and so cannot explain outbreaks in some forest types in which gypsy

moth outbreaks have been observed to occur (Haynes et al. 2009).

Allowing for heritable variation in insect-outbreak models can also lead to realistic cycles63

when variation is high, irrespective of forest type (Elderd et al. 2008), suggesting that eco-

evolutionary models may provide a better explanation for gypsy moth outbreak cycles. For

mathematical convenience, however, the models in question made the unrealistic assumption66

that heritability is perfect, even though heritability is undoubtedly less than one. Moreover,

reduced heritability is strongly stabilizing in predator-prey models (Schreiber et al. 2011), sug-

gesting that low heritability may prevent cycles in insect-outbreak models. Here we therefore test69

whether eco-evolutionary dynamics can explain gypsy moth outbreaks, first by extending pre-

vious models to allow for imperfect heritability, second by estimating the heritability and costs
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of increased resistance, and third by testing whether our heritability and cost estimates produce72

model cycles that match cycles seen in nature.

Eco-evolutionary microcosm models show 1/2-cycle lags between predator and prey popu-

lation peaks that qualitatively differ from the 1/4-cycle lags of classical models (Fussmann et al.75

2000; Yoshida et al. 2003), whereas population cycles in our model closely resemble the cycles of

classical, non-evolutionary models (Dwyer et al. 2000). This difference between our models and

microcosm models apparently occurs because our models include discrete generations, a basic78

feature of the biology of many outbreaking insects (Hunter 1991), emphasizing the importance

of constructing models from field data. The similarity of our model’s predictions to those of

classical models, however, means that, unlike with microcosm models, it is not possible to test81

model predictions through qualitative comparisons to data.

We therefore instead tested model predictions by comparing the period and amplitude of the

models (Kendall et al. 1999) to the period and amplitude seen in data for gypsy moths (Johnson84

et al. 2005). Because the predictions of our model match the data, our work supports the hy-

pothesis that eco-evolutionary consumer-resource cycles occur in nature, not just in microcosms.

Moreover, because the gypsy moth is a major pest of hardwood forests in North America (Elk-87

inton and Liebhold 1990), and because the virus plays a role in gypsy moth control (Podgwaite

et al. 1993), our model may be useful for guiding gypsy moth management, as we discuss.

Methods90

Baculovirus Biology and Eco-Evolutionary Models of Insect Outbreaks

In forest-defoliating insects like the gypsy moth, baculovirus transmission occurs when larvae

accidentally consume infectious particles or “occlusion bodies” during feeding, and so only lar-93

vae can become infected (Cory and Hoover 2006). Larvae that consume enough occlusion bodies

die, after which viral enzymes break down the larval cuticle, releasing occlusion bodies into the

environment (Elderd 2013). In high density populations, multiple rounds of transmission cause96

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/088047doi: bioRxiv preprint 

https://doi.org/10.1101/088047


severe mortality, terminating outbreaks (Moreau and Lucarotti 2007). The virus then overwinters

by contaminating the egg masses produced by surviving insects (Murray and Elkinton 1989).

This simple biology can be accurately described by a Susceptible-Exposed-Infected-Recovered99

(SEIR) model, modified to allow for host variation in infection risk (Dwyer et al. 2002, 1997):

dS
dt

= −ν̄SP
[

S(t)
S(0)

]V

, (1)

dE1

dt
= ν̄SP

[
S(t)
S(0)

]V

−mδE1, (2)

dEi

dt
= mδEi−1 −mδEi, i = 2, . . . m, (3)

dP
dt

= mδEm − µP. (4)

Here, S and P are the densities of healthy hosts and infectious cadavers, respectively, while Ei

is the density of exposed but not yet infectious hosts, so that i indicates the exposure class.102

Allowing for m exposure classes produces a distribution of times to death, with mean 1/δ and

coefficient of variation (C.V.) 1/
√

m (Keeling and Rohani 2008). Variation in infection risk is

described by the transmission term ν̄

[
S(t)
S(0)

]V

, such that the initial mean transmission rate is ν̄105

and the squared C.V. of transmission rates is V (Dwyer et al. 2000).

Transmission ν̄ determines host infection risk, and so including variation in transmission

is a first step in allowing natural selection to drive the evolution of host infection risk. The108

second step is to allow for multiple host generations by including host reproduction, which we

accomplish by embedding equations (1)-(4) in a discrete-generation model (see Appendix A).

Because generalist predators and parasitoids also affect gypsy moth populations, we include a111

term that describes the fraction surviving predation (Dwyer et al. 2004):

Nn+1 = reεn Nn [1− i(Nn, Zn, ν̄n)]

[
1− 2aωNn

ω2 + N2
n

] {
1 + sν̄n [1− i(Nn, Zn, ν̄n)]

V
}

, (5)

Zn+1 = φNni(Nn, Zn, ν̄n) + γZn, (6)

ν̄n+1 = νn[1− i(Nn, Zn, ν̄n)]
bV
{

1 + s(bV + 1)[1− i(Nn, Zn, ν̄n)]bV}
1 + sν̄n[1− i(Nn, Zn, ν̄n)]bV . (7)
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The resulting model tracks generational change not just in hosts Nn and pathogens Zn, but also

in the average transmission rate ν̄n, which is the infection risk at the beginning of generation n114

(for simplicity, we assume constant V). The fraction infected during the epizootic i(Nn, Zn, ν̄n) is

calculated using equations (1)-(4), assuming an eight week epizootic (Fuller et al. 2012).

Host density Nn+1 in host generation n+ 1 is the product of baseline fecundity r, a stochastic-117

ity term eεn , host density in the preceding generation Nn, and the fraction surviving the epizootic

[1− i(Nn, Zn, ν̄n)]. The stochasticity parameter εn is a normal random variate with mean 0 and

standard deviation σ, which has a different value in each generation, representing the effects120

of weather (Williams et al. 1990). Generalist predation is represented by the term
[
1− 2aωNn

ω2+N2
n

]
,

which describes host survival as determined by a Type III functional response (Dwyer et al. 2004).

At low host Nn and pathogen Zn densities, reproduction increases linearly with increasing infec-123

tion risk ν̄n, according to {1 + sν̄n [1− i(Nn, Zn, ν̄n)]}, reflecting a fecundity benefit of increased

risk that is reduced when the infection rate i(Nn, Zn, ν̄n) is high due to high Nn and/or high Zn.

Changes in host density are thus partly driven by balancing selection, such that higher infection126

risk leads to increased mortality but also increased fecundity.

Pathogen density Zn+1 in host generation n + 1 is equal to the density of infectious cadavers

produced in the preceding generation’s epizootic, Nni(Nn, Zn, ν̄n), times the effective overwin-129

tering rate φ. Because φ allows for the higher susceptibility of neonate larvae, which are orders

of magnitude more susceptible than later stage larvae, previous work has shown that φ > 1

(Fleming-Davies and Dwyer 2015; Fuller et al. 2012). Long-term pathogen survival is represented132

by the cadaver density Zn times the long-term pathogen survival rate γ (Fuller et al. 2012).

Infection risk ν̄n+1 in generation n + 1 is equal to the preceding generation’s risk ν̄n times the

fraction infected i(Nn, Zn, ν̄n), reflecting selection for reduced risk. Risk also increases because of135

the cost of resistance, due to linear increases in fecundity with increases in previous-generation

risk when host and pathogen densities are low,
(
1 + s(bV + 1)[1− i(Nn, Zn, ν̄n)]bV), an effect that

is again reduced by high infection rates. As with host density, infection risk is thus determined138

by balancing selection, except that risk depends only on the scaling parameter s and not the
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baseline fecundity r. Finally, b is the heritability of risk, so that bV is the fraction of variation

that is due to additive genetic factors. High values of heritability b thus strengthen the effects of141

selection.

Population cycles in this model occur because of the consumer-resource interaction between

the host and the pathogen, and because of natural selection on infection risk and fecundity (fig. 1).144

Low virus mortality allows high-fecundity, high-infection-risk genotypes to rise in frequency,

leading to increasing virus density and increasing average infection risk, which in turn cause

virus epizootics that decimate the host population. Host density is then low for multiple host147

generations not just because of the pathogen and the generalist predators, but also because the

survivors of virus epizootics are more resistant to the pathogen and therefore suffer a fecundity

cost. Eventually, however, falling virus density and rising fecundity together drive increases150

in host density, leading to a new outbreak. Natural selection therefore combines with ecological

factors to drive outbreaks. Moreover, models in which there is no generalist predator, or in which

the pathogen is instead a parasitoid, give qualitatively similar results (see Online Appendix).153

Field Experiments to Estimate the Heritability and Cost of Reduced Infection Risk

The key assumptions of our eco-evolutionary model are that infection risk ν is heritable, so that

heritability b > 0, and that there is a cost of reduced risk, so that the relationship between156

fecundity and risk has positive slope rs > 0. Previous work produced preliminary evidence that

gypsy moth infection risk is heritable, without estimating heritability, and without providing

evidence that reduced risk is costly (Elderd et al. 2008). Our experiments were therefore designed159

both to test whether infection risk is heritable and costly, and to estimate the heritability and cost

parameters, to determine if the parameters fall in the right range to produce realistic outbreaks

in the model.162

Part of the reason why it is important to measure infection risk in the field is because infection

risk depends on feeding behavior, which cannot be easily allowed for in laboratory experiments

(Dwyer et al. 2005). Feeding behavior affects the overall risk of infection by determining the165
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Figure 1: A single realization of the model equations (5)-(7). The top panel shows changes in
host densities Nn and pathogen densities Zn (black points/bold lines and open points/gray lines,
respectively), while the bottom panel shows the corresponding changes in average infection risk
ν̄n and fraction infected i (black points/bold lines and open points/gray lines, respectively).
Heritability b = 0.126, fecundity cost on density r = 0.21, cost scaling parameter s = 1.21,
total variation V = 2.97, the median parameter values calculated from our experimental data.
Pathogen overwintering parameter φ = 7.4 and long-term survival γ = 0.3 from Fuller et al.
(2012) (γ is on the high end of reasonable values, but variation in γ has only modest effects, see
Supporting Information), generalist predation parameters a = 0.96, w = 0.14 from Dwyer et al.
(2004).
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risk of exposure, with the proviso that the overall risk of infection is also affected by the risk of

infection given exposure, which is instead determined by the insect’s immune response (Páez

et al. 2015). Feeding behavior is thus important because gypsy moth larvae can sometimes detect168

and avoid virus-infected cadavers (Capinera et al. 1976), a heritable behavior (Parker et al. 2010),

but variation in risk given exposure is also heritable (Páez et al. 2015). By measuring overall

infection risk, we thus allowed for variation in both components of infection risk.171

To prevent larval emigration and virus decay (Fuller et al. 2012), all foliage was covered

in mesh bags. Also, the exposure period was short enough that no new virus deaths occurred

during either experiment, and so there was no change in the density of virus after the experiment174

began. By setting the change in virus density dP
dt = 0, we can then simplify equations (1)-(4) to

produce an expression for the fraction infected i at the end of the experiment (Dwyer et al. 2000):

i = 1− [1 + ν̄VP(0)T]−1/V . (8)

Here P(0) is the density of virus-infected cadavers, and T is the length of time for which the ex-177

periment runs. Because in our experiments we measured i, it was possible to use nonlinear fitting

routines (see Online Appendix) to fit equation (8) to our data, and thus to estimate average infec-

tion risk ν̄ and variation V. In previous work, inserting such experimental parameter estimates180

into equations (1)-(4) produced infection rates that are close to those seen in nature (Dwyer et al.

2002, 1997; Dwyer and Elkinton 1993), suggesting that our protocol produces accurate parameter

estimates.183

Inferences about transmission parameters are stronger in experiments that include a range

of virus densities, and so we used densities of 0, 25, 50, and 75 virus-infected cadavers per

40-leaf branch (Elderd et al. 2008). After larvae had fed on virus-contaminated foliage in the186

field, we reared them in individual diet cups in the lab until death or pupation. Infected larvae

are usually easily recognizable because the virus causes larvae to disintegrate, but in cases of

uncertainty, we examined smears from dead larvae for the presence of occlusion bodies, which189
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are easily visible at 400× (Fleming-Davies et al. 2015). Because we used an area in which gypsy

moth densities were very low, and because all eggs were surface-sterilized in dilute formalin

(Dwyer and Elkinton 1995), infection rates on uninfected control foliage were low (heritability192

experiment: 12/209 = 5.7%; cost experiment: 6/371 = 1.6%), and so we do not consider controls

further.

To estimate heritability, we decomposed the variance in infection risk ν̄ into additive genetic195

variance and environmental variance. Additive genetic variance can be estimated from the vari-

ance in ν̄ across half-sibling groups, which is due to sire effects Si. Maternal effects in the gypsy

moth can arise from variability in egg provisioning (Diss et al. 1996), but there may also have198

been small-scale differences between rearing cups. We therefore collectively denote maternal and

small-scale rearing effects as Mj. Also, for logistic reasons, larvae were not all deployed in the

field on the same day, and so we also allowed for environmental variance due to a start-day effect201

Dk. We thus expressed average infection risk in terms of sire, dam and day effects, so that ν̄ in

equation (8) becomes:

ν̄ijk = elog(ν?)+Si+Mj+Dk . (9)

Here ν? is the baseline infection risk. Following quantitative genetic theory (Falconer and Mackay204

1996), heritability is then estimated as;

b = 4×
σ2

S

(σ2
S + σ2

M + σ2
D)

, (10)

such that σ2
S , σ2

M, and σ2
D are the variances due to the sire, maternal and day effects, respectively,

which we estimated using a hierarchical Bayesian fitting routine. To test whether variation in207

infection risk is heritable, we then used AIC analysis to choose between models that did or did

not include sire effects, maternal effects and day effects.

In principle, variation in infection risk could be explained solely by sire, dam and day effects,210

which would mean that we could allow V → 0 in equation (8) (Dwyer et al. 2005). In addition,

11
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however, there is small-scale spatial variation in virus density (Eakin et al. 2015), which, in

contrast to sire, dam and day effects, does not depend on factors that vary between host families.213

Because of this variation, allowing V → 0 in equation (8) provided a much worse fit to the data,

and so we instead assumed V > 0.

To estimate the cost of reduced infection risk, we again fit equation (8) to data for each full-216

sibling group, and we regressed average female pupal weight in each group on the average

infection risk in that group (Elderd et al. 2008). Because pupal weight is strongly correlated with

egg number (Páez et al. 2015), a positive relationship between pupal weight and infection risk219

indicates that there is a fecundity cost of reduced risk.

Results

In our heritability experiment, infection rates and infection risk varied strongly across half-sibling222

families (fig. 2A, B), with 13% of the variation in risk explained by additive genetic variation

(b = 0.13). AIC analysis then showed that models with sire effects explain the data vastly better

than models without sire effects (∆AIC = 295.6 for the best model without a sire effect, Table225

1). The 95% highest posterior density interval (Bayesian equivalent of a 95% confidence interval)

on heritability b was broad (HPD = 0.0013, 0.48), but excluded values below 10−3. We therefore

conclude that infection risk in the gypsy moth has low but non-zero heritability, confirming the228

first key assumption of our eco-evolutionary model.

Table 1: AIC analysis of transmission models. “MLL” is the maximum log likelihood. The best
model, which allows for sire, dam, and day effects, is in bold face. AIC weights for all but the
best model were all less than 10−5, and are therefore omitted.

Model Parameters # parameters MLL ∆AIC
1 ν, V, Sirei, Damj, Dayk 131 -1853.6 0.0
2 ν, V, Damj, Dayk 93 -2038.4 295.6
3 ν, V, Sirei, Damj 124 -1866.3 11.4
4 ν, V, Sirei 40 -2073.8 258.4
5 ν, V, no random effects 2 -2100.0 234.8

In our cost experiment, there was a noisy but positive relationship between female pupal

12
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Figure 2: A) Relationship between fraction infected and density of virus-infected cadavers in our
heritability experiment. Gray dots show the infection rate for each half-sibling family, demon-
strating that there is meaningful variation across half-siblings, in turn suggesting that infection
risk is heritable. The fitted curve is the best-fit version of the best transmission model, which
includes sire, dam and day effects (Table 1). Median values for ν̄ and V are 0.80 (HPD = 0.43,
1.37) and 2.97 (HPD =1.55, 4.59), respectively, which are close to values from previous experi-
ments (Elderd et al. 2008). B) Variation in average infection risk ν̄ across half-sibling families,
again suggesting that infection risk is heritable. C) Fecundity cost of resistance, as demonstrated
by a positive relationship between infection risk and female pupal mass, a surrogate measure of
fecundity (Páez et al. 2015).

weight and infection risk (fig. 2C). The slope of the resulting regression line was significantly231

greater than zero, confirming that reduced infection risk has a fecundity cost (median intercept

= 0.73, upper and lower 95th percentiles = 0.70, 0.80; median slope = 0.45, upper and lower

95th percentiles = 0.09, 0.56, see Online Appendix for a description of how we bootstrapped234

the regression parameters to account for error in both infection risk and pupal weight.). In this

regression, however, we included only survivors of virus exposure, which may have led to an

underestimate of the cost. This is because variation between exposed individuals within groups237
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could have led to an over-representation of low-risk/low-fecundity individuals among survivors.

We therefore carried out a second regression in which we also included insects that were

reared in the lab but never exposed to the virus. The best model in this case assumed that the240

regression lines for exposed and unexposed individuals had the same slopes but different inter-

cepts (see Online Appendix). The cost of reduced risk was thus indistinguishable for exposed and

unexposed individuals, probably because variation within full-sibling groups was substantially243

smaller than variation between full-sibling groups. The difference in intercepts was likely due to

differences in diet, because virus-exposed insects fed for a week on foliage, whereas lab-reared

insects were fed only on artificial diet, which allows for higher growth (Rossiter 1991). In what246

follows, however, we use estimates of the cost parameters that are based only on survivors of the

field experiment, because the pupal weights of field-reared insects were closer to pupal weights

seen in nature (Páez et al. 2015). Irrespective of these complications, however, our data gener-249

ally show that female gypsy moth larvae with reduced infection risk have reduced fecundity as

adults, confirming the second key assumption of our eco-evolutionary model.

Because reduced infection risk is heritable and costly, balancing selection must inevitably252

play a role in determining infection risk in the gypsy moth, but that does not mean that selection

will inevitably drive gypsy moth outbreaks. In particular, realistic outbreak cycles in our model

do not occur for all parameter values. To test whether our parameters fall into the range that255

does give realistic cycles, we therefore inserted the parameters into the model to test whether the

parameterized model can reproduce data on gypsy moth outbreak cycles.

In carrying out this test, it is important to note that cyclic population dynamics are usually at258

least moderately sensitive to initial densities, which are unknown. Kendall et al. (1999) therefore

argue that a useful way to compare model cycles to data is by comparing periods and amplitudes,

which in the long run are insensitive to initial conditions. For our estimates of the heritability261

and cost of infection risk, the average cycle period is 7.4 years, and the average amplitude is

2.1 orders of magnitude (fig. 1, note that we adjusted the cost parameters r and s to allow for

non-disease, non-predation mortality, see Online Appendix).264

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/088047doi: bioRxiv preprint 

https://doi.org/10.1101/088047


Gypsy moth outbreaks in North America have had periods between 5 and 9 years (Johnson

et al. 2005), and amplitudes between 2 and 4 orders of magnitude (Jones et al. 1998; Skaller

1985; Williams et al. 1990). Model periods and amplitudes thus fall within the range of values267

seen in nature, while variation around the median estimates has only modest effects (fig. 3).

Furthermore, previous experiments showed that average infection risk falls in synchrony with

falling population densities (Elderd et al. 2008), also as predicted by the model (fig. 1). The270

model predictions are thus confirmed by both observational and experimental data, suggesting

that natural selection plays an important role in gypsy moth outbreaks.

Given that our model provides a useful description of gypsy moth population cycles, we273

can use it to address an issue of general importance in eco-evolutionary theory, namely how

heritability affects population stability. As fig. 3 shows, in our model intermediate heritability

is at least mildly stabilizing, whereas in continuous-time eco-evolutionary models of predator-276

prey interactions, reduced heritability is instead stabilizing (Schreiber et al. 2011). In both types

of models, high heritability causes such a rapid response to selection that infection risk un-

dergoes large-amplitude fluctuations, driving severe fluctuations. In our model, however, low279

heritability is destabilizing because it leads to a slow response to selection, exacerbating the de-

layed density-dependence that drives population cycles. This difference likely occurs because

our model includes the realistic assumption of seasonal reproduction, which allows for strong282

delayed density-dependence at low heritability.

A second general point is that our model apparently does not have either the 1/2-cycle lags

(Yoshida et al. 2003) nor the cryptic population cycles (Yoshida et al. 2007) that often occur in285

microcosm models, instead showing the 1-2 generation lags that are apparent in fig. 1. We have

not been able to prove that longer lags do not occur in our model, but for almost all of the

parameter values in fig. 3, the average lag was two generations or less (99.6% of 96,981 parameter288

sets that did not cause host or pathogen extinction). This is important because the occurrence

of 1-2 generation lags in our model is supported by data showing that baculovirus infection

rates peak shortly after host densities in several outbreaking insects (Moreau and Lucarotti 2007;291
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Figure 3: Effects of variation in baseline fecundity r and heritability b on the period and am-
plitude of outbreak cycles in the long term model, equations (5)-(7). Remaining parameters are
as in Fig. 3. The top panel shows average cycle amplitudes in orders of magnitude, while the
bottom panel shows the average period in years. The white dot represents our median estimates
of r and b, with error bars indicating the interquartile range.

Moreau et al. 2005). The model prediction of lags shorter than 1/2-cycle is thus confirmed by the

data.

Half-cycle lags in microcosms are more likely when costs are low, but reducing the cost-294

scaling parameter s in our model does not meaningfully change the lag (for s = 0.2, the lower
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bound on the HPD: 94.8% of 87,515 parameter sets; for s = 0.02: 91.3% of 13,387 parameter

sets, note that reducing s tends to increase the probability of host and/or pathogen extinction,297

see Online Appendix). We therefore suspect that the reason why our models do not show half-

cycle lags or cryptic cycles is again that our models include only one host generation per year,

whereas in microcosms conditions are constant and breeding is therefore continuous (Hiltunen300

et al. 2014).

Discussion

In arguing that natural selection helps drive gypsy moth population cycles, we note that Allstadt303

et al. (2013) showed that gypsy moth populations in North America cycled from 1943-1965, and

from 1978-1996, but that there were periods of non-cyclic dynamics at other times (data points af-

ter 2009 were too few to permit testing, but more recent outbreaks suggest that cycling may have306

returned, G. Dwyer, pers. obs.). The same authors nevertheless showed that a temporary lack

of cycles can be explained by a version of the Dwyer et al. (2004) model that includes stochas-

tic fluctuations in generalist-predator density. Given that our model is essentially the Dwyer309

et al. model plus natural selection, we suspect that our model would show similar behavior.

Allowing for fluctuating predator populations is nevertheless an important next step.

A related point is that Allstatdt et al., as well as other other researchers modeling gypsy312

moth outbreak data (Bjørnstad et al. 2010; Haynes et al. 2009; Walter et al. 2015), forced the non-

evolutionary Dwyer et al. model to show cycles, by using estimates of host variation V that have

been shown to be unrealistically low (Elderd et al. 2008). Low values of V prevent the unrealistic315

stable equilibria that occur when V is realistically high, but inferences based on incorrect models

are often unreliable (Box 1979). A consideration of natural selection may thus be widely useful

for understanding data on gypsy moth outbreaks.318

More broadly, to focus on the effects of natural selection, we did not include three other

mechanisms known to affect gypsy moth population dynamics in North America. First, the
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fungal pathogen Entomophaga maimaiga, introduced in 1990, often causes high mortality when321

rainfall is abundant (Hajek 1999), with the proviso that it may be only weakly density-dependent

(Hajek et al. 2015; Liebhold et al. 2013). E. maimaiga therefore may have only mild effects on

gypsy moth cycles, but its long term effects are not yet understood. Including both E. maimaiga324

and the baculovirus is therefore an important next step in modeling gypsy moth outbreak cycles.

Second, we assumed a monomorphic virus population, but in fact the gypsy moth virus

is at least moderately polymorphic (Fleming-Davies et al. 2015). This is important because for327

simplicity we assumed that pathogen variation was constant, but including pathogen variability,

and thus host-pathogen coevolution, could allow for the maintenance of host variation (Sasaki

and Godfray 1999). Adding pathogen variation to our model is therefore a second important330

next step.

Lastly, as we mentioned earlier, the stabilizing effect of realistically high host variation,

which in our models is mitigated by natural selection on infection risk, can also be mitigated by333

defoliation-induced defensive compounds, such that host-pathogen/induced-defense models can

explain variability in outbreak periods between forest types that have intermediate versus high

frequencies of oaks (Elderd et al. 2013). Host-pathogen/induced-defense models, however, do336

not allow for outbreaks in forest types with low frequencies of oaks, even though outbreaks have

been observed in such forests (Haynes et al. 2009). Moreover, the models are sensitive to changes

in the clumping of oaks within the forest (Elderd et al. 2013), whereas our eco-evolutionary mod-339

els are insensitive to a range of changes in model structure (see Online Appendix). Both models

nevertheless have extensive empirical support, and so including induced defenses is a third im-

portant next step. That said, our experimental results provide conclusive evidence that natural342

selection alters infection risk in the gypsy moth, and it is therefore likely that selection has at

least some effect on outbreaks, confirming eco-evolutionary theory in a broader sense.

This list of other factors that may also affect gypsy moth cycles raises the larger point that,345

in the absence of outbreak-scale experiments, our work cannot provide conclusive proof for the

importance of eco-evolutionary dynamics. A lack of conclusive large-scale experiments, however,
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is a general problem in the study of complex population dynamics (Kendall et al. 1999). For eco-348

evolutionary models in particular, the collection of long time series of changes in phenotypes,

along with data on changes in densities, could ameliorate thr problem, but such data do not yet

exist, and so for now the combination of experimental and observational data that we have used351

to test the theory may provide the best alternative.

Moreover, the insect ecology literature suggests that eco-evolutionary dynamics may play

a role in population cycles of other forest defoliating insects (Anderson and May 1981; Myers354

1988, 1993). First, although previous studies used only dose-response experiments, gypsy moth

dose-response experiments have shown the same trends as in our field transmission experiments

(Páez et al. 2015). This in turn suggests that laboratory observations of heritable variation and357

costs of resistance in other insects (Boots and Begon 1993; Cory and Myers 2009; Watanabe 1987)

may likewise indicate that natural selection plays a role in those insects in the field. Laboratory

experiments have also detected heritable variation in responses to parasitoids in several other360

insect species (Kraaijeveld et al. 2002), which again may indicate effects of natural selection in

the field. Finally, baculoviruses and parasitoids cause high mortality in many cycling forest

defoliators (Moreau and Lucarotti 2007; Nealis 1991; Turchin 2003), and so selection pressure is363

often high.

The effects of seasonal breeding in our models may similarly hold for a range of host-

pathogen interactions, because seasonal breeding is a widespread phenomenon in other out-366

breaking insects (Hunter 1991), while seasonality more generally plays a role in a range of other

host-pathogen interactions (Altizer et al. 2006). More concretely, the lack of half-cycle lags in

our models means that eco-evolutionary dynamics may be occurring even though half-cycle lags369

have not been observed. Inferring eco-evolutionary dynamics therefore appears to require not

just qualitative comparisons of models to data, but also estimates of the heritability and costs of

resource defenses.372

Baculoviruses are also used as environmentally benign insecticides (Hunter-Fujita et al. 1998),

which in the gypsy moth consists of the “Gypchek” spray product (Podgwaite et al. 1992). As
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is typically the case with baculoviruses of forest insects, however, Gypchek plays only a mod-375

est role in gypsy moth control, because production costs are lower for the insecticide “Btk”, a

Lepidopteran-specific bacterial toxin. Because Btk targets effectively all Lepidoptera, however,

concerns over its environmental costs have led to increasing public demand for Gypchek use378

(Boulton and Otvos 2004; Narciso 2014; Nolan 2015). Baculovirus spray products like Gypchek

may therefore be used repeatedly in the future, which may alter insect outbreak cycles.

Reilly and Elderd (2014) therefore used the Dwyer et al. (2004) model to predict the long-381

term effects of repeated baculovirus sprays. Their work suggested that consistent spraying may

dampen population cycles, eliminating outbreaks, but our eco-evolutionary models show that re-

alistic outbreaks occur in nature for a broader range of parameters than in the Dwyer et al. model.384

It may therefore be the case that resistance evolution will prevent the dampening effects of re-

peated sprays. Extending our models to allow for repeated baculovirus sprays may thus provide

a better understanding of the use of baculoviruses in microbial control, and carrying out such an387

extension is therefore a final important next step.
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Appendix A: Derivation of the Eco-Evolutionary Host-Pathogen Model

Elderd et al. (2013) present a version of the Dwyer et al. (2004) model that also includes heritable

changes in average infection risk and a tradeoff between selection for reduced infection risk585

and selection for increased fecundity. Their model, however, assumes that the phenotypic and

genotypic distributions of infection risk are identical, as though heritability b = 1. Here we

instead assume that b < 1, which significantly complicates the derivation of the model.588

The initial steps in the Elderd et al. derivation are nevertheless useful. First, the pathogen

equation is unchanged from the original non-evolutionary insect-pathogen model of Dwyer et al.

(2000), and therefore we do not consider it here. Second, by temporarily neglecting predation,591

we can integrate over the phenotypic distribution to derive an equation for the host population:

Nn+1 =
∫
(r + rsν) fP(ν)S(T)dν. (A1)

Here fP(ν) is the distribution of infection-risk phenotypes ν, and S(T) is the host density, where

both are calculated after an epizootic that lasts T days. Host density is then calculated by allowing594

for both disease-driven mortality, which determines the host density after the epizootic, and

by including a fecundity cost of reproduction, as determined by the cost parameters r and s.

Meanwhile, Elderd et al. assumed that T → ∞, and used the alternative parameterization r + λν597

to describe the cost function, but the effects of these differences are trivial compared to the

complications that arise from assuming that b < 1.

The key assumption in our derivation is that the epizootic reduces the mean of the distribution600

of phenotypes, but that it does not change the shape of the distribution, so that the variation

parameter V is constant. Given the constant-shape assumption, it is possible to show that the

post-epizootic mean is ν̄n

(
S(T)
S(0)

)V
, where ν̄n is the pre-epizootic mean (Dwyer et al. 2000). This603

assumption is also fundamental to the derivation of the SEIR epizootic model, equations 1-4 in

the main text, which are an approximation to a model that describes the entire distribution of

phenotypes. That model is highly accurate if phenotypes follow a gamma distribution, but it606
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is only moderately inaccurate for distributions with longer tails, such as a log-normal. More

importantly for our purposes, the approximation means that both the SEIR model and the multi-

generation model derived here can be simulated with only modest computational costs.609

To complete the derivation, we observe that the post-epizootic host density is:

S(T) = Nn [1− i(Nn, Zn, ν̄n)] , (A2)

where i(Nn, Zn, ν̄n) is calculated using equations 1-4. Including predation and stochasticity then

gives equation 5 in the main text, which is effectively the same as the host-density equation in612

the Elderd et al. model.

As we described, however, the crucial difference from the Elderd et al. model is that we allow

the genotypic and phenotypic distributions to have different shape parameters V, which is nec-615

essary to allow for imperfect heritability. This assumption becomes important when we calculate

how the average phenotype ν̄n changes due to mating, because to allow for the effects of incom-

plete heritability, we average the fecundity costs over the genotypic distribution, not the phenotypic618

distribution. Specifically, we assume that the squared C.V. of the genotypic distribution is bV,

where V is the squared CV of the phenotypic distribution and b is the heritability. Although

other assumptions may also produce a reasonably simple model, this assumption has the ad-621

vantage first that it ensures that genotypic variation is lower than phenotypic variation, as we

would expect from quantitative genetic theory (Falconer and Mackay 1996). Also, the assumption

follows an approach that is consistent with previous approaches in which quantitative genetic624

variation has been included in predator-prey models (Abrams and Matsuda 1997). Finally, and

most importantly, the assumption produces a model that makes intuitive sense, as we will now

show.627

To integrate over the genotypic distribution, we proceed as follows:

ν̄n+1 =

∫
ν(r + rsν) fG(ν)S(T)dν∫
(r + rsν) fG(ν)S(T)dν

. (A3)
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Here fG(ν) is the post-epizootic distribution of genotypes ν, and S(T) is again the host density

after an epidemic that lasts T days. To solve the integral, we again use the observation that630

the mean of the phenotypic distribution after the epizootic is ν̄n

(
S(T)
S(0)

)V
. Also, we use the

assumption that the genotypic distribution has the same mean as the phenotypic distribution,

but that it has a squared C.V. equal to bV, with the proviso that, for the genotypic distribution,633

the mean also depends on the squared genotypic C.V. We then have equation 7 in the main text.,

which we repeat here for convenience:

ν̄n+1 = νn[1− i(Nn, Zn, ν̄n)]
bV
{

1 + s(bV + 1)[1− i(Nn, Zn, ν̄n)]bV}
1 + sν̄n[1− i(Nn, Zn, ν̄n)]bV . (A4)

This model makes intuitive sense, in that setting b = 1 again produces the Elderd et al. model,636

while setting b = 0 gives the classical model with no natural selection, as in Dwyer et al. 2000

and Dwyer et al. (2004).

Online Appendix639

Alternative models

As we mention in the main text, we considered alternative models to equations (5)-(7), as a way of

testing the generality of our results. In the first of these alternatives, we eliminated stochasticity642

and the generalist predator, and we assumed that the epizootic model, equations (1)-(4), always

proceeds to “burnout” (Keeling and Rohani 2008), which occurs if the epidemic ends because of

a lack of susceptible hosts rather than because of pupation (Dwyer et al. 2000). Strictly speaking,645

the burnout approximation requires the assumption that t → ∞, but in spite of this seemingly

unrealistic assumption, the burnout approximation’s prediction of the fraction infected is often

close to the prediction of equations (1)-(4) with a realistic epizootic length of 8 weeks (Fuller648

et al. 2012). Allowing epizootics to end because of pupation instead of burnout is quantitatively

important when we attempt to reproduce outbreak cycles, because when epizootics are only 8
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weeks long, the model produces longer period, larger amplitude cycles that better match the651

outbreak data (Fuller et al. 2012). Including a model that allows for the burnout approximation

nevertheless allows us to relax the assumption that epizootics are ended by pupation, and it

allows us to use qualitative stability analysis, which permits a deeper understanding of the654

effects of natural selection on population cycles.

Given these simplifications, equations (5)-(7) in the main text become:

Nn+1 = Nn [1− i(Nn, Zn, ν̄n)]
{

r + rsν̄n[1− i(Nn, Zn, ν̄n)]
V
}

. (A1)

Zn+1 = f Nni(Nn, Zn, ν̄n) + γZn (A2)

ν̄n+1 = νn[1− i(Nn, Zn, ν̄n)]
bV 1 + s(bV + 1)

{
νn[1− i(Nn, Zn, ν̄n)]bV}

1 + sνn[1− i(Nn, Zn, ν̄n)]bV . (A3)

Here the fraction of infected individuals, i, is represented by the burnout approximation,657

which is calculated from equations (1)-(4) by allowing t → ∞. In that case, we can write down

an implicit expression for i:

1− i(Nn, Zn, ν̄n) = {1 + ν̄nV[Nni(Nn, Zn, ν̄n) + Zn]}−1/V . (A4)

Using this expression in equations (A1)-(A3) produces a model for which we can easily carry out660

stability analysis.

The initial step is to calculate the model equilibria. For this model, we cannot prove that

there is only one non-zero equilibrium, but two lines of indirect evidence suggest that multiple663

equilibria are unlikely unless baseline fecundity r > 1. First, if we set b = 1, equations (A1)-

(A4) are the same as the no-predator model in Elderd et al. (2008), for which it is possible to

prove that r < 1 guarantees that there is only one equilibrium. We have not been able to prove a666

similar result for equations (A1)-(A4), but numerical iteration of the model suggests that multiple

equilibria are at least unlikely unless r is quite close to 1, as we will show. These considerations
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are important because a lack of multiple equilibria makes calculation of the Jacobian matrix669

reasonably straightforward. To write down the Jacobian, we first rescale the model, by defining:

N̂n ≡ µsNn, (A5)

Ẑn ≡ µs
η

Zn, (A6)

ˆ̄νn ≡ 1
s

ν̄n. (A7)

For convenience, we also define h ≡ 1− i(Nn, Zn, ν̄n), to produce:

N̂n+1 = N̂nh
[
r + r ˆ̄νnhV

]
, (A8)

Ẑn+1 = φN̂n(1− h) + γẐn, (A9)

ˆ̄νn+1 =
ˆ̄νnhbV + (bV + 1) ˆ̄ν2

nh2bV

1 + ˆ̄νnhbV , (A10)

h =
{

1 + ˆ̄νnV
[
N̂nh + Ẑn)

]}−1/V . (A11)

We can then use equations (A8)-(A11) to find the equilibrium conditions, such that N̂n+1 = N̂n,672

Ẑn+1 = Ẑn, and ˆ̄νn+1 = ˆ̄νn. Also for convenience, we drop the ˆ symbols, and use ∗’s to label the

equilibrium values of the state variables:

N∗ =
ĥ−V

(
ĥV − 1

)
(γ− 1)

ν̄V(1− ĥ)(γ− φ− 1)
, (A12)

Z∗ =
φN(ĥ− 1)

γ− 1
, (A13)

ν̄∗ =
1− ĥr
rĥV+1

. (A14)

Here ĥ is the the fraction of individuals uninfected at equilibrium, such that the fraction infected675

is calculated from equation (A4). By replacing ν̄ in equation (A10) by ν̄∗ (equation (A14)), we can
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write down an implicit expression for h, which we can easily solve numerically:

(bV + 1)(hr− 1)h2bV − rh(b+1)V+1 = (hr− 1)hbV − rhV+1. (A15)

Plotting the left-hand and right-hand sides of this equation for a range of parameter values678

suggests that, for r < 1, there is only one internal equilibrium, but for r > 1, two equilibria often

occur, with dynamics that generally lead to the extinction of the pathogen population. Given that

realistic values of r are all well below 1, in what follows we concentrate on the case for which681

r < 1.

Next, we define F(Nn, Zn, ν̄n) ≡ Nn+1, G(Nn, Zn, ν̄n) ≡ Zn+1, H(Nn, Zn, ν̄n) ≡ ν̄n+1 and we

differentiate each function with respect to Nn, Zn and ν̄n, to produce the Jacobian matrix. To do684

this, we first differentiate h with respect to N, Z and ν̄.

∂h
∂N

=
(1− h)ν̄

ν̄N − {1 + ν̄V [N(1− h) + Z]}
1
V +1

, (A16)

∂h
∂Z

=
ν̄

ν̄N − {1 + ν̄V [N(1− h) + Z]}
1
V +1

, (A17)

∂h
∂ν̄

=
(1− h)N + Z

ν̄N − {1 + ν̄V [N(1− h) + Z]}
1
V +1

. (A18)

The matrix of partial derivatives is then described by the matrix J above.

J =


1 + Nr ∂h

∂N

[
ν̄(V + 1)hV + 1

]
Nr ∂h

∂Z

[
ν̄(V + 1)hV + 1

]
Nr
{

hV
[
ν̄(V + 1) ∂h

∂ν̄ + h
]
+ ∂h

∂ν̄

}
φ
[
(1− h)− ∂h

∂N N
]

γ− φN ∂h
∂Z − ∂h

∂ν̄ φN

bν̄V ∂h
∂N [ν̄(bV+1)(ν̄hbV+2)hbV+1]hbV−1

(ν̄hbV+1)
2

bν̄V ∂h
∂Z [ν̄(bV+1)(ν̄hbV+2)hbV+1]hbV−1

(ν̄hbV+1)
2

hbV−1[νhbV(bV+1)(νhbV+2)+1](bνV ∂h
∂ν+h)

(νhbV+1)
2



By numerically solving equation (A15) for the equilibrium value ĥ, we can calculate the equi-687

librium values of the state variables N∗, Z∗ and ν̄∗, and insert them into the matrix J to construct

the Jacobian matrix. We can then numerically solve for values of the parameters for which the

Jacobian has one real eigenvalue and a complex pair of eigenvalues with modulus 1, the crite-690
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rion that defines the boundary between a stable point equilibrium and a Hopf bifurcation, and

thus population cycles. In Fig. A1, the shading denotes periods and amplitudes as calculated

by numerical iteration of equations (A8)-(A11), while the unshaded region is the area within693

which only a stable point equilibrium occurred. The dashed line in Fig. A1 then shows that the

eigenvalue prediction of the boundary between cycles and a stable equilibrium point matches

the boundary between cycles and a stable equilibrium from the numerical iterations, confirming696

both calculations. At higher heritability, however, the stability calculation breaks down for very

high values of the fecundity cost r. In that region, it appears that the model may show multiple

equilibria, with the proviso that such high values of r are unlikely to be biologically realistic and699

are therefore of limited interest.

More generally, Fig. A1 shows that for equations (A1)-(A3), increasing values of r are gener-

ally stabilizing, as in equations (5)-(7) in the main text. In contrast to equations (5)-(7), however,702

for this model low values of heritability are no longer destabilizing, most likely because equations

(A1)-(A3) assume that epizootics are terminated by burnout rather than by pupation. Pupation

tends to terminate epizootics sooner than burnout would, exacerbating the effects of the delayed705

density-dependence that drives cycles (Fuller et al. 2012), an effect that is apparently stronger

when heritability is low. The result is that the long periods and larger amplitudes seen at low

heritability in fig. 3 in the main text are eliminated, as is the area of dramatic oscillations at high708

heritability and intermediate cost.

We also considered a host-parasitoid model, in which there is only one parasitoid generation

per host generation, as compared to the multiple pathogen generations per host generation in711

equations (1)-(4). As in equations (1)-(4), however, we again allow for host variation, this time in

the risk of being successfully attacked by the parasitoid. We then have a closed-form expression

for the fraction infected (Godfray 1994):714

i = 1− (1 + ν̄nVZn)
−1/V . (A19)
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Figure A1: The average amplitude (top) and period (bottom) of population cycles in equations
(A1)-(A4) for different combinations of the heritability of infection risk, b, and baseline repro-
duction, r. The white space at high baseline fecundity and low to moderate heritability indicates
regions in which a stable equilibrium point occurs.

We then again add a generalist predator, on the grounds that high levels of generalist predator

attacks have been observed not just in defoliators whose outbreaks are driven by pathogens, but

also in defoliators in which outbreaks are instead driven by parasitoids (Dwyer et al. 2004). The717

model then differs from the multi-generation model in the text, equations (5)-(7), only in using

equation (A19) to calculate the fraction infected i(Nn, Zn, ν̄n).

Fig. A2 shows a time series of the host-parasitoid model dynamics, to show that consumer-720
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Figure A2: Predictions of an eco-evolutionary host-parasitoid model. As in Fig. 1 in the main text,
the top panel shows changes in host and parasitoid density (black and grey lines, respectively),
while the bottom panel shows the corresponding changes in the parasitoid attack rate and the
fraction infected (also black and grey lines, respectively). Parameter values are b = 0.13, r = 0.42,
s = 0.5, V = 10, γ = 0.3, φ = 1.0, a = 0.96, w = 0.14.

resource cycles are again partly driven by fluctuations in the average risk of attack, as in equations

(5)-(7) in the main text. Also, Fig. A3 shows the average period and the average amplitude for this

model for a range of parameters, as in Fig. 3 in the main text. The effects of the parameters on the723

host-parasitoid-predator model are thus qualitatively similar to the effects of the parameters on
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the host-pathogen-predator model, with the proviso that, for values of heritability much above

0.4, the parasitoid goes extinct unless the cost parameter r is close to 1. This instability likely726

occurs because the parasitoid has only one generation per year, which exacerbates the effects

of the delayed density-dependence that drives cycles, and because of the lack of a parasitoid

functional response, which we have omitted to allow for a more straightforward comparison to729

the model in the main text.

Details of insect rearing methods

Wild egg masses were collected from 5 different sites in the Midwestern states of the U.S (Páez732

et al. 2015). Previous work has shown that geographic structure in infection risk across gypsy

moth populations is slight (Elderd et al. 2008), and previous dose-response experiments showed

that these particular populations had very similar responses in laboratory dose-response experi-735

ments (Fleming-Davies et al. 2015). It therefore appeared that the initial populations would have

similar infection risk in the field.

Before hatch, we soaked all egg masses in a 4% formalin solution, which surface sterilizes738

the eggs by killing any occlusion bodies on their surface. This procedure kept virus mortality

in control treatments low, as it has been in previous experiments (Elderd et al. 2008; Fuller et al.

2012). Hatching larvae were then reared in groups of 30, in 177 ml (6 oz) plastic cups, containing741

50-100 ml of artificial diet, at 25 ◦C in an incubator with a 14:10 light-dark cycle, following long

established rearing procedures for this insect (McManus and Doane 1981).

To produce larvae for experiments, we reared insects from wild-collected egg masses to adult-744

hood, and we mated the adults. Matings were usually conducted within 24 hours of female

emergence. Full siblings can be easily produced by exposing one male to one female. To produce

half siblings, we instead exposed one male to 2-3 virgin females every 24 hours (Páez et al. 2015).747

After reproduction and egg mass deposition, we allowed 28 days of pre-diapause at 25 ◦C, and

then we induced diapause by cooling the egg masses to 5◦C for 9-10 months. The most important

rounds of transmission in nature occur when larvae are in the fourth instar (Woods and Elkinton750
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Figure A3: Effects of baseline fecundity r and heritability b on the period and amplitude of
outbreak cycles in the eco-evolutionary host-parasitoid model. The top panel shows average
cycle amplitudes, in orders of magnitude, while the bottom panel shows the average period, in
years.

1987), and so we used fourth instars in all of our experiments.

Infection risk given virus exposure can vary within a larval stage or instar (Grove and Hoover

2007), so we synchronized the uninfected insects before deployment in the field. To do this, we753

collected larvae in the third instar whose head capsules had slipped forward, indicating that they
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were within 24 hours of molting to the next instar. We held these insects at 5◦ C in the lab until

we had enough insects to begin an experiment, which typically took 48 hours. This procedure756

ensures that the measurement error in field transmission experiments is no higher than what we

would expect from binomial sampling (Elderd et al. 2008).

Calculating Fecundity Costs Including Lab-reared Insects, and Allowing for Density-759

Independent Mortality

As we mentioned in the main text, in estimating the cost of resistance, we included only insects

that had survived virus exposure in the field, but in a second analysis we included insects reared762

in the lab, where larvae could not encounter the virus. Here we present the results from this

second analysis. As in the first analysis, we used a linear mixed effects model in which pupal

weight was a function of infection risk ν and random family effects, but we also included the765

effects of the rearing method, meaning lab versus field. Again as we mentioned in the main

text, AIC analysis of regression models showed that the best model for the combined data set

included different intercepts, reflecting the higher pupal weights associated with consumption of768

artificial diet, but there was nevertheless a common slope for field-reared and lab-reared insects

(Table A1, Fig. A4). The fecundity cost of reduced infection risk was thus indistinguishable for

field-reared and lab-reared insects.771

Table A1: AIC analysis for models fit to data for both lab-reared and field-reared insects. “In-
tercepts differ” means that the intercepts were different for the two groups, and likewise for the
slopes.

# Model ∆AIC AIC Weight
1 Intercepts differ, slopes same 0 0.88
2 Intercepts differ, slopes differ 1.97 0.12
3 Intercepts differ, slopes = 0 12.6 < 10−5

4 Intercepts and slopes same 54.6 < 10−5

5 Intercepts same, slopes = 0 63.2 < 10−5

To estimate the uncertainty in the parameters of the regression lines, we bootstrapped the

best model ten thousand times, such that, at each iteration, the model was re-fit using re-sampled
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Figure A4: Relationship between infection risk ν and female pupal weight, including both insects
that survived the field experiment (closed grey circles and grey line), and unexposed insects that
were only reared in the lab (open black circles and black line). Lines are based on median values
for the average model coefficients from a bootstrapping procedure, as described in the text. The
higher average weights of lab-reared insects result from the use of artificial diet in the lab.

values of pupal weights and infection risks ν. These results showed that the median intercept for774

field-reared insects was 0.73 (upper and lower 95th percentiles = 0.70, 0.80); the median (common)

slope was 0.45 (upper and lower 95th percentiles = 0.09, 0.56); and the median intercept for

laboratory-reared insects was 0.97 (upper and lower 95th percentiles = 0.93, 1.05). The lower777

confidence bound on the slope parameter does not include 0, and we therefore conclude that
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including lab-reared insects does not affect our conclusion that there is a significant relationship

between infection risk ν and pupal weight.780

To estimate the cost parameters r and s, we first converted from pupal weight to egg mass

weight using data from Páez et al. (Páez et al. 2015), and second from egg mass weight to egg

number using data from Dwyer and Elkinton (1995). An additional consideration, however, is783

that the model requires an estimate of net fecundity, because hatchling gypsy moth larvae die

from many causes, including starvation during dispersal from egg masses, which are laid on

bark, to foliage at the ends of branches. To allow for such losses, we used data from Hunter and786

Elkinton (2000), who measured early instar survival in experimental gypsy moth populations. To

account for the overall uncertainty in these conversions, we bootstrapped the relevant data, and

we used the resulting resampled model coefficients to calculate r and s. Our estimates for field F789

and lab L insects were then: sF = 1.21 (0.2, 1.9), rF = 0.22 (0.05, 0.51) and sL = 0.74 (0.13, 1.03),

rL = 0.36 (0.08, 0.76). As we mention in the main text, in our model we used only estimates for

field-reared insects.792

Details of statistical analyses

Because over-dispersion levels in field transmission experiments are generally low (Elderd et al.

2008), in our likelihood function, we described the chance of infection using a binomial distri-

bution (McCullagh and Nelder 1989). Also, standard quantitative genetic practice is to assume

that the effects due to sire, dam and experimental day follow normal distributions with mean 0
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(Falconer and Mackay 1996). Our likelihood function is therefore:

`(ν?, V, Si, Mj, Dk, σ2
S , σ2

M, σ2
D|yijk, nijk) =(

37

∑
i=1

83

∑
j=1

6

∑
k=1

yijk log(pijk(ν
?, V, Si, Mj, Dk)) + (nijk − yijk) log(1− pijk(ν

?, V, Si, Mj, Dk))

)

+
37

∑
i=1

log

 1√
2πσ2

S

e
− (Si)

2

2σ2
S

+
83

∑
j=1

log

 1√
2πσ2

M

e
−

(Mj)
2

2σ2
M


+

6

∑
k=1

log

 1√
2πσ2

D

e
− (Dk)

2

2σ2
D

 . (A20)

Here `(p, ν, σ2
S , σ2

M, σ2
D|y, n) is the log-likelihood of the transmission parameters ν? and V, the sire

effect Si, the maternal effect Mj, the day effect Dk, and the corresponding variances σ2
S , σ2

M, σ2
D,795

given the the number infected yijk and the total sample size nijk. Also, pijk(ν
?, V, Si, Mj, Dk) is

the prediction of the transmission equation (8) in the main text for insects with sire i, dam j, and

start-day k, given baseline infection risk ν? and squared coefficient of variation V. The bounds798

on the summations reflect the number of treatments, such that there were 37 sires, 83 dams, and

6 start days. Estimating heritability therefore required that we estimate σ2
S , σ2

M and σ2
D, which in

turn required that we simultaneously estimate the random effect sizes Si, Mj and Dk, as well as801

the baseline infection risk ν? and the squared coefficient of variation V.

To do this, we used a Bayesian hierarchical model, in combination with a Metropolis-Hastings

MCMC algorithm. Specifically, we used 10 Markov-chain Monte Carlo chains that were sampled804

every 1000th step over 1.5× 106 steps after discarding the first 1.5× 104 steps. Chain convergence

was confirmed using the Gelman-Rubin diagnostic criterion (Plummer et al. 2006). To calculate

heritability, we then inserted the sets of values of σ2
S , σ2

M, σ2
D from the posterior distribution of807

the parameters into the heritability equation (10) in the main text.
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Effects of variation in cost-scaling s and the long-term pathogen survival γ on the810

model predictions

Fig. A5 shows that increasing the value of s to the upper bound on its 95% HPD leads to periods

and amplitudes that are almost identical to the periods and amplitudes seen when the cost-813

scaling parameter s = 1.21, the median value of s, as shown by comparison to Fig. 3 in the main

text. The major difference between the two cases is that, when s = 1.9, the large-amplitude, long-

period fluctuations that occur at high heritability for s = 1.21 are almost eliminated. Meanwhile,816

Fig. A6 shows that reducing s, so that s = 0.2, the lower bound on the 95% HPD of s, gives

periods and amplitudes that are only modestly larger, at least for realistic values of heritability b

and baseline fecundity r. When heritability is higher, however, the wild fluctuations that occur at819

intermediate fecundity cost r are so dramatic that the host and/or the pathogen often goes extinct

(white space in Fig. A6). Reductions in the cost parameter s are thus mildly destabilizing, unless

heritability is very high, basically for the same reasons that reductions in r are destabilizing.822

Reductions in the long-term pathogen survival parameter γ also have complex effects. As

Fig. A7 shows, simply reducing γ leads to shorter periods and smaller amplitudes, although

both periods and amplitudes again fall in a realistic range. This effect likely occurs because825

lower pathogen survival leads to reduced selection intensity, and thus less violent fluctuations

in population densities. Reduced long-term survival, however, also increases the chance that the

pathogen will go extinct, increasing the size of the region at high heritability for which the model828

simply crashes.

Fig. A8 again shows periods and amplitudes when γ = 0.1, but for values of the cost-scaling

parameter s = 0.2, the lower bound on the 95% HPD. Here γ has similar effects to when s = 1.21,831

except that periods are longer and amplitudes are larger, and the region of pathogen extinction is

also larger. Given that reductions in cost-scaling s have similar effects to reductions in fecundity

costs r, both effects are what we would expect for reduced values of s.834
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Figure A5: Effects of baseline fecundity r and heritability b on the period and amplitude of
outbreak cycles in the long term model, equations (5)-(7), as in Fig. 3 in the main text, except that
here the cost-scaling parameter s = 1.9. Again the top panel shows average cycle amplitudes in
orders of magnitude, while the bottom panel shows the average period in years.
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Figure A6: As in Fig. 3, except that the cost-scaling parameter s = 0.2.
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Figure A7: As in Fig. 3, except that the long-term pathogen survival parameter γ = 0.1.
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Figure A8: As in Fig. 3, except that the cost-scaling parameter s = 0.2, and the long-term
pathogen survival parameter γ = 0.1.
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