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Abstract 11 

Mutations provide the variation that drives evolution, yet their effects on fitness remain 12 

poorly understood. Here we explore how mutations in the essential enzyme Adenylate 13 

Kinase (Adk) of E. coli affect multiple phases of population growth. We introduce a 14 

biophysical fitness landscape for these phases, showing how they depend on molecular and 15 

cellular properties of Adk. We find that Adk catalytic capacity in the cell (product of 16 

activity and abundance) is the major determinant of mutational fitness effects. We show 17 

that bacterial lag times are at a well-defined optimum with respect to Adk’s catalytic 18 

capacity, while exponential growth rates are only weakly affected by variation in Adk. 19 

Direct pairwise competitions between strains show how environmental conditions modulate 20 

the outcome of a competition where growth rates and lag times have a tradeoff, altogether 21 

shedding light on the multidimensional nature of fitness and its importance in the 22 

evolutionary optimization of enzymes. 23 
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Introduction 25 

Random mutagenesis is often used to assess the distribution of fitness effects in simple 26 

experimental models such as propagating viruses and microbes evolving under antibiotic 27 

stress1,2. However, the enormous size of sequence space severely constrains how much of the 28 

fitness landscape can be explored this way, and mechanistic and predictive insights from these 29 

experiments are further limited by a lack of knowledge of the molecular effects of mutations. 30 

Instead, a more targeted experimental approach relies on the concept of a biophysical fitness 31 

landscape, in which fitness effects of mutations are mapped through their effects on molecular 32 

traits of the mutated proteins. In this approach, biophysically-rational genetic variation is 33 

introduced on the chromosome, and the molecular and phenotypic effects of that variation are 34 

analyzed concurrently3-6. By mapping fitness effects to variation of molecular properties rather 35 

than to sequences of mutated proteins, we can dramatically reduce the dimensionality of the 36 

genotype-to-phenotype mapping. The underlying hypothesis is that variation in a small number 37 

of properly-selected molecular traits of mutated proteins can explain most of the resulting 38 

mutational variation in fitness, and that the relationship between these molecular traits and 39 

fitness is smooth and continuous. Several recent studies have supported this approach5-7. 40 

The relationship between sequence variation and fitness is further confounded by the fact that 41 

multiple life-history traits contribute to fitness8, and the relative importance of these traits to the 42 

long-term evolutionary fate of a mutation may be highly dependent on environmental and 43 

ecological conditions. While multicellular organisms are generally described by a large number 44 

of traits (e.g., viability at various life phases, mating success, fecundity, etc.), unicellular 45 

microorganisms like bacteria and yeast are described by relatively fewer components of fitness, 46 

such as the time in lag phase, the exponential growth rate, and the overall yield at saturation. All 47 

these phases of growth contribute toward the outcome when in competition for limited resources, 48 

and hence determine fitness3,9. The relative importance of these different phases of bacterial 49 

growth in sculpting the fitness landscape depends on the conditions of growth and competition10-50 
12. 51 

Overall, the challenge in quantitatively characterizing the fitness landscape is twofold: 52 

Understanding fitness in terms of contributions from different phases of growth, and linking each 53 

of these components to molecular and cellular traits. In this work, we address both challenges by 54 
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introducing biophysically-rational genetic variation in the adk locus that encodes the essential 55 

E. coli enzyme Adenylate Kinase (Adk), and projecting the ensuing variations of fitness effects 56 

(phenotypic components like growth rate and lag time) onto the biophysical traits of Adk. We 57 

find that a unique combination of molecular and cellular traits of Adk — the product of 58 

intracellular abundance and catalytic activity, which we term catalytic capacity — provides a 59 

reliable predictor of fitness effects across the full range of phenotypic variation. Furthermore, we 60 

find that the length of the lag phase is more sensitive to variation in Adk catalytic capacity than 61 

is the exponential growth rate, so that the lag phase of the wild-type E. coli appears to be optimal 62 

with respect to variation in Adk catalytic capacity. 63 

Results 64 

Biophysical properties of Adk mutants 65 

Destabilizing mutations have been shown to cause a drop in intracellular protein abundance, 66 

mostly through a decrease in the folded fraction of the protein3. Hence in order to sample a broad 67 

range of molecular and cellular traits of Adk protein below the wild-type levels, we chose a set 68 

of 21 missense mutations at 6 different positions of adk. (Table S1 and Fig. 1). We selected 69 

residues such that their accessible surface area was less than 10% and they were at least 6 Å 70 

away from the catalytically-active sites of Adk, so that mutations at these residues were likely to 71 

destabilize the protein13. For most mutants, we chose amino acid mutations that appeared only at 72 

low frequency in an alignment of 895 homologous sequences of Adk. As intended, the purified 73 

mutant proteins were destabilized over a wide range (~17 °C in terms of Tm, and ~7.5 kcal/mol 74 

in terms of folding G' ) (Table S1, Figs. 1B, S1, S2). In only one case (L209I) did we change 75 

the E. coli sequence to the consensus amino acid at that position, and we found it in fact 76 

stabilized the protein by ~1 kcal/mol (Table S1). Although most of the Adk mutants were less 77 

stable than the wild-type (WT), they nevertheless existed predominantly as monomers in solution 78 

(Fig. S3). However, several mutations in one position — V106H, V106N, and V106W — did 79 

have significant fractions of proteins present in higher oligomeric forms, in addition to the 80 

predominant monomeric species (Fig. S3). These proteins bound 4,4’-Dianilino-1,1’-binaphthyl-81 

5,5’-Disulfonate (Bis-ANS) dye to a higher degree compared to the rest of the mutants (Fig. S4), 82 

indicating the presence of possible molten globule states in solution14. The proteostat dye that 83 

reports on protein aggregation4,15 also bound these mutants more strongly compared to others 84 
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(Fig. S4), clearly indicating a higher fraction of aggregated species. The catalytic efficiency 85 
� �cat Mk K  of the mutant Adk proteins was distributed broadly with most mutants showing a 86 

lower activity than E. coli WT (Table S1, Figs. 1C, S5). 87 

Intracellular abundance of Adk follows prediction from Boltzmann distribution 88 

We then incorporated each of the 21 adk mutations one-by-one into the E. coli chromosome 89 

using a genome-editing approach based on homologous recombination3,4. We measured the total 90 

intracellular abundance of WT and mutant Adk proteins using a quantitative western blot 91 

(Table S2). The sigmoidal dependence of total intracellular Adk abundance on folding stability 92 
� �G'  (Fig. 1D) is well-described by the Boltzmann distribution for two-state unfolding proteins: 93 

 � �
1

1 expFP
GE

 
� '  (1) 94 

where PF  is the fraction of folded molecules in the ensemble of intracellular Adk and 95 

b =1/ kBT , with Boltzmann constant Bk  and growth temperature T . The total measured 96 

abundance of a protein is its amount in the cytoplasm at steady-state, achieved by a balance 97 

between production and degradation. Since Adk is expressed from a constitutive promoter in the 98 

cells, it is generally safe to assume that the rates of production of all mutants are similar. Under 99 

this assumption, the sigmoidal dependence of abundance on stability clearly indicates that the 100 

unfolded protein is degraded in the active medium of the cytoplasm. 101 

Mutations in Adk affect lag times more than exponential growth rates 102 

Mutations in Adk affect both intracellular abundance (via folding stability) and catalytic activity 103 

of the protein. Flux dynamics theory predicts, and experiments have confirmed, that the key 104 

enzymatic parameter determining the flux through an enzymatic reaction chain is the quantity 105 

which we call “catalytic capacity,” defined as the product of intracellular abundance and 106 

enzymatic efficiency cat Mk K 5,6,16. To that end, we determined how two key components of 107 

bacterial growth — the exponential growth rate and the lag time (Fig. 2A) — depend on the total 108 

catalytic capacity of Adk in E. coli cells (Fig. 2B,C; also see Methods and Fig. S6-S8 for 109 

estimation of growth parameters). We find that while only 3 out of 21 strains show a drop in 110 
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growth rate greater than 5% of WT, 17 strains show an increase in lag time for a similar change 111 

over the WT value (Table S2). This suggests that the mutations in Adk affect the lag phase more 112 

significantly than the exponential growth phase. One mechanism for producing longer apparent 113 

lag times is when a greater proportion of cells that come out of stationary phase are simply 114 

nonviable, as described in a recent study17. However, this appears not to be the major cause in 115 

our case, as lag times are fairly consistent across replicates (error bars in Fig. 2C) and do not 116 

negatively correlate with the number of viable cells (Fig. S9). We also find that the variation in 117 

total catalytic capacity of Adk correlates better with the variation in lag times (Spearman’s rank 118 

correlation U = �0.44, p = 0.057) than with the variation in growth rates (Spearman’s rank 119 

correlation U = �0.08, p = 0.737) (Fig. S10). The variation in lag times is also better explained by 120 

the variation in catalytic capacity than with any of the Adk properties separately (stability, 121 

abundance, or activity) (Fig. S10). Surprisingly, growth rate appears to tolerate a rather large 122 

drop in catalytic capacity of Adk, while lag time does not. 123 

WT E. coli is positioned at the cusp of the biophysical fitness landscape for lag time 124 

Since almost all the designed mutants were destabilizing and therefore have lower catalytic 125 

capacity than E. coli WT, they only provide sampling in the lower range of catalytic capacity. In 126 

studies so far, no evidence exists for changes in intracellular protein abundance for stabilizing 127 

mutations. Hence to determine the dependence of growth rate and lag time on catalytic capacity 128 

above WT levels, we over-expressed WT Adk from a pBAD plasmid (see Supplementary 129 

Methods). We observed no significant change in either growth rate or lag time at higher than 130 

endogenous catalytic capacity (Fig. 2B,C, S8, and Table S3). This means that while the growth 131 

rate appears to be insensitive to large changes in Adk catalytic capacity both below and above 132 

the wild-type level, WT catalytic capacity appears to be situated at the threshold of optimizing 133 

lag time. Next, we attempted to quantitatively compare the position of WT on these two fitness 134 

landscapes. To that end, we used a simple reciprocal Michaelis-Menten-like function to fit the 135 

relative growth times (growth time is reciprocal of growth rate P ) and lag times (Fig. S11, also 136 

see Eq. 3 and Methods). The fitting parameter b  which characterizes the onset of curvature on 137 

the landscape (analogous to MK  in Michaelis-Menten equation for enzymatic rate) reports 138 

proximity of WT to the cusp on the landscape (see Methods). It was 0.006 for growth time and 139 
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0.019 for lag time as compared to normalized catalytic capacity of 1 for WT. This shows that 140 

WT is situated closer to the cusp in terms of lag time as compared to growth time or growth rate. 141 

Shorter lag imparts advantage at low carrying capacity: A computational model 142 

This data highlights the pleiotropic effects of mutations on different phases of bacterial 143 

population growth, which raises the question of how pleiotropy shapes the evolutionary fate of a 144 

mutation. We explore this issue by considering the outcome of binary competitions between 145 

strains18. We first simulated binary competitions over a wide range of growth rates and lag times 146 

in media conditions that allow for either 5-fold (low carrying capacity) or 500-fold (high 147 

carrying capacity) increase over the initial population (Fig. 3A) (See Methods). We found that 148 

there is a significant tradeoff between lag times and growth rates in determining the winners of 149 

binary competitions, with lag playing a more important role at low carrying capacity (Fig. 3A), 150 

implying that beneficial lag provides a greater fitness advantage under strongly nutrient-limiting 151 

conditions. 152 

Shorter lag imparts advantage at low carrying capacity: Experimental evidence 153 

To realize varying nutrient conditions in binary competition experiments, we explored the 154 

growth of E. coli over a range of glucose concentrations, mimicking the variation of carrying 155 

capacity in simulations, and found that only the carrying capacities are proportional to glucose 156 

concentration with minimal effects on lag time and growth rate (Fig. 4). This suggests that 157 

observing the outcome of the competition at different time snapshots in a nutrient-rich medium is 158 

equivalent to running the competition at different glucose concentrations (carrying capacities). 159 

To evaluate the predictions from simulations, we carried out two sets of binary competition 160 

experiments based on the overall distribution of growth rates and lag times (Fig. 3B). First, we 161 

selected strains exhibiting a tradeoff between growth rate (P) and lag time (O) (P1 > P2 and 162 

O,1 > O,2) (inset of Fig. 5B). Second, we tested competition between strains that differ in their lag 163 

times but have nearly indistinguishable growth rates (P1 ≈ P2 and O1 > O2) (inset of Fig. 5C). In 164 

all cases a strain with shorter lag time is expected to dominate at lower carrying capacity 165 

conditions (corresponding to the competition outcome at early time points), however this 166 

advantage would be lost at later time points if its growth rate is lower than that of the competing 167 

strain (Fig. 5A). In the second scenario, the advantage due to short lag is expected to persist even 168 
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at high carrying capacity conditions because the growth rates of the competing strains do not 169 

differ. We estimated the relative proportions of the two strains by a qPCR-based mismatch 170 

amplification mutation assay (MAMA) approach19 (see Methods and Fig. S12). As expected in 171 

the first scenario, L083F and V106H dominated at earlier time points when competed against 172 

A093I and L209I, respectively, due to their shorter lag times (OL083F < OA093I and OV106H < OL209I) 173 

(Fig. 5B). Eventually their fraction dropped below 0.5 at later time points (equivalent to high 174 

carrying capacity) where the growth rates determine the competition output (PL083F < PA093I and 175 

PV106H < PL209I) (Fig. 5B). Similarly, for the second scenario, despite having similar growth rates 176 

(PWT ≈ PY182V ≈ PL209A), the fraction of WT was always maintained above 0.5 as it spends a 177 

shorter time in the lag phase compared to Y182V and L209A (Fig. 5C). The early advantage to 178 

WT due to its shorter lag phase determined the competition fitness throughout the whole growth 179 

cycle. 180 

Discussion 181 

A complete mapping of mutational fitness effects would require sampling a practically infinite 182 

number of mutations, an impossible proposition. Instead, we can project fitness onto a fairly 183 

small number of molecular properties of proteins5-7,20. Within this paradigm, the identity of a 184 

particular mutation does not matter as much as its effect on essential biochemical and 185 

biophysical properties of the proteins in question. Our 21 engineered mutations in Adk, along 186 

with the overexpression data, allow us to outline the biophysical fitness landscape, covering a 187 

wide range of variation of the physical parameters of the Adk protein.  This data shows that we 188 

can collapse several molecular phenotypes into a single effective parameter – the product of 189 

protein abundance and activity cat Mk K  (catalytic capacity) – which quantitatively determines 190 

the biophysical fitness landscape to a great extent (Fig. 2B,C). That is, Fig. 2 indicates that the 191 

fitness effects of mutations can largely be predicted from their biophysical effects over a broad 192 

range of catalytic capacity. Indeed, Adk catalytic capacity explains the variation in lag times to a 193 

large extent (Fig. S10), validating the utility of a biophysical fitness landscape for mapping 194 

fitness effects. 195 

These results illustrate how the evolutionary endpoint of molecular traits may depend 196 

fundamentally on the multidimensional nature of fitness, with the relative importance of different 197 
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components of fitness depending on the environment and lifestyle of the organism. It has been 198 

argued that endogenous molecular traits are established as a result of mutation-selection 199 

balance21, with the final outcome depending on the relative strengths of selection and genetic 200 

drift as determined by the population structure22,23. Here we encounter a more complex situation 201 

where mutations in the essential enzyme Adk change multiple fitness components. In this case, 202 

the mutation-selection balance apparently resulted in disparate outcomes for the two fitness 203 

components with respect to the molecular trait, placing lag time at the cusp while keeping the 204 

exponential growth rate farther within the plateau region of its respective biophysical fitness 205 

landscape. Such an outcome may reflect different strengths of selection on growth and lag.  The 206 

relative strength of selection on these fitness components depends crucially on the environmental 207 

conditions (e.g. nutrient availability, etc.)24. Our studies of binary competitions (Figs. 3 and 5) 208 

highlight this scenario by showing how the environmental parameter of carrying capacity can 209 

determine winners and losers in evolutionary dynamics. Although the lag time of a population 210 

can depend not only on the environment but also on the population’s specific history (e.g., how 211 

long it was previously in stationary phase), the fundamental role of Adk in metabolism suggests 212 

that its effects on lag time are likely to be common across conditions and histories. The deep 213 

connection between ecological history of species and optimization of biophysical traits of their 214 

proteins is a subject for valuable future studies. 215 

Much of our current understanding of microbial cultures and fitness comes from experiments 216 

done in the laboratory, where strains are typically grown under a large supply of nutrients. The 217 

situation might be very different in the wild, however, where bacteria and other microbes have to 218 

survive under harsh conditions of nutrient starvation, extreme temperature, and other 219 

environmental stresses25-27. For example, E. coli is the predominant facultative anaerobe in the 220 

gastrointestinal tract28 which allows it to thrive in fluctuating environments of differing oxygen 221 

concentrations along the GI tract (e.g., the small vs. the large intestine). In these circumstances, 222 

organisms are likely to spend only a minute fraction of their life-cycle in the exponential growth 223 

phase, while undergoing many cycles of lag-growth-saturation as new resources become 224 

available and old ones are exhausted. It is therefore intuitive to expect that there has been strong 225 

selection in favor of organisms that can not only divide rapidly during exponential growth, but 226 

that can also wake up quickly from their lag phase and respond to newly available resources. Our 227 

study demonstrates how this selection may shape individual molecular traits. 228 
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This work highlights the relationship between various components of fitness and the molecular 229 

properties of modern enzymes — the endpoint of evolutionary selection. An interesting question 230 

which is beyond the scope of current work is how modern variants emerged in evolutionary 231 

dynamics. To that end mapping temporary reconstructed ancestral species onto biophysical 232 

fitness landscape of Adk (and other enzymes) appears a promising direction of future research. 233 

 234 

Methods 235 

Selection of mutations: Mutations at relatively-buried positions generally result in decreased 236 

stability and lower fitness13,29. Hence we selected the sites for mutagenesis with side-chain 237 

accessibility of less than 10%. In addition, the selected sites were also away from the active-site 238 

residues, or active-site contacting residues, and a minimum of 6 Å away from the inhibitor Ap5A 239 

binding sites (pdb 1ake). The structure of Adk is divided into three domains: LID (residues 118-240 

160), NMP (residues 30-67), and Core (residues 1-29, 68-117, and 161-214). We define the 241 

active-site residues as those whose accessible surface area changes by at least 5 Å2 in the 242 

presence of the inhibitor Ap5A. A similar criterion was used to define the residues contacting the 243 

active site. Altogether 4 residues from the LID domain, 3 from the NMP domain, and 28 from 244 

the Core domain satisfy these criteria. Of the 28 sites from the Core domain, we randomly chose 245 

6 to mutate. We chose the identities of the mutations to span various sizes of the side chains and 246 

a range of conservation. We derived the conservation from the multiple sequence alignment of 247 

895 sequences for Adk collated from ExPASy database (as of Nov 2012). 248 

Generation of mutant strains: We generated the strains with WT and mutant adk with 249 

chloramphenicol- and kanamycin-resistance genes on either end of the adk gene using the 250 

genome editing approach as described previously3. Since the adk gene is flanked by two repeat 251 

regions (REPt44 and REPt45) on the wild-type chromosome, we extended the homology 252 

required for recombination up to the middle of the adjacent genes. 253 

Growth curve measurements and media conditions: WT and mutant strains were grown 254 

overnight at 30 °C from single colonies in a supplemented M9 medium (0.2 % glucose, 1 mM 255 

MgSO4, 0.1 % casamino acids, and 0.5 Pg/ml thiamine). OD600 was measured for all the strains 256 

and then the cultures were normalized to whichever had the lowest OD. The normalized cultures 257 
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were diluted 1:100 in fresh supplemented M9 media and the growth curves were monitored in 258 

triplicates using Bioscreen C at 37 °C. We derived the growth parameters by fitting ln(OD) 259 

versus time with the four-parameter Gompertz function (see below). The error in replicates was 260 

found to be between 2-3% on an average, and it did not improve significantly upon increase in 261 

number of replicates. 262 

Fitting growth data and estimation of growth parameters: In our study, we define lag time � �O  as 263 

the time required to achieve the maximum growth rate � �P  (Fig. 2A). Growth time � �W was 264 

defined as reciprocal of growth rate P . Since it has the same units as lag time, it is more 265 

convenient to use for the statistical analysis and data fitting (Fig. S11). 266 

We used two different methods to infer these parameters: A) direct analysis of growth curve 267 

derivatives and B) fits to the Gompertz function (Fig. S6). 268 

In method A, we took the growth rate as the maximum value of 

� � � �� �ln OD t OD t t
t

�'

' , where 269 

t'  is 15 minutes. The lag time was then the earliest time at which this maximum growth rate 270 

was achieved. 271 

For method B we used the following four-parameter Gompertz function to fit ln(OD) vs. time 272 

plots: 273 

 
� � � �0ln ln exp exp tOD OD K

b
Oª � º§ · � � �¨ ¸« »© ¹¬ ¼  (2) 274 

where the carrying capacity is K , the maximum growth rate is � �� �exp 1K bP  � , and the lag 275 

time O  is the time taken to achieve the maximum growth rate. 276 

For both the methods, we considered only data points with 600 0.02OD t . The instantaneous 277 

derivatives of all growth curves show presence of a distinct peak at OD600 values greater than 278 

0.02 (Fig. S6), indicating monoauxic growth and also asserting that the derived growth 279 

parameters are unaffected due to ignoring the lower OD data. 280 
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The P  and O  estimated from the two aforementioned methods are strongly correlated 281 

(Pearson’s r = 0.80, p = 1.4e�5 for P , and r = 0.71, p = 3.0e-4 for O ) (Fig. S7). However, the 282 

uncertainty in the fitted parameters appears to be less than the uncertainty in the parameters 283 

obtained from the derivatives, which are limited by the low time-resolution of the experimental 284 

data (acquired at an interval of 15 min). 285 

The growth rate � �P  and lag time � �O  appear to be statistically independent of each other across 286 

the Adk mutant strains (Spearman’s U = 0.31, p = 0.15, Fig. 3B). Hence it is conceivable that 287 

selection can act separately on these two traits, which is further illustrated by the different fitness 288 

landscapes observed when projected onto the axis of catalytic capacity (Fig. 2B,C). 289 

Statistical tests for mutational variation in growth and lag phases: We estimated the monotonic 290 

relationship between various growth traits and molecular/cellular properties of Adk mutant 291 

proteins using Spearman’s rank correlation (Fig. S10). The agreement between growth 292 

parameters derived using instantaneous derivatives and Gompertz fit were estimated by 293 

Pearson’s correlation coefficient (Fig. S7).  We excluded V106N from all statistical analysis and 294 

data fitting as its lag time is ~13 s.d. away from the average lag time of all other strains. 295 

Quantification of the location of WT on the fitness landscapes: A Michaelis-Menten-like 296 

elasticity curve function has been used previously5,6,16,20 to fit the dependence of growth rate on 297 

catalytic capacity. Since we are considering growth and lag times rather than rates, we use a 298 

reciprocal form of the Michaelis-Menten-like function for fitting relative growth time � �WTW W  299 

and relative lag time � �WTO O  vs. catalytic capacity (Fig. S11): 300 

 

� �Catalytic Capacity
Relative growth trait

Catalytic Capacity
a b� �

 
 (3) 301 

where a  is the asymptotic value of the trait for infinitely large catalytic capacity, and b  is the 302 

catalytic capacity when the trait equals twice the asymptotic value � �2a . Since catalytic capacity 303 

is normalized by WT, b  serves as a measure of how close to the cusp the WT on the respective 304 

landscapes is. For fits in Fig. S11, we empirically set 1a   which enables easy comparison of 305 

parameter b  for lag time and growth time plots. 306 
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Simulation of binary competition: We simulated the competition of two strains by using the 307 

Gompertz function (Eq. 2) to model the growth of individual strains. The initial population 308 

(OD0) for both strains was equal, and growth ceases when � �0t i
OD OD K6  , where K  is the 309 

carrying capacity. We considered two different values of carrying capacities (5 and 500). We set 310 

1P  and 1O  to values derived experimentally for WT Adk strain (Table S2), while the growth 311 

rates and lag times for the second competing strain were varied randomly across the intervals 312 

0.005 to 0.030 min-1 (for growth rate) and 50 to 300 min (for lag time). 313 

Binary growth competition and quantification: The overnight cultures for individual strains were 314 

grown for 16 hours at 30 °C. These cultures were mixed in 1:1 proportion, diluted to an OD of 315 

0.01 in fresh supplemented M9 media, and then regrown at 37 °C. The samples were drawn at 316 

different time points, and the OD was adjusted to 2.0, either by concentration or dilution. 5 µl of 317 

OD 2.0 culture was eventually diluted in 45 µl of lysis solution (QuickExtract DNA extraction 318 

solution (Epicentre)) to reach OD 0.2. Genomic DNA extracted from 50 µl of OD 0.2 culture 319 

was diluted 5000 times and used as template. The individual strains in the competition were 320 

differentially amplified using allele-specific primers and quantified by a qPCR-based mismatch 321 

amplification mutation assay method 19 using QuantiTect SYBR Green PCR kit (Qiagen). A 150 322 

bp long non-mutagenic amplicon of adk gene was amplified as a reference to quantify total 323 

genomic DNA. The fraction of the competing strains was determined using the following 324 

equation: 325 

 
� � � �� �, ,1 , ,1^2 t ref t t ref tcompetition pure

fraction C C C C � � �
 (4) 326 

where tC  represents threshold cycle of qPCR, ref  and 1 are the PCR reactions for amplifying 327 

the reference and the first allele in competition, while competition  and pure  represent the 328 

condition of culture. 329 

Data availability: All raw data for growth curves of adk WT and mutant strains, as well as WT 330 

overexpression in E. coli BW27783 strains, is included as Dataset 1. 331 
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Figure Legends: 333 

Fig. 1: Biophysical and intracellular properties. (A) Crystal structure of Adenylate Kinase 334 

from E. coli (PDB ID 4ake30). The core domain is colored in green, while the LID and NMP 335 

domains are shown in white. The CD atoms of active-site residues are shown in pink, and the blue 336 

spheres represent the CD atoms of the 6 buried positions which were mutated in this study. (B) 337 

Histogram showing the distribution of folding free energies for all mutant proteins, as 338 

determined by isothermal urea denaturation at 25 °C. The stability of WT is marked by a dashed 339 

line. (C) Histogram of the catalytic activity parameter cat Mk K  for all mutants. The dashed line 340 

indicates the WT value. (D) Total intracellular abundance of mutant Adk proteins as a function 341 

of G'  at 37 °C. The abundances are normalized by the WT value. Each data point represents the 342 

mean and error bars are standard deviation over two experiments. The dashed line represents the 343 

fit to the Boltzmann distribution function described in Eq. 1, where Bk  was 1.987 cal/mol/K. See 344 

related Figs. S1-S5 and Table S1. 345 

Fig. 2: Traits of population growth. (A) Schematic of estimation of lag time and growth rate. 346 

The representative data points (solid gray circles) were plotted as ln(OD) vs time and was fitted 347 

to a four parameter Gompertz function (Eq. 2) (cyan line). The red line is a tangent at the 348 

inflection point of the function. The slope of the tangent is considered as the growth rate � �P  and 349 

the time required to reach the maximum growth rate or the inflection point is taken as the lag 350 

time � �O  (vertical dashed line). (B) Relative growth rate � �WTP P  and (C) relative lag time 351 

� �WTO O�  as functions of catalytic capacity which is defined as abundance cat Mk Ku . The 352 

mutant data is shown in gray circles, whereas red circles represent the BW27783 strain with 353 

varying degrees of overexpression of WT Adk from a pBAD plasmid. Data for WT is shown in 354 

green. The data points represent mean and error bars represent standard deviation of parameters 355 

derived from growth curves of 3 colonies (biological replicates) in triplicates (9 curves). See 356 

related Figs. S6-S11 and Tables S2-S3. The solid gray arrow indicates the direction of increasing 357 

fitness. 358 

Fig. 3: Binary growth competition. The growth of individual strains was modeled as per 359 

Gompertz equation (Eq. 2). The growth parameters for strain 1 were fixed to those obtained for 360 
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WT Adk (dashed gray lines) while those for strain 2 were generated randomly over a wide range 361 

of growth rates (0.005 to 0.030 min-1) and lag times (50 to 250 min). (A) Contour plot showing 362 

fraction of strain 1 (WT) at saturation when the competition is carried out under two different 363 

carrying capacities (red line indicates 5K   while the black line indicates 500K  ). The dashed 364 

lines indicate neutrality region where both strains have equal proportions at saturation. The areas 365 

below the neutrality line (filled with solid lines) represent the parameter space where strain 2 366 

wins the competition (fraction of strain 2 > 0.5). (B) Scatter plot of growth rate � �P  versus lag 367 

time � �O . The data points represent the mean and error bars the standard deviation of 6 to 9 368 

measurements (see Table S2). The growth rate and lag time appear to be statistically independent 369 

of each other across the Adk mutant strains (Spearman’s U = 0.31, p = 0.15). 370 

Fig. 4: Growth curves at various nutrient concentration. (A) Growth curves of strains with 371 

WT Adk obtained under varying glucose concentrations in supplemented M9 medium. The fitted 372 

growth curve parameters are shown as functions of glucose concentration: (B) carrying capacity 373 

of ln(OD) as derived from Gompertz fitting, (C) relative growth rate � �0.2P P , and (D) relative 374 

lag time � �0.2O O� . The growth rates and lag times are estimated from analysis of growth curve 375 

derivatives and are normalized relative to the respective values at 0.2% glucose concentration. 376 

Fig. 5: Tradeoffs between lag and exponential growth in binary competitions. (A) Fraction 377 

of the first strain as a function of time in simulated binary competitions. We modeled growth of 378 

each strain using the Gompertz 4-parameter equation (Eq. 2) with experimentally measured 379 

growth rate and lag time values. The initial OD for individual strains was assumed to be 0.006 at 380 

the start of competition, and growth was assumed to saturate at OD of 0.6. Despite having 381 

similar growth rates, the fraction of WT in WT + L209I and WT + Y182V competitions was 382 

always above 0.5 owing to the advantage it gained due to shorter lag time (scenario 2 in the text). 383 

L083F and V106H dominate at earlier time points (equivalent to low carrying capacities) due to 384 

their short lag times compared to their respective competitors. However, at longer times (high 385 

carrying capacities) the advantage due to lag is lost due to their lower growth rates. (B, C) 386 

Experimental validations of the predictions in (A) using qPCR based mismatch amplification 387 

mutation assay (MAMA). The fraction of competing strains was estimated using Eq. 4. The data 388 
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points are mean and error bars represent standard deviation of two measurements. See related 389 

Fig. S12. The growth rates and lag times for the competing pairs are shown in insets. 390 
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Supplementary Methods 

Mutagenesis and protein purification 

Adenylate kinase (Adk) is encoded by the adk gene, which was cloned under the T7-lac 

promoter in pET28a(+) vector (Invitrogen) between NdeI and XhoI restriction sites. We carried 

out mutagenesis with a pair of 30-35 bp long, partially-complementary primers and the inverse 

PCR technique using KOD hot-start DNA polymerase. The mutations were centered in the 

complementary regions of the primers. The mutagenic plasmids were transformed in E. coli 

DH5α cells for faithful propagation and storage, and in E. coli BL21(DE3) for protein 

overexpression and purification. The His-tagged proteins were purified by Ni-NTA affinity 

chromatography (Qiagen) and subsequently passed through a HiLoad Superdex 75 pg column 

(GE). The monomeric peak was collected, concentrated and eventually stored in 10 mM 

potassium phosphate buffer (pH 7.2). The concentration of the proteins was measured by BCA 

assay (ThermoScientific) with BSA as standard. 

Biophysical characterization 

Thermal denaturation: We assessed the thermal stability of WT and mutant proteins by 

differential scanning calorimetry (nanoDSC, TA instruments) using 20 µM of protein. The scans 

were carried out from 10 to 90 °C at a scan rate of 90 °C/hr. The thermodynamic parameters 

were derived by fitting the data to a two-state unfolding model using NanoAnalyze (TA 

instruments). We also carried out thermal denaturation using the melt-curve module of BioRad 

CFX96, with Sypro Orange dye as a probe for unfolding as described earlier1. The dye was 

added to the final concentration of 5× in a 25 µl reaction volume containing 4 µM of protein in 

10 mM potassium phosphate buffer (pH 7.2). The data were fit to a standard four-parameter 

sigmoidal equation to obtain apparent melting temperatures. 

Urea denaturation: We carried out isothermal urea denaturation with WT and mutant proteins to 

assess the stability of the proteins to chemical denaturants. We incubated 5 µM of protein for 

~4 hrs at 25 °C with varying concentrations of urea (0-8 M). The urea concentrations were 

estimated by refractive index measurements. The denaturation was monitored by measuring the 

ellipticity at 222 nm using a CD spectrometer (Jasco). The melt data was fitted assuming a model 
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of two-state unfolding with linear free energy as described earlier2,3. The m-value was fixed to 

3300 cal/mol/M for fitting. 

Gel filtration: We assessed the oligomeric status of purified proteins by gel filtration using 50 µg 

of protein on sephadex 75 analytical columns. 

ANS and proteostat binding: We used 12 µM of bisANS for assessing binding to 2 µM of 

protein in 10 mM potassium phosphate buffer (pH 7.2). The excitation and emission wavelengths 

were set to 395 nm and 490 nm, respectively. 2 µM of protein was incubated with 3.5 mM of the 

proteostat dye in 1× assay buffer (Enzo LifeSciences). For this the excitation and emission 

wavelengths were set to 550 and 600 nm, respectively. 

Enzyme activity: We measured the activity of Adk in terms of ADP formation by an end-point 

assay as described earlier4. Briefly, the concentration of AMP was fixed to 500 µM and ATP 

concentration was varied from 0 to 500 µM in an enzymatic reaction. 5 nM of Adk was used to 

initiate the reaction and 500 µM of Ap5A was used for quenching at 20, 40, and 60 second time 

points. The amount of ADP formed was measured by LDH-Pyruvate kinase-coupled reaction 

and the kinetic parameters were derived by fitting the data to the Michaelis-Menten equation. 

Adk overexpression: The adk gene was cloned in a pBAD plasmid and transformed in the E. coli 

BW27783 strain (CGSC#12119). This strain constitutively expresses the arabinose transporter 

(araE) which enables uniform uptake of arabinose. The cells were induced with increasing 

concentrations of arabinose from 0 to 0.05%. 

Intracellular protein abundance: Cells were grown in supplemented M9 medium for 4 hours at 

37 °C, harvested and subsequently lysed with 1× BugBuster (Novagen) and 25 units/ml of 

Benzonase. Total amount of proteins in cell lysate was estimated by BCA assay. The specific 

fraction of Adk was determined by SDS-PAGE followed by western blot using rabbit anti-Adk 

polyclonal antibodies (custom- raised by Pacific Immunology). 

Estimation of viable cells in saturating culture: The overnight culture was grown in 

supplemented M9 medium for 16 hours at 30 °C and the proportion of live:dead cells was 

measured using Live/Dead BacLight Bacterial Viability Kits (Molecular Probes) according to the 

manufacturer’s instructions. Briefly, 1×108 cells (in a volume of 1ml) were mixed with 3 µl of a 
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1:1 proportion of Syto9 dye and Propidium Iodide (PI). The mixture was incubated in the dark 

for 15 minutes, following which the fluorescence was measured at 530 nm and 630 nm. Syto9 

dye stains live cells and emits fluorescence at 530 nm (green), while PI stains dead cells and can 

be detected at 630 nm (red). The ratio of fluorescence values at 530 nm:630 nm corresponds to 

the proportion of live:dead cells in that sample which was eventually used to estimate the 

percentage of live cells in a sample, according to the manufacturer’s instructions. An 

exponentially growing culture (considered as 100% live) and cells treated with 70% ethanol for 

1 hour (considered 100% dead) were mixed in different known proportions, and their 

530:630 nm ratio was used to generate a standard curve. 
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Fig S1: Thermal unfolding monitored by Differential Scanning Calorimetry (DSC) for WT 

(black trace) and 20 different Adk mutant proteins (red trace). The molar heat capacity (Cp) is 

shown as a function of temperature. The scan rate was 90 °C/hr. The data was fitted to a two-

state thermal unfolding model to derive the thermodynamic parameters. 
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Fig S2: Isothermal urea denaturation curves at 25 °C for WT (black dots) and mutant Adk 

proteins (red dots). The fraction unfolded (Fu) is plotted as a function of denaturant 

concentration. Protein denaturation was monitored by recording the CD signal at 222 nm. The 

data was fit to a two-state unfolding model. 
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Fig S3: Analytical gel-filtration profile of WT and 20 mutant Adk proteins on a Superdex-75 

column at room-temperature. The absorbance at 280 nm is shown as a function of elution 

volume. For comparison all the monomeric peaks were normalized to 1. WT Adk along with 

most other mutant proteins elutes at the expected position for a monomer. Exceptions were 

V106H, V106N and V106W, where additional peaks appear at much higher molecular weights. 
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Fig S4: Aggregation propensity and molten-globule states of mutant proteins. Bar plots represent 

the extent of ProteoStat and ANS binding to WT and mutant Adk proteins. The proteins on the x-

axis are arranged in decreasing order of stability from left to right. 
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Fig S5: Enzyme activity of Adk mutants at 25 °C measured as described in Supplementary 

methods. The initial velocity, shown as a function of ATP concentration, was calculated as the 

amount of ADP produced per minute by 1 nmol of Adenylate Kinase. The concentration of AMP 

in all experiments was fixed to 500 µM. The data (gray circles) was fitted using the Michaelis-

Menten equation of enzyme activity to extract relevant parameters (fitted line in red). 
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Fig S6: Representative growth curves of (A) WT, (B) A093I, and (C) L209S strains. Each 

growth curve is shown as ln(OD) vs time plot (left y-axis). The experimental data is shown in 

gray circles and the Gompertz fit is shown in solid red line. The instantaneous time derivative of 

the ln(OD) data is shown in blue line (right y-axis). The strains were chosen to illustrate the 

quality of the fit across different range of growth rates and lag times (see Table S2 for growth 

parameters). 
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Fig S7: Correlation between growth parameters derived from Gompertz fitting and maximum-

derivative method. The parameters derived from both the methods correlate very well as 

indicated by Pearson’s correlation parameters (r and p-values). The data points represent mean 

and error bars are standard deviation of 6 or 9 measurements (see Table S2). 
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Fig S8: Traits of population growth. (A) Relative growth rates ( )WTµ µ  and (B) relative lag 

time ( )WTλ λ−  obtained from analysis of growth curve derivatives shown as a function of 

catalytic capacity which is defined as abundance cat Mk K× . The mutant data is shown in gray 

circles, whereas red circles represent the BW27783 strain with varying degrees of 

overexpression of WT Adk from a pBAD plasmid. Data for WT is shown in green. Fig 2 is an 

equivalent figure with growth rate and lag times obtained after fitting the raw data with 

Gompertz equation (Eq. 2). 
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Fig S9: Percentage of live or viable cells of WT and mutant Adk strains at saturation (16 hours 

of growth) versus their population lag time. The cultures were grown overnight at 30 °C, and 

then stained using fluorescent dyes Syto9 (specific for live cells) and propidium iodide (specific 

for dead cells). The data points are mean and error bars represent standard deviation of 2 

biological replicates. WT Adk strain is shown in green. 
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Fig S10: Scatter plots of growth parameters (carrying capacity, growth rate and lag times) and 

molecular and cellular properties of Adk. Parameters were obtained using (A) Gompertz fit and 

(C) analysis of growth curve derivatives. Panels (B) and (D) show Spearman’s correlation 

coefficients (ρ) and p-values for each of the sub-plots in panels (A) and (C) respectively. The 
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highest correlation values in each panel are highlighted in yellow. V106N was excluded from all 

correlation calculations. 
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Fig S11: (A) Relative growth time ( )WTτ τ  and (B) relative lag time ( )WTλ λ  as a function of 

catalytic capacity ( )abundance cat Mk K× . The dashed line shows a fit to Eq. 3, where the 

asymptote ( )a  was assumed to be 1. The KM-like parameter b  for growth time was 0.006 and 

that for lag time was 0.019, which indicates that the WT catalytic capacity is closer to the cusp 

for lag time than for growth time. The mutant data is shown in gray circles, whereas the 

overexpression data is shown in red. In green is shown WT, while the blue circle indicates 

V106N which was omitted from the fitting. The error bars represent standard deviation of 

parameters derived from growth curves of 3 colonies (biological replicates) in triplicates (9 

curves). See Table S2 and S3 for the parameters. 
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Fig S12: Schematic representation of binary growth competition experiments and estimation of 

relative proportion of competing strains. The strains (1) and (2) are mixed in 1:1 proportion and 

were grown at 37 °C. Samples were drawn at different time points, normalized for OD, and 

genomic DNA was extracted. The proportions of individual strains were estimated by a qPCR 

method employing mismatch amplification mutation assay method (see Methods). We designed 

a set of primers to differentially amplify the strains by matching the 3’-end of one of the primers 

to the site of mutation and using Taq DNA polymerase for amplification. 
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Table S1: Structural and biophysical parameters

adk strain SC acca

(%)
Residue depth (Å)

Fraction of
WT in MSA

Fraction of
mutant in MSAb

Tm (DSC)
(°C)

Tm (TFA)c

(°C)
∆Gd

(kcal/mol)
kcat

e

(min-1)
KM

f

(µM)

kcat/KM

(µM-1min-1)

WT -- -- -- -- 55.9 53.8 -11.9 8.05 80.58 9.99E-02
L082F 0.0 8.8 0.57 0.00 49.2 47.4 -8.7 14.23 94.86 1.50E-01
L082V 0.0 8.8 0.57 0.14 55.7 53.2 -11.3 n.d.g n.d.g n.d.g

L083A 0.1 9.0 0.70 0.00 48.5 46.9 -8.9 6.10 118.73 5.13E-02
L083F 0.1 9.0 0.70 0.60 n.d.g 54.2 -10.8 n.d.g n.d.g n.d.g

L083I 0.1 9.0 0.70 0.23 52.4 50.7 -10.4 9.70 274.80 3.53E-02
L083T 0.1 9.0 0.70 0.00 49.4 49.3 -9.9 8.05 96.55 8.34E-02
A093F 0.0 5.9 0.85 0.00 49.4 47.2 -9.1 7.05 123.83 5.69E-02
A093I 0.0 5.9 0.85 0.00 51.3 49.7 -9.9 7.34 241.75 3.04E-02
A093L 0.0 5.9 0.85 0.07 50.6 47.9 -9.6 8.75 178.05 4.91E-02
A093Y 0.0 5.9 0.85 0.00 51.2 49.4 -9.3 10.61 256.23 4.14E-02
V106A 0.0 7.4 0.74 0.38 49.7 47.3 -9.0 4.19 41.78 1.00E-01
V106H 0.0 7.4 0.74 0.00 43.2 41.2 -6.6 12.74 206.54 6.17E-02
V106L 0.0 7.4 0.74 0.04 50.1 48.5 -8.9 8.10 108.60 7.46E-02
V106N 0.0 7.4 0.74 0.00 39.0 37.9 -4.8 12.07 158.06 7.64E-02

V106W 0.0 7.4 0.74 0.04 45.0 43.0 -7.3 13.22 192.05 6.88E-02
Y182F 7.2 6.3 0.86 0.14 55.4 53.8 -10.5 15.00 210.25 7.13E-02
Y182V 7.2 6.3 0.86 0.00 45.7 46.2 -8.1 5.01 261.53 1.92E-02
L209A 0.0 7.0 0.23 0.08 45.0 44.3 -8.4 2.30 66.94 3.43E-02
L209F 0.0 7.0 0.23 0.01 51.5 51.0 -10.5 7.00 208.17 3.36E-02
L209Ih 0.0 7.0 0.23 0.58 56.1 55.5 -12.9 4.66 88.82 5.25E-02
L209S 0.0 7.0 0.23 0.00 43.2 42.4 -7.4 3.57 42.55 8.38E-02

a % sidechain accessibility calculated using coordinates of pdb 4ake
b fraction in multiple sequence alignment when WT amino acid is excluded
c melting temperture from thermofluor assay
d derived from isothermal urea denaturation experiments at 25C
e kcat for ADP formation
f KM for ATP
g not determined
h the only case in this dataset where fraction of mutant amino acid was greater that WT amino acid in MSA
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Table S2: Intracellular abundance and growth parameters of adk mutants

adk strain
Carrying 

capacity, Ka s.d. in Kb Growth rate, µa

(min-1)
s.d. in µb Lag time, λa,c

(min)
s.d. in λb Abundanced s.d. in abundancee

WT 29.9 3.0 0.0234 2.85E-04 146.4 1.7 1.00 0.00
L082F 28.7 2.9 0.0233 2.40E-04 146.7 3.0 0.79 0.05
L082V 24.4 0.8 0.0229 2.60E-04 158.2 2.1 n.d.f n.d.f

L083A 22.6 0.8 0.0228 2.22E-04 162.0 2.1 0.90 0.08
L083Fg 27.3 1.3 0.0182 2.48E-04 152.9 0.6 1.19 0.10

L083I 23.4 0.9 0.0228 3.30E-04 163.6 3.3 0.91 0.02
L083T 22.9 1.0 0.0231 4.72E-04 164.8 2.9 0.89 0.03
A093F 27.6 4.3 0.0235 4.37E-04 152.2 4.7 0.93 0.03
A093Ig 25.7 0.5 0.0244 3.69E-04 187.2 7.3 0.82 0.07
A093L 24.0 1.0 0.0232 3.44E-04 165.6 5.3 0.80 0.13
A093Y 24.0 1.1 0.0237 4.90E-04 171.7 6.1 0.75 0.23
V106A 25.0 0.5 0.0238 3.28E-04 170.4 5.2 0.95 0.21

V106Hg 24.5 2.2 0.0197 2.68E-04 150.9 4.1 0.11 0.10
V106L 24.4 2.2 0.0236 3.08E-04 167.2 6.6 0.76 0.05

V106N 5.9 0.3 0.0137 6.85E-04 305.8 20.0 0.01 0.00
V106W 23.4 1.0 0.0242 4.48E-04 179.7 2.8 0.20 0.01

Y182F 24.0 1.3 0.0239 2.15E-04 170.4 2.8 0.68 0.09
Y182V 23.7 1.1 0.0236 3.08E-04 174.6 1.0 0.48 0.08
L209A 24.5 1.3 0.0234 7.12E-04 169.9 2.3 0.46 0.07
L209F 30.5 1.8 0.0238 3.54E-04 155.7 2.7 0.68 0.05
L209I 25.8 1.2 0.0241 1.27E-04 169.1 4.0 0.63 0.14
L209S 20.9 1.5 0.0175 1.15E-03 174.4 4.8 0.34 0.07

a parameters derived by fitting Gompertz equation to ln(OD) vs time at 37 C
b standard deviation derived from 9 replicates (triplicates of 3 biological replicates)
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation derived 2 biological replicates
f not determined
g growth parameters derived for 6 replicates (triplicates of 2 biological replicates)
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Table S3: Intracellular abundance and growth parameters of WT adk overexpression from pBAD plasmid in E. coli  BW27783 strain

arabinose 
concentration

(%)

Carrying capacity, 
Ka s.d. in Kb Growth rate, µa

(min-1)
s.d. in µb Lag time, λa,c

(min)
s.d. in λb Abundanced s.d. in abundancee

no plasmid 29.5 2.5 0.0195 5.10E-04 126.7 1.0 1.00 0.10
0.00E+00 32.0 0.5 0.0195 2.00E-04 127.2 0.7 4.20 0.42
3.05E-06 30.9 1.8 0.0191 2.00E-04 127.2 2.0 13.73 1.37
1.22E-05 31.3 1.0 0.0197 2.00E-04 125.0 0.4 5.39 0.54
4.88E-05 27.1 1.0 0.0199 2.65E-04 135.7 1.1 21.55 2.15
1.95E-04 32.7 0.9 0.0191 1.00E-04 127.5 1.2 91.27 9.12
7.81E-04 31.6 2.5 0.0192 2.52E-04 127.0 2.1 205.31 20.51
3.13E-03 32.6 1.6 0.0192 4.73E-04 126.1 1.4 250.39 25.02
5.00E-02 28.4 3.1 0.0195 3.61E-04 127.1 2.5 278.69 27.84

a parameters derived by fitting Gompertz equation to ln(OD) vs time at 37 C
b standard deviation of 3 replicates
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation of 2 biological replicates
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