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Abstract 11 

Mutations provide the variation that drives evolution, yet their effects on fitness remain 12 

poorly understood. Here we explore how mutations in the essential enzyme Adenylate 13 

Kinase (Adk) of E. coli affect multiple phases of population growth. We introduce a 14 

biophysical fitness landscape for multiple phases of bacterial growth, which shows how 15 

they depend on molecular and cellular properties of Adk. We find that Adk catalytic 16 

capacity in the cell (product of activity and abundance) is the major determinant of 17 

mutational fitness effects. We show that bacterial lag times are at an optimum for the 18 

endogenous enzyme, while exponential growth rates are only weakly affected by variation 19 

in Adk. Direct pairwise competitions between strains show how environmental conditions 20 

modulate the outcome of a competition where growth rates and lag times show a tradeoff, 21 

altogether shedding light on the multidimensional nature of fitness and its importance in 22 

the evolutionary optimization of enzymes. 23 
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Introduction 25 

Random mutagenesis is often used to assess the distribution of fitness effects in simple 26 

experimental models such as propagating viruses and microbes evolving under antibiotic 27 

stress1,2. However, the enormous size of sequence space severely constrains how much of the 28 

fitness landscape can be explored this way, and mechanistic and predictive insights from these 29 

experiments are further limited by a lack of knowledge of the molecular effects of mutations. 30 

Instead, a more targeted experimental approach relies on the concept of a biophysical fitness 31 

landscape, in which fitness effects of mutations are mapped through their effects on molecular 32 

traits of the mutated proteins. In this approach, biophysically-rational genetic variation is 33 

introduced on the chromosome, and the molecular and phenotypic effects of that variation are 34 

analyzed concurrently3-6. By mapping fitness effects to variation of molecular properties rather 35 

than to sequences of mutated proteins, we can dramatically reduce the dimensionality of the 36 

genotype-to-phenotype mapping. The underlying hypothesis is that variation in a small number 37 

of properly-selected molecular traits of mutated proteins can explain most of the resulting 38 

mutational variation in fitness, and that the relationship between these molecular traits and 39 

fitness is smooth and continuous. Several recent studies have supported this approach5-7. 40 

However, the relationship between sequence variation and fitness is further confounded by the 41 

fact that multiple phenotypic traits contribute to fitness, and the relative importance of these 42 

traits to the long-term evolutionary fate of a mutation8 may be highly dependent on 43 

environmental and ecological conditions. While a large number of traits (e.g., viability at various 44 

life phases, mating success, fecundity, etc.) determine fitness of multicellular organisms, 45 

relatively fewer components of fitness, such as the time in lag phase, the exponential growth rate, 46 

and the overall yield in stationary phase, determine fitness of unicellular microorganisms like 47 

bacteria and yeast. When in competition for limiting resources, all phases of growth contribute 48 

towards the outcome, and hence determine fitness3,9. The relative importance of these different 49 

phases of bacterial growth in sculpting the fitness landscape depends on the conditions of growth 50 

and competition10,11 12. 51 

Overall, the challenge in quantitatively characterizing the fitness landscape is twofold: 52 

Understanding fitness in terms of contributions from different phases of growth, and linking each 53 

of these components to genotypic properties of cells. In this work, we address both challenges by 54 
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introducing biophysically-rational genetic variation in the adk locus that encodes the essential 55 

E. coli enzyme Adenylate Kinase (Adk), and projecting the ensuing variations of phenotypic 56 

components onto the biophysical traits of Adk. To that end, we assess a comprehensive set of 57 

biophysical properties and fitness effects of Adk mutants. We find that a unique combination of 58 

molecular and cellular traits of Adk — a product of intracellular abundance and catalytic 59 

activity, which we term catalytic capacity — serves as a reliable predictor of fitness effects 60 

covering the full range of genotypic and phenotypic variation. Furthermore, we find that the 61 

length of the lag phase is more sensitive to variation in Adk catalytic capacity than is the 62 

exponential growth rate, so that the lag phase of the wild-type E. coli appears to be optimal with 63 

respect to broad variation of Adk catalytic capacity. 64 

Results 65 

Biophysical properties of Adk mutants 66 

We chose a set of 21 missense mutations at 6 different positions of adk designed to sample a 67 

broad range of molecular and cellular traits of the protein (Table S1 and Fig. 1). We selected 68 

residues such that their accessible surface area was less than 10% and they were at least 6 Å 69 

away from the catalytically-active sites of Adk, so that mutations at these residues were likely to 70 

destabilize the protein13. For most mutants, we chose amino acid mutations that appeared only at 71 

low frequency in an alignment of 895 homologous sequences of Adk. As intended, the purified 72 

mutant proteins were destabilized over a wide range (~17 °C in terms of Tm, and ~7.5 kcal/mol 73 

in terms of folding 'G) (Table S1, Figs. 1B, S1, S2). In only one case (L209I) did we change the 74 

E. coli sequence to the consensus amino acid at that position, and we found it in fact stabilized 75 

the protein by ~1 kcal/mol (Table S1). Although most of the Adk mutants were less stable than 76 

the wild-type, they nevertheless existed predominantly as monomers in solution (Fig. S3). 77 

However, several mutations in one position — V106H, V106N, and V106W — did have 78 

significant fractions of proteins present in higher oligomeric forms, in addition to the 79 

predominant monomeric species (Fig. S3). These proteins bound 4,4’-Dianilino-1,1’-binaphthyl-80 

5,5’-Disulfonate (Bis-ANS) dye to a higher degree compared to the rest of the mutants (Fig. S4), 81 

indicating the presence of possible molten globule states in solution14. The proteostat dye that 82 

reports on protein aggregation4,15 also bound these mutants more strongly compared to others 83 
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(Fig. S4), clearly indicating a higher fraction of aggregated species. The catalytic efficiency (84 

kcat /KM ) of the mutant Adk proteins was distributed broadly with most mutants showing a 85 

lower activity than E. coli WT (Table S1, Figs. 1C, S5). 86 

Intracellular abundance of Adk follows prediction from Boltzmann distribution 87 

We then incorporated each of the 21 adk mutations one-by-one into the E. coli chromosome 88 

using a genome-editing approach based on homologous recombination3,4. We measured the total 89 

intracellular abundance of WT and mutant Adk proteins using a quantitative western blot 90 

(Table S2). The sigmoidal dependence of total intracellular Adk abundance on folding stability 91 

('G) (Fig. 1D) is well-described by the Boltzmann distribution for two-state unfolding proteins: 92 

 
� �

1
1 expFP

GE
 

� '
  (1) 93 

where PF  is the fraction of folded molecules in the ensemble of intracellular Adk andb =1/ kBT94 

, with the Boltzmann constant Bk  and the growth temperature T . The total measured abundance 95 

of a protein is its amount in the cytoplasm at steady-state, achieved by a balance between 96 

production and degradation. Since Adk is expressed from a constitutive promoter in the cells, it 97 

is generally safe to assume that the rates of production of all mutants are similar. Under this 98 

assumption, the sigmoidal dependence of abundance on stability clearly indicates that the 99 

unfolded protein is degraded in the active medium of the cytoplasm. 100 

Mutations in Adk cause more variation in lag times than exponential growth rates 101 

Mutations in Adk affect both intracellular abundance (via folding stability) and catalytic activity 102 

of the protein. Flux dynamics theory predicts, and experiments have confirmed, that the key 103 

enzymatic parameter determining the flux through an enzymatic reaction chain is the quantity 104 

which we call “catalytic capacity,” defined as the product of intracellular abundance and 105 

enzymatic efficiency cat Mk K 5,6,16. To that end, we determined how two key components of 106 

bacterial growth — the exponential growth rate and the lag time (Fig. 2A) — depend on the total 107 

catalytic capacity of Adk in E. coli cells (Fig. 2B,C; also see Methods and Fig. S6-S8 for 108 

estimation of growth parameters). We find that the variance in lag times across all strains is 109 
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significantly greater than the variance in exponential growth times (reciprocal growth rates) 110 

(Brown-Forsythe test, p = 9×10�4), and the mean change in lag time (relative to wild-type) from 111 

each mutation is significantly greater than the mean change in growth time (Welch’s t-test, p = 112 

3×10�7) (see Methods for details). This suggests that the mutations in Adk affect the lag phase 113 

more significantly than the exponential growth phase. One mechanism for producing longer 114 

apparent lag times is when a greater proportion of cells that come out of stationary phase are 115 

simply nonviable, as described in a recent study17. However, this appears not to be the major 116 

cause in our case, as lag times are fairly consistent across replicates (error bars in Fig. 2C), and 117 

do not negatively correlate with the number of viable cells (Fig. S9). We also find that the 118 

variation in total catalytic capacity of Adk correlates better with the variation in lag times 119 

(Spearman rank correlation U = �0.44, p = 0.057) than with the variation in growth rates 120 

(Spearman rank correlation U = �0.08, p = 0.737) (Fig. S10). The variation in lag times is also 121 

better explained by the variation in catalytic capacity than with any of the Adk properties 122 

separately (stability, abundance, or activity) (Fig. S10). Surprisingly, growth rate appears to 123 

tolerate a rather large drop in catalytic capacity of Adk, while lag time does not. 124 

WT E. coli is positioned at the cusp of the biophysical fitness landscape for lag time 125 

Since almost all the mutants have lower catalytic capacity than E. coli WT, they only provide 126 

sampling in the lower range of catalytic capacity. To determine the dependence of growth rate 127 

and lag time on catalytic capacity above WT levels, we over-expressed WT Adk from a pBAD 128 

plasmid (see Supplementary Methods). We observed no significant change in either growth rate 129 

or lag time at higher than endogenous catalytic capacity (Fig. 2B,C, Table S3). This means that 130 

while the growth rate appears to be insensitive to large changes in Adk catalytic capacity both 131 

below and above the wild-type level, WT catalytic capacity appears to be situated at the 132 

threshold of optimizing lag time. Next, we quantitatively compared the position of WT on these 133 

two fitness landscapes. To that end, we used a simple Michaelis-Menten-like function to fit the 134 

data in Fig 2B and C (see Eq. 3 and 4 and Methods). The fitting parameter ‘c’ which 135 

characterizes the onset of curvature on the landscape (analogous to  KM in Michaelis-Menten 136 

equation for enzymatic rate) reports proximity of WT to the cusp on the landscape (see 137 

Methods). It was 0.005 for growth rate, and 0.12 for lag time as compared to normalized catalytic 138 

capacity of 1 for WT. This clearly shows that WT is situated close to the cusp in terms of lag 139 
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time and well inside the plateau in terms of growth rate. This also suggests that selection for lag 140 

time, rather than growth rate, was the predominant determinant of WT Adk catalytic capacity. 141 

Shorter lag imparts advantage at low carrying capacity: A computational model 142 

This data highlights the pleiotropic effects of mutations on different phases of bacterial 143 

population growth, which raises the question of how pleiotropy shapes the evolutionary fate of a 144 

mutation. We explore this issue by considering the outcome of binary competition between 145 

strains18. We first simulated binary competitions over a wide range of growth rates and lag times 146 

in media conditions that allow for either 5-fold (low carrying capacity) or 500-fold (high 147 

carrying capacity) increase over the initial population (Fig. 3A) (See Methods). We found that 148 

there is a significant tradeoff between lag times and growth rates in determining the winners of 149 

binary competitions, with lag playing a more important role at low carrying capacity (Fig. 3A), 150 

implying that beneficial lag provides a greater fitness advantage under strongly nutrient-limiting 151 

conditions. 152 

Shorter lag imparts advantage at low carrying capacity: Experimental evidence 153 

To realize varying nutrient conditions in binary competition experiments, we explored the 154 

growth of E. coli over a range of glucose concentrations, mimicking the variation of carrying 155 

capacity in simulations, and found that only the carrying capacities are proportional to glucose 156 

concentration with minimal effects on lag time and growth rate (Fig. 4). This suggests that 157 

observing the outcome of the competition at different time snapshots in a nutrient-rich medium is 158 

equivalent to running the competition at different glucose concentrations (carrying capacities). 159 

To evaluate the predictions from simulations, we carried out two sets of binary competition 160 

experiments based on the overall distribution of growth rates and lag times (Fig. 3B). First, we 161 

selected strains exhibiting a tradeoff between growth rate (P) and lag time (O) (P1 > P2 and 162 

O,1 > O,2) (inset of Fig. 5B). Second, we tested competition between strains that differ in their lag 163 

times but have nearly indistinguishable growth rates (P1 ≈ P2 and O1 > O2) (inset of Fig. 5C). In 164 

all cases a strain with shorter lag time is expected to dominate at lower carrying capacity 165 

conditions (corresponding to the competition outcome at early time points), however this 166 

advantage would be lost at later time points if its growth rate is lower than that of the competing 167 

strain (Fig. 5A). In the second scenario, the advantage due to short lag is expected to persist even 168 
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at high carrying capacity conditions because the growth rates of the competing strains do not 169 

differ. We estimated the relative proportions of the two strains by a qPCR-based mismatch 170 

amplification mutation assay (MAMA) approach19 (see Methods and Fig. S11). As expected in 171 

the first scenario, L083F and V106H dominated at earlier time points when competed against 172 

A093I and L209I, respectively, due to their shorter lag times (OL083F < OA093I and OV106H < OL209I) 173 

(Fig. 5B). Eventually their fraction dropped below 0.5 at later time points (equivalent to high 174 

carrying capacity) where the growth rates determine the competition output (PL083F < PA093I and 175 

PV106H < PL209I) (Fig. 5B). Similarly, for the second scenario, despite having similar growth rates 176 

(PWT ≈ PY182V ≈ PL209A), the fraction of WT was always maintained above 0.5 as it spends a 177 

shorter time in the lag phase compared to Y182V and L209A (Fig. 5C). The early advantage to 178 

WT due to its shorter lag phase determined the competition fitness throughout the whole growth 179 

cycle. 180 

Discussion 181 

A complete mapping of mutational fitness effects would ideally require sampling a practically 182 

infinite number of mutations, an impossible proposition. Instead, we can project fitness onto a 183 

fairly small number of molecular properties of proteins. Within this paradigm, the identity of a 184 

particular mutation does not matter as much as its effect on essential biochemical and 185 

biophysical properties of the proteins in question. Our data, as well as previous studies5-7,20, 186 

validate this approach by showing that we can collapse several molecular phenotypes into a 187 

single effective parameter – the product of protein abundance and activity kcat /KM  (catalytic 188 

capacity) – which quantitatively determines the biophysical fitness landscape to a great extent 189 

(Fig. 2B,C). That is, Fig. 2 indicates that the fitness effects of mutations can largely be predicted 190 

from their biophysical effects over a broad range of catalytic capacity, validating the utility of a 191 

biophysical fitness landscape to map variation in the adk locus to the phenotype. The 21 192 

engineered mutations, along with the Adk overexpression data, allow us to outline the 193 

biophysical fitness landscape comprehensively, covering a wide range of variation of the 194 

physical parameters of Adenylate Kinase. 195 

These results illustrate how the evolutionary endpoint of molecular traits may depend 196 

fundamentally on the multidimensional nature of fitness, with the relative importance of different 197 
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components of fitness depending on the environment and lifestyle of the organism. It has been 198 

argued that endogenous molecular traits are established as a result of mutation-selection 199 

balance21, with the final outcome depending on the relative strengths of selection and genetic 200 

drift as determined by the population structure22,23. Here we encounter a more complex situation 201 

where mutations in the essential enzyme Adk change multiple traits with different effects on 202 

fitness. Apparently the mutation-selection balance resulted in disparate outcomes for the two 203 

traits, placing lag time at the cusp while keeping the exponential growth rate farther within the 204 

plateau region of its respective biophysical fitness landscape. Such an outcome can reflect 205 

different strengths of selection and drift as applied to different phenotypic traits. It is therefore 206 

possible that ecological conditions of E. coli put stronger emphasis on survival in low carrying-207 

capacity or fluctuating environments, leading to the balance of selection and drift that keeps lag 208 

phase just on the cusp in Fig. 2, i.e., optimal with respect to point mutations that decrease 209 

catalytic capacity. Our studies of binary competitions (Figs. 3 and 5) highlight this scenario by 210 

showing how the environmental parameter of carrying capacity can determine winners and losers 211 

in evolutionary dynamics. Although the lag time of a population can depend not only on the 212 

environment but also on the population’s specific history (e.g., how long it was previously in 213 

stationary phase), the fundamental role of Adk in metabolism suggests that its effects on lag time 214 

are likely to be common across conditions and histories. The deep connection between ecological 215 

history of species and optimization of biophysical traits of their proteins is a subject for 216 

interesting future studies. 217 

Much of our current understanding of microbial cultures and fitness comes from experiments 218 

done in the laboratory, where strains are typically grown under a large supply of nutrients. The 219 

situation might be very different in the wild, however, where bacteria and other microbes have to 220 

survive under harsh conditions of nutrient starvation, extreme temperature, and other 221 

environmental stresses24-26. In these circumstances, organisms are likely to spend only a minute 222 

fraction of their life-cycle in the exponential growth phase, while undergoing many cycles of lag-223 

growth-saturation as new resources become available and old ones are exhausted. It is therefore 224 

intuitive to expect that there has been strong selection in favor of organisms that can not only 225 

divide rapidly during exponential growth, but that can also wake up quickly from their lag phase 226 

and respond to newly available resources. Our study demonstrates how this selection may shape 227 

individual molecular traits. 228 
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Our study highlights the relationship between various components of fitness and the molecular 229 

properties of modern enzymes — the endpoint of evolutionary selection. An interesting question 230 

which is beyond the scope of current work is how modern variants emerged in evolutionary 231 

dynamics. To that end mapping temporary reconstructed ancestral species onto biophysical 232 

fitness landscape of Adk (and other enzymes) appears a promising direction of future research. 233 

 234 

Methods 235 

Selection of mutations: Mutations at relatively-buried positions generally result in decreased 236 

stability and lower fitness13,27. Hence we selected the sites for mutagenesis with side-chain 237 

accessibility of less than 10%. In addition, the selected sites were also away from the active-site 238 

residues, or active-site contacting residues, and a minimum of 6 Å away from the inhibitor Ap5A 239 

binding sites (pdb 1ake). We define the active-site residues as those whose accessible surface 240 

area changes by at least 5 Å2 in the presence of the inhibitor Ap5A. A similar criterion was used 241 

to define the residues contacting the active site. Altogether 4 residues from the LID domain, 3 242 

from the NMP domain, and 28 from the Core domain satisfy these criteria. Of the 28 sites from 243 

the Core domain, we randomly chose 6 to mutate. We chose the identities of the mutations to 244 

span various sizes of the side chains and a range of conservation. We derived the conservation 245 

from the multiple sequence alignment of 895 sequences for Adk collated from ExPASy database 246 

(as of Nov 2012). 247 

Generation of mutant strains: We generated the strains with WT and mutant adk with 248 

chloramphenicol- and kanamycin-resistance genes on either end of the adk gene using the 249 

genome editing approach as described previously3. Since the adk gene is flanked by two repeat 250 

regions (REPt44 and REPt45) on the wild-type chromosome, we extended the homology 251 

required for recombination up to the middle of the adjacent genes. 252 

Growth curve measurements and media conditions: WT and mutant strains were grown 253 

overnight at 30 °C from single colonies in a supplemented M9 medium (0.2 % glucose, 1 mM 254 

MgSO4, 0.1 % casamino acids, and 0.5 Pg/ml Thiamine). OD600 was measured for all the 255 

strains and then the cultures were normalized to whichever had the lowest OD. The normalized 256 

cultures were diluted 1:100 in fresh supplemented M9 media and the growth curves were 257 
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monitored in triplicates using Bioscreen C at 37 °C. We derived the growth parameters by fitting 258 

ln(OD) versus time with the four-parameter Gompertz function (see below). The error in 259 

replicates was found to be between 2-3% on an average, and it did not improve significantly 260 

upon increase in number of replicates. 261 

Fitting growth data and estimation of growth parameters: In our study, we define lag time (O ) as 262 

the time required to achieve the maximum growth rate ( P ) (Fig. 2A). We used two different 263 

methods to infer these parameters: A) direct analysis of growth curve derivatives and B) fits to 264 

the Gompertz function (Fig. S6). 265 

In method A, we took the growth rate as the maximum value of 
� � � �� �ln OD t OD t t

t
�'

'
where 266 

t'  is 15 minutes. The lag time was then the earliest time at which this maximum growth rate 267 

was achieved. 268 

For method B we used the following four-parameter Gompertz function to fit ln(OD) vs. time 269 

plots (considering only points with OD600 >= 0.02): 270 

 � � � �0ln ln exp exp tOD OD K
b
Oª � º§ · � � �¨ ¸« »© ¹¬ ¼

  (1) 271 

where the carrying capacity is K , the maximum growth rate is � �� �exp 1K bP  � , and the lag 272 

time O  is the time taken to achieve the maximum growth rate. 273 

The P  and O  estimated from the above methods are strongly correlated (Pearson’s r=0.80, 274 

p=1.4e-5 for P , and r=0.71, p=3.0e-4 for O ) (Fig. S7). However, the uncertainty in the fitted 275 

parameters appears to be less than the uncertainty in the parameters obtained from the 276 

derivatives, which are limited by the low time-resolution of the experimental data (acquired at an 277 

interval of 15 min). 278 

The growth rate ( P ) and lag time (O ) appear to be statistically independent of each other across 279 

the Adk mutant strains (Spearman U = 0.31, p = 0.15, Fig. 3B). Hence it is conceivable that 280 

selection can act separately on these two traits, which is further illustrated by the different fitness 281 

landscapes observed when projected onto the axis of catalytic capacity (Fig. 2B,C). 282 
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Statistical tests of mutational variation in growth and lag phases: We compare the relative effects 283 

of mutations on growth and lag phases in two ways. First, we calculate the variances in 284 

exponential growth time (reciprocal 1/P of growth rate, proportional to the maximum cell 285 

division time) and lag time; we use growth time rather than growth rate since it must have the 286 

same units (i.e., minutes) as lag time for comparison. These variances tell us how much each 287 

strain’s growth or lag time differs from the average across all strains. We then use the Brown-288 

Forsythe test (since the growth and lag times are not normally distributed) to determine whether 289 

these variances are significantly different. Second, we calculate the mean absolute deviation of 290 

each mutant’s growth and lag times relative to the wild-type values. This tells us the average 291 

change in growth or lag time caused by a mutation. 292 

The strength of selection on the growth or lag phase should be proportional to the difference in 293 

growth or lag time between the two competing strains (Manhart, Adkar, Shakhnovich, 294 

unpublished results). Therefore the variances in traits are proportional to the average selection 295 

coefficient between all pairs of strains for that trait, while the mean absolute deviation relative to 296 

wild-type is proportional to the average selection coefficient between each mutant and the wild-297 

type. The statistical tests above, which determine whether the variances and mean absolute 298 

deviation are significantly different between growth time and lag time, also indicate which trait 299 

is under stronger average selection between the strains. 300 

Quantification of the location of WT on the fitness landscapes: As in previous works from our 301 

lab 5,6 as well as earlier work 16,20 we used the following Michaelis-Menten-like elasticity curve 302 

functions to fit the landscape of growth rate vs catalytic capacity (Fig. 2B): 303 

 Catalytic CapacityRelative Growth Rate
Catalytic Capacity

a
c
�

 
�

  (2) 304 

where, a  is the saturation parameter, and c  is the catalytic capacity at 2a . For a similar 305 

landscape with lag time (Fig. 2C), the reciprocal of Eq. 3 was used in the following form: 306 

 
� �Catalytic capacity

Relative lag time
Catalytic Capacity

b c� �
   (3) 307 

where, b  is the asymptote parameter, and c  is the catalytic capacity at 2b . In both the equations 308 

3 and 4, c  is a characteristic value of  catalytic capacity at which the landscape transitions from 309 
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the plateau to the curved part. Since catalytic capacity is normalized by WT c  serves as a 310 

measure of how close to the cusp the WT on the respective landscapes.  311 

Simulation of binary competition: We simulated the competition of two strains by using the 312 

Gompertz function (Eq. 2) to model the growth of individual strains. The initial population 313 

(OD0) for both strains was equal, and growth ceases when � �0t i
OD OD K6  , where K  is the 314 

carrying capacity. We considered two different values of carrying capacities (5 and 500). We set 315 

1P  and 1O  to values derived experimentally for WT Adk strain (Table S2), while the growth 316 

rates and lag times for the second competing strain were varied randomly across the intervals 317 

0.005 to 0.030 min-1 (for growth rate) and 50 to 300 min (for lag time). 318 

Binary growth competition and quantification: The overnight cultures for individual strains were 319 

grown for 16 hours at 30 °C. These cultures were mixed in 1:1 proportion, diluted to an OD of 320 

0.01 in fresh supplemented M9 media, and then regrown at 37 °C. The samples were drawn at 321 

different time points, and the OD was adjusted to 2.0, either by concentration or dilution. 5ul of 322 

OD 2.0 culture was eventually diluted in 45ul of lysis solution (QuickExtract DNA extraction 323 

solution (Epicentre)) to reach OD 0.2. Genomic DNA extracted from 50ul of OD 0.2 culture was 324 

diluted 5000 times and used as template. The individual strains in the competition were 325 

differentially amplified using allele-specific primers and quantified by a qPCR-based mismatch 326 

amplification mutation assay method 19 using QuantiTect SYBR Green PCR kit (Qiagen). A 150 327 

bp long non-mutagenic amplicon of adk gene was amplified as a reference to quantify total 328 

genomic DNA. The fraction of the competing strains was determined using the following 329 

equation: 330 

 � � � �, ,1 , ,12 t ref t t ref tcompetition pure
c c c c

fraction
� � �

   (4) 331 

where Ct represents threshold cycle of qPCR, ref and 1 are the PCR reactions for amplifying the 332 

reference and the first allele in competition, while “competition” and “pure” represent the 333 

condition of culture.  334 
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Figures: 335 

 336 

Fig 1: Biophysical and intracellular properties. (A) Crystal structure of Adenylate Kinase 337 

from E. coli (PDB ID 4ake28). The core domain is colored in green, while the LID and NMP 338 

domains are shown in white. The CD atoms of active-site residues are shown in pink, and the blue 339 

spheres represent the CD atoms of the 6 buried positions which were mutated in this study. (B) 340 

Histogram showing the distribution of folding free energies for all mutant proteins, as 341 
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determined by isothermal urea denaturation at 25 °C. The stability of WT is marked by a dashed 342 

line. (C) Histogram of the catalytic activity parameter cat Mk K  for all mutants. The dashed line 343 

indicates the WT value. (D) Total intracellular abundance of mutant Adk proteins as a function 344 

of 'G at 37 °C. The abundances are normalized by the WT value. Each data point represents the 345 

mean and error bars are standard deviation over two experiments. The dashed line represents the 346 

fit to the Boltzmann distribution function described in Eq. 1. See related Figs. S1-S5 and Table 347 

S1. 348 

 349 

Fig 2: Traits of population growth. (A) Schematic of estimation of lag time and growth rate. 350 

The representative data points (solid gray circles) were plotted as ln(OD) vs time and was fitted 351 

to a four parameter Gompertz function (Eq. 2) (cyan line). The red line is a tangent at the 352 

inflection point of the function. The slope of the tangent is considered as the growth rate (P) and 353 

the time required to reach the maximum growth rate or the inflection point is taken as the lag 354 

time (O) (vertical dashed line). (B) Growth rate and (C) lag time as functions of catalytic capacity 355 

which is defined as abundance cat Mk Ku . The mutant data is shown in gray circles, whereas red 356 

circles represent the BW27783 strain with varying degrees of overexpression of WT Adk from a 357 

pBAD plasmid. Data for WT is shown in green. The data points represent mean and error bars 358 

represent standard deviation of parameters derived from growth curves of 3 colonies (biological 359 

replicates) in triplicates (9 curves). See related Figs. S6-S10 and Tables S2-S3. The dashed black 360 

line in (B) and (C) represents a fit to a Michaelis-Menten-like function (see Methods for details). 361 

The solid gray arrow indicates the direction of increasing fitness. 362 
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 363 

Fig 3: Binary growth competition. The growth of individual strains was modeled as per 364 

Gompertz equation (Eq. 2). The growth parameters for strain 1 were fixed to those obtained for 365 

WT Adk (dashed gray lines) while those for strain 2 were generated randomly over a wide range 366 

of growth rates (0.005 to 0.030 min-1) and lag times (50 to 250 min). (A) Contour plot showing 367 

fraction of strain 1 (WT) at saturation when the competition is carried out under two different 368 

carrying capacities (red line indicates K=5 while the black line indicates K=500). The dashed 369 

lines indicate neutrality region where both strains have equal proportions at saturation. The areas 370 

below the neutrality line (filled with solid lines) represent the parameter space where strain 2 371 

wins the competition (fraction of strain 2 > 0.5). (B) Scatter plot of growth rate (P) versus lag 372 

time (O). The data points represent the mean and error bars the standard deviation of 6 to 9 373 

measurements (see Table S2). The growth rate and lag time appear to be statistically independent 374 

of each other across the Adk mutant strains (Spearman U = 0.31, p = 0.15). 375 

  376 
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 377 

Fig 4: Growth curves at various nutrient concentration. (A) Growth curves of strains with 378 

WT Adk obtained under varying glucose concentrations in supplemented M9 medium. The fitted 379 

growth curve parameters are shown as functions of glucose concentration: (B) carrying capacity 380 

of ln(OD) as derived from Gompertz fitting, (C) growth rate, and (D) lag time. The growth rates 381 

and lag times are estimated from analysis of growth curve derivatives and are normalized relative 382 

to the respective values at 0.2% glucose concentration. 383 

 384 

Fig 5: Tradeoffs between lag and exponential growth in binary competitions. (A) Fraction of 385 

the first strain as a function of time in simulated binary competitions. We modeled growth of 386 

each strain using the Gompertz 4-parameter equation (Eq. 2) with experimentally measured 387 

growth rate and lag time values. The initial OD for individual strains was assumed to be 0.006 at 388 

the start of competition, and growth was assumed to saturate at OD of 0.6. Despite having 389 

similar growth rates, the fraction of WT in WT + L209I and WT + Y182V competitions was 390 

always above 0.5 owing to the advantage it gained due to shorter lag time (scenario 2 in the text). 391 

L083F and V106H dominate at earlier time points (equivalent to low carrying capacities) due to 392 

their short lag times compared to their respective competitors. However, at longer times (high 393 

carrying capacities) the advantage due to lag is lost due to their lower growth rates. (B, C) 394 
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Experimental validations of the predictions in (A) using qPCR based mismatch amplification 395 

mutation assay (MAMA). The fraction of competing strains was estimated using Eq. 5. The data 396 

points are mean and error bars represent standard deviation of two measurements. See related Fig 397 

S11. The growth rates and lag times for the competing pairs are shown in insets.  398 
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Supplementary Methods 

Mutagenesis and protein purification 

Adenylate kinase (Adk) is encoded by the adk gene, which was cloned under the T7-lac 

promoter in pET28a(+) vector (Invitrogen) between NdeI and XhoI restriction sites. We carried 

out mutagenesis with a pair of 30-35 bp long, partially-complementary primers and the inverse 

PCR technique using KOD hot-start DNA polymerase. The mutations were centered in the 

complementary regions of the primers. The mutagenic plasmids were transformed in E. coli 

DH5α cells for faithful propagation and storage, and in E. coli BL21(DE3) for protein 

overexpression and purification. The His-tagged proteins were purified by Ni-NTA affinity 

chromatography (Qiagen) and subsequently passed through a HiLoad Superdex 75pg column 

(GE). The monomeric peak was collected, concentrated and eventually stored in 10mM 

potassium phosphate buffer (pH 7.2). The concentration of the proteins was measured by BCA 

assay (ThermoScientific) with BSA as standard. 

Biophysical characterization 

Thermal denaturation: We assessed the thermal stability of WT and mutant proteins by 

differential scanning calorimetry (nanoDSC, TA instruments) using 20 µM of protein. The scans 

were carried out from 10 to 90 °C at a scan rate of 90 °C/hr. The thermodynamic parameters 

were derived by fitting the data to a two-state unfolding model using NanoAnalyze (TA 

instruments). We also carried out thermal denaturation using the melt-curve module of BioRad 

CFX96, with Sypro Orange dye as a probe for unfolding as described earlier1. The dye was 

added to the final concentration of 5× in a 25 µl reaction volume containing 4 µM of protein in 

10 mM potassium phosphate buffer (pH 7.2). The data were fit to a standard four-parameter 

sigmoidal equation to obtain apparent melting temperatures. 

Urea denaturation: We carried out isothermal urea denaturation with WT and mutant proteins to 

assess the stability of the proteins to chemical denaturants. We incubated 5 µM of protein for 

~4 hrs at 25 °C with varying concentrations of urea (0-8 M). The urea concentrations were 

estimated by refractive index measurements. The denaturation was monitored by measuring the 

ellipticity at 222 nm using a CD spectrometer (Jasco). The melt data was fitted assuming a model 
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of two-state unfolding with linear free energy as described earlier2,3. The m-value was fixed to 

3300 cal/mol/M for fitting. 

Gel filtration: We assessed the oligomeric status of purified proteins by gel filtration using 50 µg 

of protein on sephadex 75 analytical columns. 

ANS and proteostat binding: We used 12 µM of bisANS for assessing binding to 2 µM of 

protein in 10 mM potassium phosphate buffer (pH 7.2). The excitation and emission wavelengths 

were set to 395 nm and 490 nm, respectively. 2 µM of protein was incubated with 3.5 mM of the 

proteostat dye in 1X assay buffer (Enzo LifeSciences). For this the excitation and emission 

wavelengths were set to 550 and 600 nm, respectively. 

Enzyme activity: We measured the activity of Adk in terms of ADP formation by an end-point 

assay as described earlier4. Briefly, the concentration of AMP was fixed to 500 µM and ATP 

concentration was varied from 0 to 500 µM in an enzymatic reaction. 5 nM of Adk was used to 

initiate the reaction and 500 µM of Ap5A was used for quenching at 20, 40, and 60 second time 

points. The amount of ADP formed was measured by LDH-Pyruvate kinase-coupled reaction 

and the kinetic parameters were derived by fitting the data to the Michaelis-Menten equation. 

Adk overexpression: The adk gene was cloned in a pBAD plasmid and transformed in the E. coli 

BW27783 strain (CGSC#12119). This strain constitutively expresses the arabinose transporter 

(araE) which enables uniform uptake of arabinose. The cells were induced with increasing 

concentrations of arabinose from 0 to 0.05%. 

Intracellular protein abundance: Cells were grown in supplemented M9 medium for 4 hours at 

37°C, harvested and subsequently lysed with 1× BugBuster (Novagen) and 25 units/ml of 

Benzonase. Total amount of proteins in cell lysate was estimated by BCA assay. The specific 

fraction of Adk was determined by SDS-PAGE followed by western blot using rabbit anti-Adk 

polyclonal antibodies (custom- raised by Pacific Immunology). 

Estimation of viable cells in saturating culture: The overnight culture was grown in 

supplemented M9 medium for 16 hours at 30 °C and the proportion of live:dead cells was 

measured using Live/Dead BacLight Bacterial Viability Kits (Molecular Probes) according to the 

manufacturer’s instructions. Briefly, 1×108 cells (in a volume of 1ml) were mixed with 3ul of a 
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1:1 proportion of Syto9 dye and Propidium Iodide (PI).  The mixture was incubated in the dark 

for 15 minutes, following which the fluorescence was measured at 530nm and 630nm. Syto9 dye 

stains live cells and emits fluorescence at 530nm (green), while PI stains dead cells and can be 

detected at 630nm (red). The ratio of fluorescence values at 530nm:630nm corresponds to the 

proportion of live:dead cells in that sample which was eventually used to estimate the percentage 

of live cells in a sample, according to the manufacturer’s instructions. An exponentially growing 

culture (considered as 100% live) and cells treated with 70% ethanol for 1 hour (considered 

100% dead) were mixed in different known proportions, and their 530:630nm ratio was used to 

generate a standard curve. 

1 Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect 
ligand interactions that promote protein stability. Nat Protoc 2, 2212-2221, 
doi:10.1038/nprot.2007.321 (2007). 

2 Chen, B. L. & Schellman, J. A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. 
Equilibrium studies. Biochemistry 28, 685-691, doi:10.1021/bi00428a041 (1989). 

3 Schellman, J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem 16, 
115-137, doi:10.1146/annurev.bb.16.060187.000555 (1987). 

4 Pena, M. I., Davlieva, M., Bennett, M. R., Olson, J. S. & Shamoo, Y. Evolutionary fates within a 
microbial population highlight an essential role for protein folding during natural selection. Mol 
Syst Biol 6, 387, doi:10.1038/msb.2010.43 (2010). 
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Fig S1: Thermal unfolding monitored by Differential Scanning Calorimetry (DSC) for WT 

(black trace) and 20 different Adk mutant proteins (red trace). The molar heat capacity (Cp) is 

shown as a function of temperature. The scan rate was 90 °C/hr. The data was fitted to a two-

state thermal unfolding model to derive the thermodynamic parameters. 
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Fig S2: Isothermal urea denaturation curves at 25 °C for WT (black dots) and mutant Adk 

proteins (red dots). The fraction unfolded (Fu) is plotted as a function of denaturant 

concentration. Protein denaturation was monitored by recording the CD signal at 222 nm. The 

data was fit to a two-state unfolding model. 
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Fig S3: Analytical gel-filtration profile of WT and 20 mutant Adk proteins on a Superdex-75 

column at room-temperature. The absorbance at 280 nm is shown as a function of elution 

volume. For comparison all the monomeric peaks were normalized to 1. WT Adk along with 

most other mutant proteins elutes at the expected position for a monomer. Exceptions were 

V106H, V106N and V106W, where additional peaks appear at much higher molecular weights. 
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Fig S4: Aggregation propensity and molten-globule states of mutant proteins. Bar plots represent 

the extent of ProteoStat and ANS binding to WT and mutant Adk proteins. The proteins on the x-

axis are arranged in decreasing order of stability from left to right. 
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Fig S5: Enzyme activity of Adk mutants at 25 °C measured as described in SI Text. The initial 

velocity, shown as a function of ATP concentration, was calculated as the amount of ADP 

produced per minute by 1 nmol of Adenylate Kinase. The concentration of AMP in all 

experiments was fixed to 500 µM. The data (gray circles) was fitted using the Michaelis-Menten 

equation of enzyme activity to extract relevant parameters (fitted line in red). 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/088013doi: bioRxiv preprint 

https://doi.org/10.1101/088013


 

Fig S6: Representative growth curves of (A) WT, (B) A093I, and (C) L209S strains. Each 

growth curve is shown as ln(OD) vs time plot. The experimental data is shown in gray circles 

and the Gompertz fit is shown in solid red line. The strains were chosen to illustrate the quality 

of the fit across different range of growth rates and lag times (see Table S2 for growth 

parameters). 
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Fig S7: Correlation between growth parameters derived from Gompertz fitting and maximum-

derivative method. The parameters derived from both the methods correlate very well as 

indicated by Pearson’s correlation parameters (r and p-values). The data points represent mean 

and error bars are standard deviation of 6 or 9 measurements (see Table S2). 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/088013doi: bioRxiv preprint 

https://doi.org/10.1101/088013


 

Fig S8: Traits of population growth. (A) Growth rates and (B) lag time obtained from analysis of 

growth curve derivatives shown as a function of catalytic capacity which is defined as 

abundance cat Mk K× . The mutant data is shown in gray circles, whereas red circles represent the 

BW27783 strain with varying degrees of overexpression of WT Adk from a pBAD plasmid. 

Data for WT is shown in green. Fig 2 is an equivalent figure with growth rate and lag times 

obtained after fitting the raw data with Gompertz equation (Eq. 2). 
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Fig S9: Percentage of live or viable cells of WT and mutant Adk strains at saturation (16 hours 

of growth) versus their population lag time. The cultures were grown overnight at 30 °C, and 

then stained using fluorescent dyes Syto9 (specific for live cells) and propidium iodide (specific 

for dead cells). The data points are mean and error bars represent standard deviation of 2 

biological replicates. WT Adk strain is shown in green. 
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Fig S10: Scatter plots of growth parameters (carrying capacity, growth rate and lag times) and 

molecular and cellular properties of Adk. Parameters were obtained using (A) Gompertz fit and 

(C) analysis of growth curve derivatives. Panels (B) and (D) show Spearman correlation 

coefficients (ρ) and p-values for each of the sub-plots in panels (A) and (C) respectively. The 

highest correlation values in each panel are highlighted in yellow. 
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Fig S11: Schematic representation of binary growth competition experiments and estimation of 

relative proportion of competing strains. The strains (1) and (2) are mixed in 1:1 proportion and 

were grown at 37 °C. Samples were drawn at different time points, normalized for OD, and 

genomic DNA was extracted. The proportions of individual strains were estimated by a qPCR 

method employing mismatch amplification mutation assay method (see Methods). We designed 

a set of primers to differentially amplify the strains by matching the 3’-end of one of the primers 

to the site of mutation and using Taq DNA polymerase for amplification. 
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Table S1: Structural and biophysical parameters

adk strain SC acca

(%)
Residue depth (Å)

Fraction of
WT in MSA

Fraction of
mutant in MSAb

Tm (DSC)
(°C)

Tm (TFA)c

(°C)
∆G

(kcal/mol)
kcat

d

(min-1)
KM

e

(µM)

kcat/KM

(µM-1min-1)

WT -- -- -- -- 55.9 53.8 -11.9 8.05 80.58 9.99E-02
L082F 0.0 8.8 0.57 0.00 49.2 47.4 -8.7 14.23 94.86 1.50E-01
L082V 0.0 8.8 0.57 0.14 55.7 53.2 -11.3 n.d.f n.d.f n.d.f

L083A 0.1 9.0 0.70 0.00 48.5 46.9 -8.9 6.10 118.73 5.13E-02
L083F 0.1 9.0 0.70 0.60 n.d.f 54.2 -10.8 n.d.f n.d.f n.d.f

L083I 0.1 9.0 0.70 0.23 52.4 50.7 -10.4 9.70 274.80 3.53E-02
L083T 0.1 9.0 0.70 0.00 49.4 49.3 -9.9 8.05 96.55 8.34E-02
A093F 0.0 5.9 0.85 0.00 49.4 47.2 -9.1 7.05 123.83 5.69E-02
A093I 0.0 5.9 0.85 0.00 51.3 49.7 -9.9 7.34 241.75 3.04E-02
A093L 0.0 5.9 0.85 0.07 50.6 47.9 -9.6 8.75 178.05 4.91E-02
A093Y 0.0 5.9 0.85 0.00 51.2 49.4 -9.3 10.61 256.23 4.14E-02
V106A 0.0 7.4 0.74 0.38 49.7 47.3 -9.0 4.19 41.78 1.00E-01
V106H 0.0 7.4 0.74 0.00 43.2 41.2 -6.6 12.74 206.54 6.17E-02
V106L 0.0 7.4 0.74 0.04 50.1 48.5 -8.9 8.10 108.60 7.46E-02
V106N 0.0 7.4 0.74 0.00 39.0 37.9 -4.8 12.07 158.06 7.64E-02

V106W 0.0 7.4 0.74 0.04 45.0 43.0 -7.3 13.22 192.05 6.88E-02
Y182F 7.2 6.3 0.86 0.14 55.4 53.8 -10.5 15.00 210.25 7.13E-02
Y182V 7.2 6.3 0.86 0.00 45.7 46.2 -8.1 5.01 261.53 1.92E-02
L209A 0.0 7.0 0.23 0.08 45.0 44.3 -8.4 2.30 66.94 3.43E-02
L209F 0.0 7.0 0.23 0.01 51.5 51.0 -10.5 7.00 208.17 3.36E-02
L209Ig 0.0 7.0 0.23 0.58 56.1 55.5 -12.9 4.66 88.82 5.25E-02
L209S 0.0 7.0 0.23 0.00 43.2 42.4 -7.4 3.57 42.55 8.38E-02

a % sidechain accessibility calculated using coordinates of pdb 4ake
b fraction in multiple sequence alignment when WT amino acid is excluded
c melting temperture from thermofluor assay
d kcat for ADP formation
e KM for ATP
f not determined
g the only case in this dataset where fraction of mutant amino acid was greater that WT amino acid in MSA
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Table S2: Intracellular abundance and growth parameters of adk mutants

adk strain
Carrying 

capacity, Ka s.d. in Kb Growth rate, µa

(min-1)
s.d. in µb Lag time, λa,c

(min)
s.d. in λb Abundanced s.d. in abundancee

WT 29.9 3.0 0.0234 2.85E-04 146.4 1.7 1.00 0.00
L082F 28.7 2.9 0.0233 2.40E-04 146.7 3.0 0.79 0.05
L082V 24.4 0.8 0.0229 2.60E-04 158.2 2.1 n.d.f n.d.f

L083A 22.6 0.8 0.0228 2.22E-04 162.0 2.1 0.90 0.08
L083Fg 27.3 1.3 0.0182 2.48E-04 152.9 0.6 1.19 0.10

L083I 23.4 0.9 0.0228 3.30E-04 163.6 3.3 0.91 0.02
L083T 22.9 1.0 0.0231 4.72E-04 164.8 2.9 0.89 0.03
A093F 27.6 4.3 0.0235 4.37E-04 152.2 4.7 0.93 0.03
A093Ig 25.7 0.5 0.0244 3.69E-04 187.2 7.3 0.82 0.07
A093L 24.0 1.0 0.0232 3.44E-04 165.6 5.3 0.80 0.13
A093Y 24.0 1.1 0.0237 4.90E-04 171.7 6.1 0.75 0.23
V106A 25.0 0.5 0.0238 3.28E-04 170.4 5.2 0.95 0.21

V106Hg 24.5 2.2 0.0197 2.68E-04 150.9 4.1 0.11 0.10
V106L 24.4 2.2 0.0236 3.08E-04 167.2 6.6 0.76 0.05

V106N 5.9 0.3 0.0137 6.85E-04 305.8 20.0 0.01 0.00
V106W 23.4 1.0 0.0242 4.48E-04 179.7 2.8 0.20 0.01

Y182F 24.0 1.3 0.0239 2.15E-04 170.4 2.8 0.68 0.09
Y182V 23.7 1.1 0.0236 3.08E-04 174.6 1.0 0.48 0.08
L209A 24.5 1.3 0.0234 7.12E-04 169.9 2.3 0.46 0.07
L209F 30.5 1.8 0.0238 3.54E-04 155.7 2.7 0.68 0.05
L209I 25.8 1.2 0.0241 1.27E-04 169.1 4.0 0.63 0.14
L209S 20.9 1.5 0.0175 1.15E-03 174.4 4.8 0.34 0.07

a parameters derived by fitting Gompertz equation to ln(OD) vs time at 37 C
b standard deviation derived from 9 replicates (triplicates of 3 biological replicates)
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation derived 2 biological replicates
f not determined
g growth parameters derived for 6 replicates (triplicates of 2 biological replicates)
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Table S3: Intracellular abundance and growth parameters of WT adk overexpression from pBAD plasmid in E. coli  BW27783 strain

arabinose 
concentration

(%)

Carrying capacity, 
Ka s.d. in Kb Growth rate, µa

(min-1)
s.d. in µb Lag time, λa,c

(min)
s.d. in λb Abundanced s.d. in abundancee

no plasmid 29.5 2.5 0.0195 5.10E-04 126.7 1.0 1.00 0.10
0.00E+00 32.0 0.5 0.0195 2.00E-04 127.2 0.7 4.20 0.42
3.05E-06 30.9 1.8 0.0191 2.00E-04 127.2 2.0 13.73 1.37
1.22E-05 31.3 1.0 0.0197 2.00E-04 125.0 0.4 5.39 0.54
4.88E-05 27.1 1.0 0.0199 2.65E-04 135.7 1.1 21.55 2.15
1.95E-04 32.7 0.9 0.0191 1.00E-04 127.5 1.2 91.27 9.12
7.81E-04 31.6 2.5 0.0192 2.52E-04 127.0 2.1 205.31 20.51
3.13E-03 32.6 1.6 0.0192 4.73E-04 126.1 1.4 250.39 25.02
5.00E-02 28.4 3.1 0.0195 3.61E-04 127.1 2.5 278.69 27.84

a parameters derived by fitting Gompertz equation to ln(OD) vs time at 37 C
b standard deviation of 3 replicates
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation of 2 biological replicates
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