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Abstract	
Genomic rearrangements and associated copy number 
changes are important drivers in cancer as they can alter the 
expression of oncogenes and tumor suppressors, create 
gene fusions, and misregulate gene expression. Here we 
present SplitThreader (http://splitthreader.com), an open-
source interactive web application for analysis and 
visualization of genomic rearrangements and copy number 
variation in cancer genomes. SplitThreader constructs a 
sequence graph of genomic rearrangements in the sample 
and uses a priority queue breadth-first search algorithm on 
the graph to search for novel interactions. This is applied to 
detect gene fusions and other novel sequences, as well as to 
evaluate distances in the rearranged genome between any 
genomic regions of interest, especially the repositioning of 
regulatory elements and their target genes. SplitThreader 
also analyzes each variant to categorize it by its relation to 
other variants and by its copy number concordance. This 
identifies balanced translocations, identifies simple and 
complex variants, and suggests likely false positives when 
copy number is not concordant across a candidate 
breakpoint. It also provides explanations when multiple 
variants affect the copy number state and obscure the 
contribution of a single variant, such as a deletion within a 
region that is overall amplified. Together, these categories 
triage the variants into groups and provide a starting point 
for further systematic analysis and manual curation. To 
demonstrate its utility, we apply SplitThreader to three 
cancer cell lines, MCF-7 and A549 with Illumina paired-
end sequencing, and SK-BR-3, with long-read PacBio 
sequencing. Using SplitThreader, we examine the genomic 
rearrangements responsible for previously observed gene 
fusions in SK-BR-3 and MCF-7, and discover many of the 
fusions involved a complex series of multiple genomic 
rearrangements. We also find notable differences in the 
types of variants between the three cell lines, in particular a 
much higher proportion of reciprocal variants in SK-BR-3 
and a distinct clustering of interchromosomal variants in 
SK-BR-3 and MCF-7 that is absent in A549.  

Introduction	
Genomic instability is one of the hallmarks of cancer, 
resulting in widespread copy number changes and structural 
variants including chromosome-scale rearrangements1,2. 
Genomic rearrangements have been previously identified as 
drivers in some cancers, but they are not well understood 
and are difficult to detect and characterize. Genomic 
rearrangements include large structural variants such as 
chromosomal fusions, translocations, deletions, inversions, 
and duplications3,4, and here we define them as being any 
novel adjacencies of sequences more than 10 kbp apart in 
the genome. The terms variant, rearrangement, and long-
range structural variant are all used here interchangeably to 
refer to structural variants that connect sequences that used 
to be more than 10 kbp apart. These long-range variants 
often accompany major copy number variations, including 
cancer-driving amplification of oncogenes such as AKT2, 
ERBB2, and MYC, each of which have been found to 
initiate or exacerbate cancer5-7.  

Copy number variants and gene fusions are common 
drivers in cancer, and both of which are linked to 
rearrangements8,9. While commonly analyzed separately 
using read depth or split-read type analyses, copy number 
changes and structural rearrangements are highly 
interrelated. For instance, a large deletion manifests as both 
a decrease in copy number and a link between the two 
sequences on either side of the deletion. Gene fusions are 
also caused by rearrangements, and have a profound 
importance in cancer biology. For example, the first gene 
fusion discovered in cancer was BCR/ABL, which resulted 
from a fusion of chromosomes 9 and 22 and was found to 
be a driving mutation in chronic myelogenous leukemia10. 
However, the available algorithms for identifying gene 
fusions do not have perfect specificity, and require a joint 
analysis of genomic and transcriptomic data to correctly 
analyze. 

With the advent of high-throughput sequencing, it has 
become possible to detect rearrangement variants in cancer 
genomes, but the sheer complexity of rearrangements, 
which often include adjacencies between distant regions of 
a chromosome or even between unrelated chromosomes, 
makes them difficult to study. Even the type of a variant 
can be obscured by other overlapping variants, which could 
have moved or flipped its breakpoints before or after the 
variant occurred. This occurs because variant types are 
determined by paired-end and split-read variant callers by 
the strands of the reads at two breakpoints, meaning the 
direction in which split reads map at each breakpoint11,12. 
For instance, if a deletion occurs on the edge of an inverted 
sequence, one breakpoint of the deletion will be flipped, 
resulting in the deletion (+-) itself being called as an 
inversion (++), in addition to the original inversion. It is 
also a challenge to consider the total impact of these 
variants rearranging the genome as genes, regulatory 
elements, and all other genomic features may be 
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repositioned relative to each other. Rearrangement variant 
calls carry some hints about the new context of these 
elements, but there are few tools for detailed investigations 
of these rearrangements across the genome, let alone 
analyzing their impact on chromosomal context of genes 
and regulatory elements.  

We present our new open-source SplitThreader system, 
which uses a set of novel algorithms to explore, analyze, 
and search through rearrangements in cancer genomes. We 
demonstrate the application of SplitThreader to three 
different cancer cell lines with whole-genome sequencing: 
publicly available Illumina paired-end sequencing in 
A54913 and MCF-714 analyzed using the LUMPY 
algorithm, and PacBio long-read sequencing in SK-BR-3 
(Nattestad et al, in preparation) analyzed using the Sniffles 
algorithm (Sedlazeck et al, in preparation).  

As shown in Figure 1, these three cell lines all contain 
hundreds of major rearrangements, many of which are part 
of complex sets of overlapping variants (Supplementary 
Note 3). We use SplitThreader to search for gene fusions, 
analyze copy number concordance, and investigate the 
various types of rearrangements in these three cancer cell 
lines.  

Searching	through	the	landscape	of	rearrangements	
Rearrangements in a cancer genome cause genomic features 
to be moved, reordered, or otherwise create a change in 

genomic context. For instance, the translocation, deletion, 
or any other repositioning of enhancers relative to a gene 
can be instrumental in defining the gene’s regulatory 
environment. Indeed, the in vitro insertion of a putative 
enhancer close to a gene was the method by which the 
enhancer was first discovered as a regulatory feature that 
can increase gene expression15.  

 In a complex set of hundreds of rearrangements taking 
place in some cancer genomes, systematically measuring 
and analyzing the movement of genes and regulatory 
features can be a challenge. To address this, SplitThreader 
builds a specialized sequence graph from the 
rearrangements in a genome, which encodes the positions 
of novel adjacencies introduced from the structural 
variations. Once defined, SplitThreader traverses the graph 
to analyze and calculate the new, post-rearrangement 
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Figure 1 | Circos plots showing genomic rearrangements in the cell lines SK-BR-3 (a), A549 (b), and MCF-7 (c). 

 
Figure 2 | The structure of a SplitThreader graph representing a 
genome with two chromosomes (green and orange) and two 
rearrangements, one deletion and one inter-chromosomal 
translocation. 
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distances between genomic intervals in the sample. This 
graph search can be applied to many contexts, such as 
identifying the closest enhancer for each gene, the closest 
ChIP-seq peak to each transcriptional start site, or the 
closest evolutionarily conserved sequence to each insulator, 
to name a few possibilities.   

Formally, the SplitThreader graph is composed of 
nodes representing sequences of DNA from a reference 
genome spanning between rearrangement breakpoints. The 
nodes have separate start and end ports so they can be read 
in either the forward or reverse complement directions: 
paths spanning from start to end will include the forward 
strand sequence, while paths spanning from end to start will  
include the reverse complement sequence. Edges in the 
graph are used to represent both rearrangement variants and 
non-rearranged reference-spanning connections between 

sequences. The edges are connected at each node to either 
the start or end port. The graph is initially constructed from 
a reference genome by creating a node for each 
chromosome. These nodes are then further split into 
separate nodes at all rearrangement breakpoints, with the 
appropriate edges introduced to maintain the original 
structure of the chromosome as well as the novel 
adjacencies created by rearrangements. SplitThreader 
always keeps the original reference allele edges because 
even if a variant-caller reports a homozygous variant, there 
can still be a low copy-number reference allele that is being 
outweighed by many copies of the variant allele. See the 
diagram in Figure 2 for an example of a small 
SplitThreader graph created from two chromosomes with 
two structural variants. The graph captures the possibilities 
for how the genomic sequence can be read, requiring that a 
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Figure 3 | Selected gene fusions in MCF-7 and SK-BR-3 with genomic variant paths identified by SplitThreader. Segmented copy 
number profiles for up to two chromosomes are displayed as mirrored bar charts zoomed to the relevant regions. Variants are shown as 
connecting lines between the copy number profiles, and variants in the fusion path are shown as thicker black lines. The copy number 
profiles shown are segmented. (a) BCAS4-BCAS3 two-hop gene fusion gene fusion in MCF-7.  (b) ARFGEF2-SULF2 gene fusion in 
MCF-7.  (c) CYTH1-EIF3H two-hop gene fusion in SK-BR-3.  (d) CPNE1-PHF20-PREX1 two-hop gene fusion in SK-BR-3.  
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node entered on one side must be exited on the opposite 
end, representing reading the sequence. This graph can then 
be traversed to calculate post-rearrangement distances 
between genomic intervals or find the closest genomic 
feature among a set of possibilities.  

To perform a graph search, user specified target 
intervals, such as the coordinates of genes, enhancers, or 
other regulatory features, are marked in the graph, and then 
the ports for the starting intervals are added to a priority 
queue keyed by the genomic distance traversed. 
SplitThreader then uses the priority queue to perform a 
breadth-first search to find the shortest distance to a marked 
target port using a sequence graph-adapted implementation  
of the well-known Dijkstra’s algorithm. See Methods and 
Supplementary Note 1 for a full description and diagrams 
of graph construction and priority queue breadth-first 
search. This general method allows users to find the 
shortest base pair distances between any set of intervals 
through the landscape of rearrangements in a genome.  

Finding	rearrangements	responsible	for	gene	fusions	
An important application of the SplitThreader graph search 
is to confirm and analyze gene fusions. RNA sequencing or 
other transcriptome evidence can provide a set of putative 
gene fusions, although the available methods often produce 
many false positives16. For this reason, gene fusion studies 

using RNA-seq often use PCR validation to confirm a 
transcriptome link between fusion genes17,18. When whole-
genome sequencing is available, it is possible to look for 
variants connecting the genes in the genome that were 
observed to be fused in the transcriptome, in a more high-
throughput way than individual PCR validation. This can 
be done by manually looking for variants intersecting both 
genes, using genome arithmetic tools such as BEDTools 
pair-to-pair19, or using a dedicated fusion finder like 
BreakTrans18. However, there are many scenarios of gene 
fusions that have genomic evidence, yet their genomic 
evidence could not be found using these methods. In these 
cases there is no single variant that intersects both genes but 
instead the highly rearranged cancer genomes have “two-
hop” (or greater) gene fusions, where the corresponding 
genomic regions are not directly fused to each other, but 
instead require passing through a third (or more) genomic 
region18,20. For example, within the SK-BR-3 breast cancer 
cell line, there are two examples of two-hop gene fusions.  

Even in these complex cases, SplitThreader can be 
used to search for genomic evidence of each putative gene 
fusion by searching for the shortest and lowest variant-
count paths that connects the two genes in the 
rearrangement graph. Searching for genomic evidence of 
gene fusions is a special case of the SplitThreader graph 
search. By marking the ports near the first gene as the 

 
Figure 4 | The variant categorization matrix with diagrams representing the intersections of the four variant neighborhood categories with 
the four copy number concordance categories. 
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starting points and the ports near the second gene as the 
target end-points, the priority queue breadth-first search 
produces the shortest path in base pairs connecting the two 
genes. From previous literature, we identified 11 gene 
fusions in SK-BR-3 and 3 in MCF-7, all of which had been 
validated by PCR17,18. Using SplitThreader, we found 
genomic evidence for 10 of 11 in SK-BR-3, two of which 
are two-hop gene fusions, and from MCF-7, we found 
genomic paths for all three. As a negative control, 
SplitThreader correctly finds no EML4-ALK gene fusion in 
A549, which has been used in studies of NSCLC as a 
negative control for this fusion. Figure 3 shows a selection 
of gene fusions with genomic paths found by SplitThreader, 
including both of the two-hop gene fusions in SK-BR-3, 
and Supplementary Note 2 shows all gene fusions in 
detail.  

Variant	 neighborhood	and	 copy	 number	 concordance	
analysis	
Copy number changes are an extremely important form of 
variation in cancer genomes8, and their associated 
rearrangements give further insight into how these variants 
occurred. By combining copy number data and 
rearrangement variant calls from sequencing, SplitThreader 
can find the underlying rearrangements responsible for 
these copy number changes. In SplitThreader, each 
rearrangement variant is categorized by its copy number 

concordance (matching, partial, non-matching, or neutral) 
and variant neighborhood (reciprocal, simple, solo, or 
crowded). Diagrams representing each of the variant 
neighborhood categories intersected with each of the copy 
number concordance categories are shown in figure 4. 

Simple variants are defined by a lack of variants 
between their two breakpoints, which makes it likely that 
the type is robust and has not been obscured by 
rearrangements involving its breakpoints. Solo variants are 
at least 100 kbp away from other variants at both 
breakpoints, making the presence or absence of matching 
copy number changes more reliable to measure and 
attribute to that single variant. A reciprocal variant is a 
variant paired with another variant with each of its two 
breakpoints within 10 kbp of the breakpoints of the partner 
variant, and their strands are exactly the opposite, making 
the pair copy number neutral. Reciprocal variants can result 
from such events as translocations, mobile element 
insertions, and inversions. Crowded variants fit into none of 
the other categories, and therefore include most of the 
variants in complex, crowded, and overlapping regions.  

These variant neighborhood categories define 
expectations for copy number concordance and classify 
variants for possible further analysis, such as statistics on 
manual curation and experimental validation. See Methods 
for details on how the categories are assigned. The 
intersection of the variant neighborhood and copy number 

	
Figure 5 | This screenshot of the MCF-7 results in SplitThreader shows the main visualization tab including a circos plot with 
rearrangements between all chromosomes, the copy number profiles of two selected chromosomes with rearrangements shown as 
connecting lines between them, and a panel with tools. Results of the general graph search, gene fusion search, and variant 
categorization analyses can all be inspected in this window. 
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concordance categorization schemes is especially important 
to prioritize manual curation. For instance, while reciprocal 
variants are expected to be copy number neutral, solo 
variants that are copy number neutral may be false 
positives. See Supplementary Note 3 for examples of all 
variant neighborhood types and copy number concordance 
types, along with a detailed breakdown of how the category 
intersections can be interpreted. This categorization 
provides an overview of variant types and how copy 
number and rearrangements agree in a sample.  

SplitThreader	is	an	interactive	web	application	
All of the features discussed are accessible through the 
main SplitThreader web application available at 
http://splitthreader.com, which is open-source and can also 
be deployed locally from 
http://github.com/marianattestad/splitthreader. This 
includes copy number segmentation, categorization by copy 
number concordance versus variant neighborhood, and 
interactive queries through the nearest feature search and 
gene fusion search. Variants are shown in a table that can 
be filtered and sorted interactively. Variant counts are 
shown in a matrix of copy number concordance category 
versus variant neighborhood category, which can be used to 
inspect each variant in the category and even export any 
filtered subset of variants to a CSV file or to Ribbon21 for 
alignment visualization as part of further analysis of the 
variant calls. Gene fusion and graph search paths are found 
in real time and the results are immediately displayed in a 
table that can be used to inspect the rearrangements 
involved.  

SplitThreader performs graph search, gene fusion 
finding, and categorization analysis on the fly in the 
browser, making it possible to use these features 
interactively to explore the data and the results. The 
visualization is created using D322, a JavaScript library for 
linking data to visual elements in a web application. The 
visualization component in SplitThreader enables an 
overview of the raw data (Figure 5) and provides instant 
context for the results of the more complex algorithms such 
as graph search and gene fusion detection.  

Discussion	
SplitThreader provides a set of novel algorithms for 
searching through the landscape of rearrangements to 
calculate the new distances between genomic features, 
discover novel gene fusions, and explore how variants 
cluster together or mark changes in copy number. For 
example, within the cancer samples we analyze here we 
find that the SK-BR-3 and MCF-7 breast cancer cell lines 
both contain a few major clusters of intra- and inter-
chromosomal variants, often stretching 5-20 Mb and 
containing anywhere from 5 to more than 100 variants. 
MCF-7 has three regions on chromosomes 1, 17, and 20 
that each contain at least 20 variants connecting to the other 
two chromosomes. SK-BR-3 has a large region on 

chromosome 8 that contains 134 intrachromosomal and 66 
interchromosomal translocations, 22 of which are 
connected to a cluster on chromosome 5. Using the variant 
neighborhood analysis, we also found that SK-BR-3 had a 
far higher proportion of reciprocal variants, 16.8% versus 
just 5.0% for MCF-7 and 3.1% for A549. Whether long-
read sequencing has a higher sensitivity for reciprocal 
variants or SK-BR-3 actually more of these than the other 
two cell lines remains to be seen as more long-read 
sequencing is done in cancer in the coming years.  

Categorization of variants based on the presence and 
relationship to nearby variants, known as variant 
neighborhood analysis, is an important tool for analyzing 
the qualities and types of variants. Copy number 
concordance analysis, especially when combined with 
variant neighborhood analysis, explains how 
rearrangements are supported by evidence from copy 
number variation. The intersection of these two 
categorization schemes provides new insights into how 
rearrangements may be disrupting normal gene regulation. 
The analyses also provide a strong starting point for manual 
curation and experimental validation, suggesting 
combinations of categories that are more or less likely to be 
true positives. To contextualize the results of these 
analyses, SplitThreader can be used to inspect each variant 
or path in the visualizer, showing copy number, 
rearrangements, and genes nearby. This combination of 
path-finding algorithms, manual curation features, and 
intuitive visualization makes SplitThreader an invaluable 
tool for inspecting rearrangements in a cancer genome.  

Methods	
SplitThreader is comprised of one major data structure, the 
SplitThreader graph, and a core algorithm for traversing 
and searching through the graph, a specialized priority 
queue breadth-first search. In addition, SplitThreader uses 
related algorithms that for each variant determine its copy 
number concordance category and its variant neighborhood 
category. Here we discuss constructing the SplitThreader 
graph, performing priority queue breadth-first search across 
the graph, and evaluating nearest feature and gene fusion 
matches from the output of this algorithm. Then we explain 
in detail the methods for categorizing variants by their copy 
number concordance and their variant neighborhood.  

Constructing	the	SplitThreader	graph	
Nodes represent genomic sequences and edges represent 
connections between these sequences in the form of 
variants or original sequence in the reference. Each node 
has two ports, representing the start and end points of the 
sequence, and when traversing the graph, entering through 
one port requires exiting through the opposite port. If the 
start port is entered and the end port exited, this represents 
reading the sequence in the forward direction. If the end 
port is entered and the start port is exited, then this 
represents reading the sequence in the reverse complement 
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direction. The graph is constructed as shown in 
Supplementary Figure 1 where chromosomes are cut into 
nodes at the breakpoints of the variants and reconnected 
using edges to span the original reference and to represent 
the variants with the appropriate directionality to match the 
strandedness of the variants.  

Priority	queue	breadth-first	search	
SplitThreader uses a priority-queue breadth-first search 
strategy to find connections from a set of source intervals to 
a set of target intervals. A priority queue is used to 
prioritize shorter base-pair distance paths from source to 
target, such that the shortest base-pair distance solution is 
found first. The strategy consists of two preparatory steps 
followed by iteratively pulling from the priority queue until 
a solution is found.   

First, the target locations are marked on the graph. The 
target intervals are overlaid on the graph to identify which 
nodes they overlap, and then each port on the overlapping 
nodes are marked with the ID of and distance to the target 
interval. If the port is inside the target interval, this distance 
will be zero, otherwise it is the distance in base pairs from 
the port to the start of the target interval within that node. 
The ID of the target interval is relevant for the nearest 
feature search where multiple features are marked as 
targets, and it is important to know which of these was 
found.  

Second, the source locations are found and recorded 
with the same distance calculations as for the target ports, 
but now these are not marked onto the graph but instead are 
added to the priority queue where priority equals the 
distance from the source interval.  

Third, an item is popped off the priority queue 
representing a port and its recorded path and cumulative 
distance so far, and the edges from the port are traversed. 
On the opposite side of each edge, we travel through the 
node (representing reading the sequence), and then add this 
port into the priority queue, recording its distance as the 
previous distance plus the length of the node we just 
traveled across. If the port we are adding to the priority 
queue is marked as a target, we add a target tag and record 
the distance as the cumulative distance so far plus the 
original target marker distance (recorded in the first step), 
and we add this to the priority queue. We repeat this third 
step, popping another port off the priority queue each time, 
until we pop off a target tag instead of a port, and then we 
have found the shortest distance from the source to the 
target.  

This process finds the shortest path from any set of 
source intervals to any set of target intervals across the 
SplitThreader path. The strategy is outlined in 
Supplementary Figure 2.  

Evaluating	graph	search	and	gene	fusion	matches	
This priority queue breadth first search (PQ BFS) is used in 
two different applications, a very flexible general graph 

search between any bed file intervals or genes, and a 
specialized gene fusion search.  

The general graph search runs PQ BFS from each item 
in the source column against all items in the target column. 
A BED file of features can be uploaded, such as regulatory 
elements or repeats, which can be used as either the source, 
the target, or both (for instance finding the closest 
transcriptional start site for each enhancer).  Thus it would 
be possible to use genes as the source and select only the 
lincRNAs, and then as the target upload a BED file 
containing regulatory features and select only the 
enhancers. Then running the calculation would produce for 
every lincRNA the path to the nearest enhancer.  

Gene fusion search is done between any two genes in 
the annotation by name, so users can upload a list of paired 
gene names or enter pairs of gene names manually. PQ BFS 
is performed from a single source interval (gene 1) to a 
single target interval (gene 2), but this time the search is 
extended as far as 1 Mb distance even if matches are found 
earlier. All the matches are produced, and the best result by 
distance is reported for each number of variants. For 
example, if a 2-variant path is found with a distance of 152 
kbp, the shortest 1-variant path found will also be reported, 
even if the distance is greater than 152 kbp.  

Copy	number	segmentation	
SplitThreader starts its analysis with read alignment 
coverage information in 10 kbp bins. This can be generated 
from a sorted BAM file using a script called Copycat 
available on GitHub at 
https://github.com/marianattestad/copycat, which uses 
BEDTools19 genomecov to generate coverage for every 
base pair and then calculates averages into 10 kbp bins. The 
output of Copycat can be uploaded to SplitThreader, which 
then performs copy number segmentation using code 
adapted from Ginkgo23 that performs circular binary 
segmentation.  

Copy	number	concordance	analysis	
Whether a given rearrangement variant has a matching 
copy number change is informative for determining the 
accuracy of the variant call. The variant’s neighborhood of 
other variants influences whether a missing copy number 
change is indicative of a likely false positive or is consistent 
with expectations. For instance, reciprocal variants are 
expected to be copy number neutral, and variants close to 
each other can obscure the individual copy number changes 
produced by each variant. Because of this, copy number 
concordance analysis and variant neighborhood analysis 
should always be considered together. Here we outline the 
different categories of copy number concordance that 
variants can fall into. Each rearrangement variant has two 
breakpoints, for which we determine the closest copy 
number change from the segmentation. The copy number is 
considered concordant with a variant at a particular 
breakpoint if the copy number is higher on the same side of 
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the breakpoint that the split reads are mapping. Copy 
number changes are only considered within 100 kbp of 
each breakpoint. “Matching” variants have concordant copy 
number changes on both breakpoints. “Partial” matching 
variants have a concordant copy number change on only 
one breakpoint. “Non-matching” variants have discordant 
copy number changes on one or both breakpoints. 
“Neutral” variants have no copy number changes within 
100 kbp of either breakpoint. Each variant can only be in 
one copy number concordance category. The numbers of 
variants in these categories should be considered in 
combination with the categories in the variant 
neighborhood analysis.  

Variant	neighborhood	analysis	
The variant neighborhood refers to a variant’s relationship 
with other variants nearby. A variant is classified as 
"reciprocal” if there is another variant that shares its two 
breakpoint locations (within 10 kbp) and has the opposite 
strands at both breakpoints. Some examples of variants that 
would show up as reciprocal are mobile element insertions, 
translocations, or copy number neutral inversions. “Simple” 
variants are intrachromosomal and do not have any 
overlapping variants between the two breakpoints. These 
tend to be smaller variants, and they are an important class 
because the variant types such as deletion, inversion, or 
duplication is not obscured by overlapping variants that 
may have moved or flipped breakpoints relative to when 
the event occurred. “Solo” variants have no other variants 
within 100 kbp of both their breakpoints. This type can be 
expected to show clear copy number concordance because 
no other variants are nearby to obscure the copy number. 
All variants that are not reciprocal, simple, or solo are then 
classified as “crowded,” indicating that they have 
overlapping variants and that there are other variants within 
100 kbp. This type is the most difficult to curate for 
accuracy because lack of copy number concordance cannot 
be used to definitely dismiss the variant as inaccurate, given 
that other variants nearby could be creating opposing copy 
number changes. Each variant can only be in one variant 
neighborhood category. The variant neighborhood 
categories importantly interact with the copy number 
concordance categories. See Supplementary Note 3 for 
examples of each category and an exploration of how we 
can interpret the intersection of different categories.  
 

Acknowledgements	
This work was supported by NSF[DBI-1350041]; 
NHGRI[R01-HG006677]. 

References	
1. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next 

Generation. Cell 144, 646–674 (2011). 
2. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. 

Mechanisms of change in gene copy number. Nat Rev Genet 10, 
551–564 (2009). 

3. Chen, J.-M. Genomic Rearrangements: Mutational Mechanisms. 

(John Wiley & Sons, Ltd, 2001). 
doi:10.1002/9780470015902.a0022926 

4. Gu, W., Zhang, F. & Lupski, J. R. Mechanisms for human 
genomic rearrangements. PathoGenetics 1, 4 (2008). 

5. Cheng, J. Q. et al. AKT2, a putative oncogene encoding a 
member of a subfamily of protein-serine/threonine kinases, is 
amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. 
U.S.A. 89, 9267–9271 (1992). 

6. Slamon, D. J. et al. Human breast cancer: correlation of relapse 
and survival with amplification of the HER-2/neu oncogene. 
Science 235, 177–182 (1987). 

7. Ross, J. S. et al. Comprehensive genomic profiling of epithelial 
ovarian cancer by next generation sequencing-based diagnostic 
assay reveals new routes to targeted therapies. Gynecol. Oncol. 
130, 554–559 (2013). 

8. Shlien, A. & Malkin, D. Copy number variations and cancer. 
Genome Med 1, 62 (2009). 

9. Mitelman, F., Johansson, B. & Mertens, F. The impact of 
translocations and gene fusions on cancer causation. Nat. Rev. 
Cancer 7, 233–245 (2007). 

10. Stam, K. et al. Evidence of a new chimeric bcr/c-abl mRNA in 
patients with chronic myelocytic leukemia and the Philadelphia 
chromosome. N. Engl. J. Med. 313, 1429–1433 (1985). 

11. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: 
a probabilistic framework for structural variant discovery. 
Genome Biol. 15, R84 (2014). 

12. Rausch, T. et al. DELLY: structural variant discovery by 
integrated paired-end and split-read analysis. Bioinformatics 28, 
i333–i339 (2012). 

13. Suzuki, A. et al. Aberrant transcriptional regulations in cancers: 
genome, transcriptome and epigenome analysis of lung 
adenocarcinoma cell lines. Nucl Acids Res 42, 13557–13572 
(2014). 

14. Li, Y., Zhou, S., Schwartz, D. C. & Ma, J. Allele-Specific 
Quantification of Structural Variations in Cancer Genomes. Cell 
Syst 3, 21–34 (2016). 

15. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-
globin gene is enhanced by remote SV40 DNA sequences. Cell 
27, 299–308 (1981). 

16. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for 
discovery of novel fusion transcripts. Genome Biol. 12, R72 
(2011). 

17. Edgren, H. et al. Identification of fusion genes in breast cancer 
by paired-end RNA-sequencing. Genome Biol. 12, R6 (2011). 

18. Chen, K. et al. BreakTrans: uncovering the genomic architecture 
of gene fusions. Genome Biol. 14, R87 (2013). 

19. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome 
Feature Analysis. Curr Protoc Bioinformatics 47, 11.12.1–34 
(2014). 

20. Asmann, Y. W. et al. A novel bioinformatics pipeline for 
identification and characterization of fusion transcripts in breast 
cancer and normal cell lines. Nucl Acids Res 39, e100–e100 
(2011). 

21. Nattestad, M., Chin, C.-S. & Schatz, M. C. Ribbon: Visualizing 
complex genome alignments and structural variation. (2016). 
doi:10.1101/082123 

22. Bostock, M., Ogievetsky, V. & Heer, J. D³: Data-Driven 
Documents. IEEE Trans Vis Comput Graph 17, 2301–2309 
(2011). 

23. Garvin, T. et al. Interactive analysis and assessment of single-
cell copy-number variations. Nat Meth 12, 1058–1060 (2015). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2016. ; https://doi.org/10.1101/087981doi: bioRxiv preprint 

https://doi.org/10.1101/087981

