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Abstract

Genetic research utilizes a decomposition of trait variances and covariances into genetic
and environmental parts. Our software package biMM is a computationally efficient imple-
mentation of a bivariate linear mixed model for settings where hundreds of traits have been
measured on partially overlapping sets of individuals.

Availability: Implementation in R freely available at www.iki.fi/mpirinen.
∗Contact: matti.pirinen@helsinki.fi
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1 Introduction
Decomposing phenotypic variance and covariance into genetic and environmental parts is im-
portant for designing genetic studies and understanding relationships between traits and dis-
eases. The two main approaches are linear mixed model (LMM) implementations, such as
GCTA (Yang et al., 2011), GEMMA (Zhou and Stephens, 2014) or BOLT-REML (Loh et al.,
2015), and LD-score regression, implemented in LDSC (Bulik-Sullivan et al., 2015). LMM
requires access to the individual-level genotype-phenotype data whereas LDSC only needs
output from a genome-wide association study (GWAS) and variant correlations from a refer-
ence database, but consequently may be less precise than LMM (Bulik-Sullivan et al., 2015).

We consider settings where individual-level data are available, and hence use LMM. The
bivariate LMM for n individuals is Y = G + ε, where Y =

(
Y T

1 ,Y
T
2

)T is 2n-vector of
mean-centered phenotype values from which the covariates, such as age, sex and principal
components of population structure have been regressed out, G ∼ N (0,ΣG) is 2n-vector of
genetic random effects and ε ∼ N (0,Σε) is 2n-vector of environmental random effects. The
(2n) × (2n) covariance structures are parameterized by six scalars: genetic variances VG1

and VG2, genetic covariance VG12, environmental variances Vε1 and Vε2 and environmental
covariance Vε12 as

ΣG =

 VG1R VG12R

VG12R VG2R

 and Σε =

 Vε1I Vε12I

Vε12I Vε2I


expressed as n× n block matrices. I is the identity matrix and the element i, j of the genetic
relationship matrix (GRM) R is

Rij =
1

K

K∑
k=1

(
gik − 2f̂k

)(
gjk − 2f̂k

)(
2f̂k

(
1− f̂k

))α
,

where gik is the genotype of individual i at variant k, coded as 0, 1 or 2 copies of the minor
allele and f̂k is the minor allele frequency (MAF). We use the standard scaling of allelic effects
determined by α = −1.

From this model, an estimate of VGt approximates additive genetic variance of each trait
(t = 1, 2) explained by the variants included in the calculation of R and is often used as a lower
bound for the (narrow-sense) heritability (detailed assumptions in Yang et al. (2015)). An
estimate of the genetic correlation ρG = VG12/

√
VG1VG2 measures (average) correlation of the

allelic effects of the variants on the two traits. Similarly, we can estimate ρε = Vε12/
√
Vε1Vε2,

the correlation in the environmental components between the traits.
A challenge with bivariate LMMs, that operate on an explicit R matrix (e.g. GCTA and

GEMMA), is that they require matrix operations cubic in the cohort size for each pair of traits
analyzed, which becomes computationally prohibitive for handling hundreds of traits measured
on 10,000s of individuals. Our software package biMM speeds up the bivariate LMM analysis
(1) by a fast likelihood computation, (2) by reusing matrix decompositions across pairs of
traits, and (3) by arranging data to optimize sample overlap between consecutive pairs of
traits.

2 Methods

2.1 Reusing eigendecomposition
Once an eigendecomposition of R is available, our biMM algorithm drops the time complexity
from cubic to quadratic for a trait pair and from cubic to linear for a single evaluation of the
likelihood function (Supplementary Information). A crucial observation is that a complete
sample overlap between two trait pairs means that the same eigendecomposition can be used
for both pairs.

2.2 Ordering pairs, imputing and dropping values
We order the trait pairs in such a way that the consecutive pairs have a large sample over-
lap. biMM further allows imputing at most ti missing values and/or dropping at most td
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Figure 1: Comparing estimates for heritability (VG) and genetic correlation (ρG) between an
approximate (ti = td = 200) and complete (ti = td = 0) versions of biMM over 120 pairs of traits.

biMM approx biMM compl GEMMA BOLT-REML GCTA
Real (h) 0.05 0.49 2.76 19.20 21.39
CPU (h) 0.07 1.49 2.76 19.20 21.39

Table 1: Cumulative run time over 120 trait pairs of Fig. 1. ’Real’ is wall clock time. ’CPU’ is
total CPU time over all cores used. We used an Intel Quad-Core i7-3770 CPU @ 3.40GHz. biMM
ran in R-3.3.1 with Intel Math Kernel Libarary.

non-missing values for a trait pair to make it match the available eigendecomposition (Supple-
mentary Information). Only when this is not possible for any remaining pair does biMM a new
eigendecomposition. Algorithmically, given user-specified ti and td, biMM finds an ordering
that results in a small number of total eigendecompositions. This is an instance of the shortest
Hamiltonian path problem that we tackle by a greedy heuristic (Supplementary Information).

2.3 Example analysis
We consider data from the Northern Finland Birth Cohort 1966 (NFBC1966) (Rantakallio
et al., 1969) with 16 traits having sample sizes between 4736 and 5025 individuals (Supple-
mentary Table S1) and preprocessed by Tukiainen et al. (2014). We analyzed all 120 pairs
of traits using both the complete (ti = td = 0) and an approximate versions (ti = td = 200)
of biMM and compared with GCTA 1.25.3, GEMMA 0.94.1 and BOLT-REML 2.2 with their
default parameters.

3 Results
Figure 1 shows that the complete and approximate versions of biMM are very similar across the
120 pairs of traits. Table 1 shows that the approximate version is much faster than either the
complete version or any other software package tested. Detailed results are in Supplementary
Figures S1-S4. In short, biMM and GEMMA gave essentially the same results and they were
also similar to the results from GCTA and BOLT-REML.
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