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Single-cell RNA-sequencing (scRNA-seq) allows heterogeneity in gene 
expression levels to be studied in large populations of cells. Such 
heterogeneity can arise from both technical and biological factors, thus 
making decomposing sources of variation extremely difficult. We here 
describe a computationally efficient model that uses prior pathway 
annotation to guide inference of the biological drivers underpinning the 
heterogeneity. Moreover, we jointly update and improve gene set 
annotation and infer factors explaining variability that fall outside the 
existing annotation. We validate our method using simulations, which 
demonstrate both its accuracy and its ability to scale to large datasets 
with up to 100,000 cells. Moreover, through applications to real data we 
show that our model can robustly decompose scRNA-seq datasets into 
interpretable components and facilitate the identification of novel sub-
populations.  
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Introduction 
Single-cell RNA-sequencing (scRNA-seq) is an established tool for assaying 

variability in gene expression levels between cells drawn from a population. 

Cell-to-cell differences in gene expression can be driven by both observed 

and unmeasured factors, including technical effects such as batch, or 

biological drivers including cell type specific features, such as stage of T cell 

differentiation 1. Importantly, such technical and biological factors can act 

upon the same genes 2, 3, meaning that they should be modeled jointly to fully 

understand heterogeneity in scRNA-seq data. 

 

Well-established approaches exist for handling observed factors, such as 

batch or experimental covariates 4, 5. Additionally, methods based on singular-

value decomposition (SVD) and linear mixed models have been developed in 

order to capture unwanted variability due to unmeasured factors, first for 

conventional ensemble RNA-profiling experiments 6-8 and more recently for 

scRNA-seq 2. Furthermore, by using informative marker gene sets, methods 

based on SVD and regression have also been employed to reconstruct cell 

states, such as the cell cycle or differentiation stages 2, 9. More recently, Fan 

et al. 10 introduced PAGODA, a PCA-based method that tests for coordinated 

overdispersion of sets of genes. However, these existing methods do not 

model errors in how gene sets are defined, and, more importantly, they fit 

individual processes independent from each other and do not explicitly 

account for either the presence of additional unannotated biological factors or 

confounding sources of variation. Finally, existing factor methods were 

motivated by relatively small single-cell RNA-seq datasets. Thanks to recent 

technological advances, it is now possible to generate single-cell RNA-seq 

datasets containing hundreds of thousands of cells, which requires 

computationally more efficient methods. 

 

Results 
To address this, we here propose a factorial single-cell latent variable model 

(f-scLVM) that can capture three sources of variation: i) variation in 

expression attributable to pre-annotated gene sets; ii) variation attributable to 
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sparse, putatively biologically meaningful, but unannotated gene sets; and iii) 

variation explained by confounding factors that are expected to affect the 

expression profile of the majority of genes.  

 

If a factor explains variation in the data, we assume that the expression levels 

of all genes assigned to it co-vary in a consistent manner, thereby allowing 

the activity of this factor to be inferred from the data. For annotated factors, 

we incorporate prior annotations derived from publicly available resources 

such as MSigDB 11 or REACTOME 12 into our model, thereby assigning 

particular biologically related sets of genes to the same factor. The 

assignment of genes to these sets is refined in a data-driven manner, 

assuming that only a small number of changes occur (i.e., that the initial 

annotation is reasonably accurate). For unannotated, but biologically 

meaningful gene sets, we assume that they contain a small number of genes. 

Finally, to infer confounding factors we build on the assumption that such 

factors will have global effects on the expression of large numbers of genes, 

similar to principles applied in population genomics 6, 7. 

 

As well as updating the assignment of gene sets, our model also infers, for a 

given data set, which factors are most relevant. Inference of model 

parameters, including gene assignments and factor weights, are determined 

using computationally efficient variational Bayesian inference, which scales 

linearly in the number of cells and genes. The posterior distributions over 

model parameters facilitate a wide range of downstream analyses, including 

identification of biological drivers, data visualization, the refinement of gene 

sets and the estimation of residual dataset (Fig. 1a). 

 

As a first illustration, we applied f-scLVM to a dataset of 182 mouse 

embryonic stem cell (mESC) transcriptomes, where each cell was 

experimentally staged according to its position within the cell cycle	 2. 

Consequently, across the entire population, we expect that the cell cycle is 

the major source of variation. Indeed, when applying f-scLVM using 44 core 

molecular pathways derived from MSigDB 11, the method robustly identified 

four factors, including G2/M checkpoint and P53 pathway (Supp. Fig. 1). 
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These two factors could be used to stratify the cells by their position in the cell 

cycle (Fig. 1b). Other methods, including PAGODA, inferred a larger number 

of collinear and partially redundant factors that less accurately discriminated 

cells by cell cycle stage (Supp. Fig. 2), underscoring the importance of jointly 

modeling all annotated and unannotated factors. Furthermore, unlike existing 

methodology, f-scLVM allowed for data driven refinement of gene set 

annotations (Fig. 1c). We observed that the model modified the G2/M 

checkpoint factor by adding two genes, Anln and Kif20a, both of which are 

well-characterized cell cycle regulators 13, 14. Similarly, the model identified 

Ptp4a3, a known target of P53 15, as an additional member of the P53 

pathway factor.  

  

Given these promising results, we next used simulated data to assess how 

robustly our model can identify relevant factors and complete gene set 

annotations. Over a wide range of simulations, where we varied the number of 

annotated factors and simulated confounders, the degree of overlap between 

gene sets, the number of cells and the size of the annotated gene sets, we 

consistently observed that f-scLVM more accurately identified the true 

simulated drivers than other factor analysis methods (Fig. 2a and Supp. Fig. 

3a-e). Our method showed the greatest improvement in performance over 

existing methods when multiple unannotated factors were simulated and 

when the gene sets explaining the most variance in the data contained a 

substantial number of overlapping genes (Fig. 2b). We also confirmed that f-

scLVM was robust to extremely sparse datasets, typical of droplet-based 

approaches (Supp. Fig. 3f,g). 

 

Finally, we considered datasets with simulated errors in the gene set 

annotation to assess the model’s ability to adjust gene sets, a feature that is 

unique to f-scLVM (Methods). We observed that the model accurately 

identified genes that should be excluded from and added to gene sets (Fig. 2c 

and Supp. Fig. 4). Unsurprisingly, as the fraction of errors in the gene set 

annotation increased, the ability of the model to recover the true sets declined 

– however, in the more realistic setting where only a small fraction of genes 

were poorly annotated (1-10%), our model performed extremely well.  
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Having evaluated our approach, we next applied f-scLVM to a population of 

3,005 neuronal cells 16. Using gene sets derived from REACTOME pathways 

as annotation, our model supported the importance of a set of factors similar 

to those identified by methods such as PAGODA (Fig. 3a), but with important 

differences (e.g. Innate Immune System; Supp. Fig. 5). Additionally, our 

model suggested a refined annotation for some of the most important gene 

sets identified (Fig. 3a), with, on average, 10% of genes being added and 3% 

of genes being removed for the top 20 annotated factors. Furthermore, the 

model identified unannotated factors with a high relevance score (Fig. 3b), 

demonstrating the importance of modelling such factors. We observed that 

many of these unannotated factors were sparse and captured differences 

between cell types that are not readily reflected in the pathway annotations 

(Supp. Fig. 5,6a-c). 

 

The top ranked annotated processes separated the cells into well-defined 

groups, with the endothelial-mural cells being stratified into two populations by 

the muscle contraction factor (Fig. 3c). Notably, our model augmented the 

corresponding gene set by activating several genes that have previously been 

implicated in muscle contraction but that were not present in the pre-defined 

REACTOME gene set (Fig. 3d). Among the 13 identified genes were several 

known markers of vascular smooth muscle cells, including Rgs4, Mtfge8, and 

Notch3 17-20. A second major driver identified by f-scLVM was the innate 

immune system factor, which, in particular, separated microglia (nervous 

system immune cells) from the remaining cell types (Fig. 3c). Moreover, 

similar to the muscle contraction factor, the gene set was also augmented 

with meaningful genes (Supp. Fig.  6d).  

 

In addition to the populations of neurons characterized by Zeisel et al., we 

also applied f-scLVM to a variety of other existing datasets, identifying 

relevant factors that explained complementary axes of variation, augmenting 

gene sets and observing that a considerable proportion of the variance 

explained could be attributed to unannotated factors (Supp. Analyses) and we 
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assessed the robustness of the annotated factors identified by f-scLVM 

(Supp. Fig. 10). 

 

Finally, given the increasing trend to generate scRNA-seq datasets containing 

tens to hundreds of thousands of cells, we contrasted the computational 

efficiency of our model with a variety of factor analysis models (Fig. 4a, Supp. 

Fig. 7). We observed that irrespective of the number of cells, f-scLVM had a 

lower runtime than other approaches, with a linear scaling time in the number 

of cells as opposed to quadratic or even cubic relationships for other 

approaches. As a consequence, f-scLVM can be applied to interrogate large-

scale droplet-derived datasets. 

 

To illustrate this, we applied f-scLVM to expression profiles from 49,300 

retinal cells profiled using Drop-seq 21. Again, our model identified biologically 

plausible processes, including GPCR signaling and transmission across 

chemical synapses, as explaining variability in the data (Fig. 4b). As 

previously, unannotated factors explained substantial variation in the data 

(Fig. 4c). In this case, this variation could be attributed to a single factor, 

which affected a large number of genes (Supp. Fig. 8a), suggesting that it 

may explain confounding effects. Indeed, this factor was correlated with the 

cellular detection rate (Supp. Fig 8f), a known confounding feature of scRNA-

seq datasets 3.  

 

Given this, we considered the residual dataset generated after regressing out 

the effect of this factor (Methods, Supp. Table 2). When focusing on a set of 

six related and well defined cell types identified in the primary analysis – 

Müller glia, astrocytes, fibroblasts, vascular epithelium, pericytes and 

microglia – the residual data revealed two sub populations of astrocytes (Fig. 

4d,e), as well as two subpopulations of microglia (Supp. Fig. 8b-d) that are not 

observed in the unadjusted data.  In total, 1,024 genes were differentially 

expressed between the identified astrocyte populations (FDR<10%; Supp. 

Table 3) and these were enriched for processes related to immune response 

and activation of astrocytes, such as inflammatory response, BMP signaling 

pathway, and cellular response to BMP (Supp. Table 4), and included known 
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genes related to reactive/inflammatory processes in astrocytes such as Ccl2 
22. In addition BMP signalling is known to activate distinct downstream 

transcription factors, including Stat3 and Smad5, which show the expected 

pattern of behavior between the two newly-identified populations 23 (Fig. 4f). 
Taken together, these results show that f-scLVM can be used to infer 

biological and confounding factors from large datasets. 

 

More broadly, we considered a range of available datasets and investigated 

the nature of unannotated factors inferred by our model. We observed, as 

above, that these factors were often associated with technical experimental 

features that have previously been suggested to underpin variability in 

scRNA-seq data, including the number of expressed genes and sequencing 

depth (Supp. Fig. 9). However, these associations were often weak, 

suggesting that the inferred hidden factors help to capture additional 

unwanted variation that cannot be assigned to measured covariates.  

 

 

Discussion 
Herein, we have proposed a scalable factor analysis approach to 

comprehensively model the sources of single-cell transcriptome variability. 

Unique to our model is the ability to jointly infer both annotated and 

unannotated factors and to augment predefined gene sets in a data driven 

manner. Additionally, f-scLVM is computationally efficient, allowing analysis of 

very large datasets containing hundreds of thousands of cells. 

 

We have validated our model using simulations as well as using real data 

where the sources of transcriptome variability are well understood. 

Subsequently we have applied the model to a range of different studies, 

demonstrating its ability to infer drivers of transcriptome variation, adjust gene 

sets to discover new marker genes and account for hidden confounding 

factors in the data. 
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Of course, our model is not free of limitations. A general challenge for any 

method is to reliably differentiate confounding factors from biological signal. f-

scLVM addresses this through specific assumptions on the effect of these 

factors (sparse versus dense) in conjunction with leveraging gene set 

annotation from pathway databases. However, there is no silver bullet solution 

and it is hence necessary to interpret the model results and, in particular, the 

unannotated factors in the context of a given dataset.  

 

A second potential caveat is the lack of accurate gene set annotation, which 

will necessarily impact the quality of the results. To mitigate this challenge, f-

scLVM models possible errors in the annotation explicitly and augments gene 

sets in a data driven manner. However, such inferences have limitations. One 

important challenge is collinearities between annotated factors and true 

biological differences. For example, if cells in different cell cycle stages are 

systematically associated with different cell types, the results from gene set 

refinements may be misleading and collapse two distinct biological processes 

into a single factor.  

 

There are other technical aspects of the model that could be improved in the 

future. The noise model we use at present is based on a Hurdle model 3, 

which could be adapted to more specifically model the noise properties of 

different experimental platforms. Also, our model is intrinsically linear and 

assumes that the inferred factors have linear additive effects. An important 

area of future work will be to explicitly model interactions between factors. 

 

 

Methods 
Methods and any associated references are available in the online version of 

the paper and further information is provided in the Supp. Methods. 
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Figures  
	

 

Figure 1 | Factorial single-cell latent variable model: approach and 
motivation. (a) f-scLVM decomposes the matrix of single-cell gene 
expression profiles into factors and weights. Gene sets from pathway 
databases are used to annotate a subset of factors, with the remainder 
allowing the existence of unannotated factors. The fitted model can be used 
for different downstream analyses, including i) identification of biological 
drivers; ii) visualization of cell states; iii) data-driven adjustment of gene sets 
and iv) adjustment of confounding factors. (b) Bivariate visualization of 182 
mouse ES cells, experimentally staged for the cell cycle, using the G2M 
checkpoint and P53 pathway factors. The inferred G2M checkpoint factor 
discriminates cells in G2/M phase from the remaining cell population. (c) 
Weights for the most important genes in the P53 pathways and G2M 
checkpoint factors, showing both genes that were pre-annotated by MSIGDB 
(black), and genes added by the model (red).  
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Figure 2 | Model validation using simulated data. (a,b) Accuracy of f-
scLVM and alternative methods for recovering the set of simulated drivers of 
gene expression heterogeneity. (a) Receiver operating characteristics (ROC) 
pooled across different simulated datasets (see Supp. Table 1). (b) Area 
under the ROC curve (AUC) when simulating an increasing number of 
unannotated factors not included in the pathway database (left), and when 
considering increasing overlap between simulated gene sets (right). (c) Ability 
of f-scLVM to augment gene sets when an increasing proportion of genes in 
the annotation were falsely assigned. Shown is an AUC for correctly including 
genes omitted from gene sets (red) and for removing genes that were 
incorrectly annotated (blue). Bar plots in (b,c) show the median AUC across 
50 repeat experiments per settings with error bars corresponding to 25% and 
75% percentiles. 
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Figure 3 | Application of f-scLVM to neuronal cells. (a) Factor relevance 
and gene set augmentation for the most important 30 factors identified by f-
scLVM based on REACTOME pathways. Bottom panel: Identified factors and 
corresponding gene set size ordered by relevance (white = low relevance; 
black = high relevance). Top panel: Gene set augmentation, showing the 
number of genes added (red) and removed (blue) by the model for each 
factor. (b) Breakdown of the cumulative factor relevance of annotated and 
unannotated factors (see also Supp. Fig. 5). (c) Bivariate visualization of cells 
using the factors muscle contraction and innate immune system. Colors 
correspond to cell types identified in 16. (d) Weights for the most important 
genes in the muscle contraction factor, showing both genes that were pre-
annotated by REACTOME (black), and genes added by the model (red).  
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Figure 4 | Application of f-scLVM to large-scale scRNA-seq datasets. (a) 
Scalability of f-scLVM, showing is the empirical runtime when applying f-
scLVM and alternative factor models (RUV, SVA, scLVM, PAGODA) to 
datasets with increasing size. f-scLVM scales linearly in the number of cells, 
allowing its use on large dataset with up to 100,000 cells. None of the existing 
methods could be applied to the largest dataset. (b-f) Application of f-scLVM 
to 49,300 retina cells profiled using Drop-Seq. (b) Factor relevance and gene 
set augmentation for the most important 30 factors identified by f-scLVM 
based on REACTOME pathways. Bottom panel: Identified factors and 
corresponding gene set size ordered by relevance (white = low relevance; 
black = high relevance). Top panel: Gene set augmentation, showing the 
number of genes added (red) and removed (blue) by the model for each 
factor. (c) Breakdown of the cumulative gene expression variance explained 
by annotated factors and unannotated factors. (d) Visualization of a subset of 
2,145 cells using a non-linear t-SNE embedding. Colors correspond to cell 
types identified in 21. (e) Analogous t-SNE embedding as in (d), however on 
residual data (Methods, see also Supp. Fig 8). The analysis on the residual 
dataset revealed additional sub structure between cells, including a new sub 
population of astrocytes. (f) Genes and factors that were differentially 
expressed (FDR < 10%) between the newly-identified astrocyte clusters 
highlighted in (e). Grey dots denote outlying cells. 
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Online Methods 

Code availability 
An open source implementation of f-scLVM for reviewing purposes is 
available at: https://github.com/PMBio/f-scLVM. 
 

The factorial single-cell latent variable model (f-scLVM) 
f-scLVM is based on a variant of matrix factorization, decomposing the 

observed gene matrix into a sum of sum of contributions from C measured 

covariates, A annotated factors, whose inference is guided by pathway gene 

sets, and H additional unannotated factors:  

𝐘 = 𝐮'	𝐕'𝑻
+

',-

	

𝐜𝐞𝐥𝐥	𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞𝐬

+ 𝐩:	𝐑:𝑻
<

:,-

	

𝐚𝐧𝐧𝐨𝐭𝐚𝐭𝐞𝐝	𝐟𝐚𝐜𝐭𝐨𝐫𝐬

+ 𝐬@	𝐐@𝑻
B

@,-

	

𝐮𝐧𝐚𝐧𝐧𝐨𝐭𝐚𝐭𝐞𝐝	𝐟𝐚𝐜𝐭𝐨𝐫𝐬

+ 𝚿		.							(𝟏) 

 

Here, 𝐘 denotes the gene expression matrix where rows correspond to each 

of N cells and columns correspond to G genes. The vectors 𝐮', 𝐩: and 𝐬@ are 

known cell covariates, as well as cell states for annotated and unannotated 

factors, and 𝐕' , 𝐑:  and 𝐐@  are the corresponding regulatory weights of a 

given factor on all genes. The matrix 𝛙  denotes residual noise, with its 

specific form depending on the noise model employed (see below). For the 

statistical derivation (see also Supp. Methods), we express the model in Eq. 

(1) using matrix notation, collapsing the factors into a factor activation matrix 

𝐗 = 𝐮-, . . , 𝐮+, 𝐫-, . . , 𝐫<, 𝐬-, … , 𝐬B  (with the comma denoting concatenation of 

columns), where each factor is enumerated using an indicator  k = 1. . K, and 

K denotes the total number of fitted factors K = C + A + H. The analogous 

matrix representation is used for weights 𝐖, resulting in 

𝐘 = 𝐗𝐖𝑻 + 	𝛙	. 

 

Known covariates, annotated factors and unannotated factors then 

correspond to different distributional assumptions on the column vectors of 

the matrices 𝐗  and 𝐖  (Supp. Methods). For brevity, we omit the cell 

covariates in the derivation, for which the factor states are observed (see 

Supp. Methods). 
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Standard multivariate normal prior distributions are used for the factor states 

of both annotated and unannotated factors. For annotated factors, we employ 

two levels of regularization on the corresponding parts of the weight matrix 𝐖. 

First, gene sets are used to guide a sparsity prior on the rows of 𝐖 24, thereby 

confining the inferred weights to the set of genes annotated in the pathway 

database. A second level of regularization is then used to achieve sparseness 

on the level of factors, allowing the model to deactivate factors that are not 

needed to explain variation in the data. 

A regulatory sparseness prior for linking factors to biological processes 	

Gene set annotations are used to inform a spike and slab prior on the 

elements of 𝐖. The regulatory weight of factor 𝑘	on gene 𝑔	is modeled using 

a mixture of a Normal distribution (with factor-specific precision 𝛼S ), if the 

regulatory link is active, and a delta distribution to force the weights of inactive 

regulatory link to zero 

𝑝 𝑤V,S 𝑧V,S) = 	
𝒩 𝑤V,S 0, 1/𝛼S 				if	zV,S = 1
𝛿_ 𝑤V,S 																				otherwise

.               (2) 

 

The indicator variable 𝑧V,S, which determines whether factor k regulates gene 

g, is unobserved. However, annotations derived from pathway databases 

provide additional evidence for inferring 	𝑧V,S  and for obtaining interpretable 

factors 

𝑝 𝐼V,Sh 𝑧V,S = 	
Bernoulli	 𝐼V,S = 1	 1 − FPR)			if	zV,S = 1
Bernoulli	 𝐼V,S = 1	 				FNR				)			otherwise

. 

 

Here, 𝐼V,Sh 	is a binary variable that determines whether gene 𝑔 is annotated to 

pathway 𝑘 in the annotation database. The pathway annotation is observed 

for each cell 𝑛, thereby scaling the evidence from the annotation and the 

expression data irrespective of dataset sizes (Supp. Methods). The rate 

parameter FPR corresponds to the probability of a false positive (incorrect) 

assignment and FNR denotes the probability of a false negative (missing) 
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assignments. In the experiments, we use FNR = 	0.001 and FPR = 	0.01 and 

employ an uninformative prior on the indicator variables, 𝑧V,S	~Bernoulli 0.5 .		 

 

During model training, the posterior distribution of the indicator variables 𝑧V,S 

is then inferred from the observed expression data and the prior annotation 

jointly. This approach allows gene set annotations to be incorporated as well 

as data-driven augmentation. Once trained, the marginal posterior estimates 

of 𝑧V,S can be used to identify genes that are added to or removed from a 

particular process.  

 

Identifying expression drivers using automatic relevance determination 

In addition to sparseness of regulatory effects, f-scLVM employs a second 

level of regularization using automatic relevance determination (ARD) 25. The 

ARD prior is widely used in (probabilistic) matrix factorization models to 

deactivate factors that are not needed. This is achieved by placing a 

hierarchical prior on the precision of the normal priors for active links (Eqn. 

(2)) 𝛼S	~	Γ(𝑎, 𝑏). The parameter 𝛼S will be large for factors with low relevance, 

which corresponds to low prior variance, thereby driving the regulatory 

weights to zero. The prior variance 1/𝛼S	can also be interpreted as a measure 

of the regulatory impact of a factor and corresponds to the expected variance 

explained by the factor, for the subset of genes with a regulatory effect (see 

downstream analyses). 

 

Modeling unannotated factors	

In addition to annotated factors, f-scLVM estimates the effect of a fixed 

number of unannotated factors jointly. In the experiments, we consider two 

types of unnoted factors. First, to infer likely confounding factors, we build on 

the insight that confounders tend to have broad effects and regulate larger 

sets of genes, a principle that is widely used in population genomics 6, 7. This 

prior belief is encoded using the Bernoulli prior 𝑧V,S	~Bernoulli 0.99 , and 

hence the weights for these factors are effectively only regularized by the 

ARD prior.  Optionally, f-scLVM can also be used to infer an additional set of 
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sparse unannotated factors. These factors can, for example, be used to 

model additional biological variation that is not well captured by the factors in 

the annotation. These sparse actors are modeled using a Bernoulli prior that 

favors a small number of active links 𝑧V,S	~Bernoulli 0.01 .  The decision, 

which model to train, can be guided by heuristics and diagnostics; see section 

Diagonistics and f-scLVM parameter settings for details on the selection of 

specific models. 

 

Noise model 

f-scLVM supports alternative noise models to accommodate different RNA-

sequencing protocols. First, a standard option is the lognormal noise model, 

where the expression matrix 𝒀  consists of log count values which are 

modeled assuming iid heteroscedastic residuals 𝛙	(Supp. Methods). Modeling 

different residual variances for each dimension (gene) helps to account for 

varying extent of over dispersion and allows the model deactivating some 

input dimensions, an approach widely adopted in conventional factor analysis 
26.  

 

In order to model the zero inflation resulting from prominent dropout effects for 

protocols such as Drop-seq	 21, f-scLVM can alternatively be run in conjunction 

with a zero inflation (Hurdle) noise model. A separate Bernoulli observation 

noise model is used, when no expression (zero count values) is observed for 

any specific expression value, while all remaining values are modeled using 

the aforementioned log Gaussian noise model. Formally, we define the factor 

analysis model on latent variables, 𝐅 = 𝐗𝐖{ , and use the compound 

likelihood: 

𝑃 𝑦h,V 𝑓h,V = 	
-

-����	(��,�)
																											𝑖𝑓	𝑦h,V = 0

𝒩 log	(𝑦h,V + 1) 𝑓h,V, 𝜎V� 				otherwise
, 

where analogous to the log normal noise model, 𝑦h,V correspond to log count 

observations. Note that in the absence of zero counts, this noise model is 

reduced to the basic noise model.  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2016. ; https://doi.org/10.1101/087775doi: bioRxiv preprint 

https://doi.org/10.1101/087775
http://creativecommons.org/licenses/by/4.0/


	 18	

Finally, if zero-inflation is less likely, for example in deeply sequenced 

datasets with larger quantities of starting material per cell, f-scLVM can also 

be used in conjunction with a classical Poisson noise model. The inference 

approach is analogous to the dropout model, however assuming the following 

likelihood model: 

𝑃 𝑦hV 𝑓hV = 	𝜆(𝑓hV)���𝑒��(���), 

with link function 𝜆 𝑓hV = log	(1 + 𝑒��� ) and 𝑦h,V  now denoting raw count 

values. 

  

Parameter inference 

Closed-form inference in sparse factor analysis is not tractable. In order to 

achieve scalability to large numbers of cells and genes, we employ 

deterministic approximate Bayesian inference based on variational methods 
27.  The core idea of variational Bayes is to approximate the true posterior 

distribution over all unobserved variables using a factorized form. This 

assumption of (partial) factorization of the posterior allows derivation of an 

iterative inference scheme, updating posterior distributions for individual 

parameters in turn, given the state of all others. For full details and the update 

equations for the f-scLVM see Supp. Methods.  

 

Downstream analysis 

The fitted f-scLVM model allows for a range of different downstream analyses.  

Factor relevance: The relevance of annotated pathways factors can be 

deduced from the ARD variance 1/𝛼S , which corresponds to the expected 

explained variance of factor k for the subset of genes with a regulatory effect 

(e.g. Fig. 3a,b).  

Visualization: The posterior distribution over the inferred factors 𝐗 allows for 

the visualization of cell states (e.g. Fig. 3c). This is possible both for 

annotated factors and for unannotated factors, where in particular sparse 

unannotated factors frequently tend to capture additional structure between 

cell types (Supp. Fig. 5,6). 

Gene set refinement: By comparing the posterior distribution on the indicator 

variables 𝑧V,S with the prior gene set annotations 𝐼V,S, it is possible to identify 
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individual genes that were added to or removed from a pathway factor during 

inference (e.g. Fig. 3a,d). We use the posterior threshold of 0.5 to identify 

genet set augmentations in the annotation. 

Estimation of residual expression datasets and imputation: The learnt factor 𝐗 
in combination with the learnt regulatory weights 𝐖  can also be used to 

calculate residual dataset with the effect of selected factors removed or to 

obtain imputed datasets. When using the dropout noise model, expression 

residuals are estimates based on the latent expression values 𝐅 (see Noise 

model above). In this instance the model implicitly uses the dropout noise 

model to implicitly impute zero values prior to estimating expression residuals 

(see Supp. Methods). 

 

Relationship to other factor analysis models 

Several existing factor analysis methods are related to f-scLVM. First, factor 

analysis with dense unannotated factors is used to adjust for unwanted 

variation in bulk datasets, including SVA	 6, RUV	 8 and PEER	 7. However, 

unlike f-scLVM, these methods do not model annotated factors using gene 

sets and hence are not designed for identifying biological drivers. Second, 

methods such as PAGODA	 10 use gene set annotations to infer interpretable 

factors. However, this model ignores variation outside the annotation and it 

infers factors sequentially, which leads to collinearities between factors (Supp. 

Fig. 2b,e,f). Finally, there exist methods based on sparse factor analysis, 

including non-parametric methods and factor models that account for the 

specifics of single-cell transcriptome noise. Again, these methods do not 

utilize gene set annotations. f-scLVM generalizes many of these methods and 

in particular offers favorable computational efficiency. For further details and a 

tabular comparison of the features offered by different methods see Supp. 

Methods Sec 2. 

Implementation of comparison partners 
We compared the performance of f-scLVM to a number of alternative factor 

models. First, we ran PAGODA using the scde R package 10. Briefly, 

PAGODA infers a gene-specific residual variance by deriving cell-specific 

error models accounting for dropout effects. This error model is then used to 
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perform weighted PCA 28 on individual gene sets in turn, followed by a ranking 

of gene sets based on the explained variance of the leading PC. We also 

considered the single-cell latent variable model (scLVM 2), which analogously 

to PAGODA infers independent low-rank factors based on predefined gene 

sets. The proportion of average variance explained by individual factors for 

the set of annotated genes, as determined using the variance decomposition 

described in 2, was used to rank factors. A second class of methods we 

compared to are factor models that do not explicitly incorporate gene set 

annotations. Among these we used a conventional PCA fitted to the set of all 

expressed genes. Second, we applied the recently proposed Zero-Inflated 

Factor Analysis model (ZIFA)	 29, a factor analysis implementation that 

explicitly models dropout events. Third, we applied a sparse factor analysis 

model based on the Indian buffet process (IBP), a non-parametric model that 

automatically infers the most appropriate number of sparse factors. None of 

these methods annotates the inferred factors and hence we implemented a 

post-processing step based on a competitive gene set enrichment to annotate 

the learnt factors using the same gene sets used to fit f-scLVM. We then used 

the enrichment p-value to rank the annotated individual gene sets as potential 

biological drivers.  

 

For runtime assessments, we additionally considered two approaches to 

account for unwanted variation. SVA timings were reported using the R 

implementation of the SVA package 30, considering a fixed number of 

surrogate variables that correspond to the true number of simulated factors. 

RUV runtime results were obtained using the RUV2 function from the R 

implementation, which estimates and adjusts for unwanted variation using 

control genes. Runtimes estimates were obtained using the time module in 

python (time() function) and the proc.time() function in R; all simulations were 

run on 8 cores of an Intel Xeon 2.60GHz CPU. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2016. ; https://doi.org/10.1101/087775doi: bioRxiv preprint 

https://doi.org/10.1101/087775
http://creativecommons.org/licenses/by/4.0/


	 21	

Datasets and preprocessing  

Diagnostics and f-scLVM parameter settings 

By default f-scLVM is fitted using annotated factors guided by gene set 

annotations and additional dense unannotated factors that capture unwanted 

variation. However, for some datasets this set of factors may not be sufficient 

to explain the observed heterogeneity, e.g. because potential differences 

between cell types may not be well reflected by the provided annotations. In 

this case, it is advised to infer an additional set of sparse unannotated factors. 

A suitable diagnostic for this decision are excessive augmentations of the 

annotated gene sets such that the inferred factor is unlinked to the annotated 

biological process. In the software implementation of f-scLVM sparse 

unannotated factors are activated if the standard model changes (gains or 

losses) at least 100% of annotations for at least one annotated factor. For 

sparse and dense unannotated factors, we considered five and three factors 

by default, respectively. Note that because of the ARD prior, the model is 

robust w.r.t. to the number of dense unannotated factors, provided a 

sufficiently large number is inferred (Supp. Fig. 3h). 

 

Simulation study 

We simulated gene expression matrices based on a linear additive model, an 

assumption that is motivated by the generative model that underlies both f-

scLVM and the all existing alternative approaches, all of which are based on 

variants of linear factor analysis models (Supp. Methods). We simulated 

effects from between three and ten active pathway factors with partially 

overlapping gene sets for each factor (see below), additional effects due to 

unknown confounding factors, and observation noise. We considered a total 

of 44 simulation settings, considering variable dataset sizes (cell count), 

variable numbers of active pathway factors and increasing numbers of 

simulated unannotated confounding factors. Additionally, we varied the 

overlap of genes annotated to individual pathways, the size of the individual 

gene sets, and simulated a certain degree of noise in the annotation provided 

to each respective model, by simulating a certain proportion of false 
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negative/false positive annotations and by swapping genes between active 

factors (see Supp. Table 1 for full details of simulation parameters). 

 

Each simulated dataset consisted of between 20 - 500 synthetic cells and 

6,000 genes. Gene set sizes were determined by sampling from REACTOME 

pathways (considering 421 pathways with 20 to 933 genes). When ranking 

active pathways, we compiled an annotation consisting of the true drivers and 

an additional set of 15 non-active pathways as a negative set, and provided it 

to each considered method. Confounding factors, if simulated, were 

generated analogously to the approach described in 31, assuming broad 

effects affecting between 400 and 3,000 randomly selected genes. The 

annotations of simulated pathways were generated sequentially, ordering 

pathways by decreasing size and drawing genes with a selected overlap to 

already existing pathways. Pathways were simulated to have overlapping 

gene sets, between 0.0 (no overlap) and 0.7 (70% of the gens overlap). To 

test for the impact of the size of gene sets, we additionally considered 

sampling REACTOME pathways with between 20-50, 50-100, and 100-200 

genes. To assess the robustness of f-scLVM to incorrect gene set 

annotations, we simulated between 1% and 50% of false negative and 

between 1% and 10% false positive genes in the gene set annotations of 

individual factors. We also considered more challenging miss-annotations by 

introducing gene-swaps between pairs of active factors (for between 1% and 

25% of all genes). Factor activations as well as non-zero regulatory weights 

were drawn assuming a unit variance normal distribution. Residual noise was 

simulated as normally distributed with standard deviation 0.1. When dropout 

was simulated, we considered two alternative dropout mechanisms. First, we 

model a threshold effect by setting all values less than a given threshold to 0; 

this reflects a limit of detection where small numbers of molecules cannot be 

detected reliably. Second, we considered modeling the probability of dropout 

events as a function of the true expression level, assuming an exponential 

relationship 29: 𝑝���� = exp	(−𝜆𝑓hV
�), with 𝑓hV being the latent expression level 

introduced above and 𝜆  the exponential decay parameter. Both dropout 

processes are simulated, where each setting is parameterized by 𝜆 and the 
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threshold value, which corresponds to the lower limit of detection. For each 

simulation setting, 50 independent datasets were generated. 

 

To assess the performance of f-scLVM and alternative methods, we consider 

the receiver operator characteristics (ROC) for identifying the true simulated 

drivers. For f-scLVM the factor relevance was used to rank factors. Analogous 

metrics were derived for all alternative methods; see Implementation details of 

alternative methods. 

 

Additionally, we assessed the ability of f-scLVM to augment corrupted gene 

set annotations (Fig. 2c, Supp. Fig. 4). We evaluated the ability of the model 

to correct the false positive and false negative annotation separately. 

 

Staged mouse embryonic stem cells 

The set of 182 mESCs staged for the cell cycle have previously been 

described in 2. Briefly, cells were cultured in serum-free NDiff 227 medium 

(Stem Cells Inc.) supplemented with 2i inhibitors and sorted by cell cycle 

phases (G1, S G2/M) using FACS and Hoechst staining (Hoechst 33342; 

Invitrogen). Cells in all three cell cycle stages were profiled using the Fluidigm 

C1 system. We followed the pre-processing and normalization approach as 

previously described 9 and considered log-transformed and size-factor 

adjusted (geometric library size on endogenous genes) gene expression 

counts for 6,635 variable genes for analysis. Additional results show in Supp. 

Fig. 1c,d were obtained when considering a size-factor normalizations based 

on ERCC spike-ins, which retains variation in the overall amount of mRNA per 

cell. f-scLVM was applied using 44 gene sets derived from MSigDB (after 

filtering, Supp. Methods). We further applied PAGODA to the raw count data 

of the 182 cells using the R package scde with standard settings 10. 

 

 

 

Zeisel et al. dataset 
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We	 analyzed	 log-transformed	 gene	 expression	 values	 of	 3,005	 single	 neurons	

sequenced	using	a	protocol	with	unique	molecular	identifier	16.	We	followed	the	

preprocessing	 and	 filtering	 steps	 from	 the	 primary	 publication,	 resulting	 in	

7,097	 variable	 genes.	 f-scLVM	 was	 applied	 using	 161	 annotations	 from	 the	

REACTOME	database	(after	filtering,	Supp.	Methods),	providing	a	high	resolution	

annotation.	 Following	 model	 diagnostics	 steps	 (see	 Diagnostics	 and	 f-scLVM	

parameter	settings),	an	additional	5	sparse	unannotated	factors	were	added	and	

fit	 jointly	 with	 the	 remaining	 factors	 (Supp.	 Fig.	 5).	 Residual	 datasets	 were	

generated	by	 regressing	out	 the	effect	of	 the	most	 relevant	unannotated	 factor	

(Supp.	Fig.	6e-h).	

 

49,300 Retina cells 

We considered the normalized, log-transformed expression values of 49,300 

retina cells as described in 21. We considered all expressed genes, using the 

dropout noise model in f-scLVM to account for low sequence coverage. We 

considered gene sets from the REACTOME database. Because of the size of 

the data, we used factor pre-screening to reduce the set of factors before 

training, retaining 50 gene sets (Supp. Methods). To generate expression 

values corrected for confounding factors, we considered residual gene 

expression profiles, regressing out the effect of the most relevant unannotated 

dense factor (Supp. Table 2). Visualizations of corrected and raw expression 

values of six related cell types identified in the primary publication (Müller glia, 

astrocytes, fibroblasts, vascular epithelium, pericytes and microglia) were 

obtained using t-SNE.  
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