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Abstract 10 

Ecophysiological crop models encode intra-species behaviors using constant parameters that are presumed to 11 

summarize genotypic properties. Accurate estimation of these parameters is crucial because much recent work 12 

has sought to link them to genotypes. The original goal of this study was to fit the anthesis date component of 13 

the CERES-Maize model to 5266 genetic lines grown at 11 site-years and genetically map the resulting 14 

parameter estimates. Although the resulting estimates had high predictive quality, numerous artifacts emerged 15 

during estimation. The first arose in situations where the model was unable to express the observed data for 16 

many lines, which ended up sharing the same parameter value.  In the second (2254 lines), the model 17 

reproduced the data but there were often many parameter sets that did so equally well (equifinality). These 18 

artifacts made genetic mapping impossible, thus, revealing cautionary insights regarding a major current 19 

paradigm for linking process based models to genetics.  20 

Highlights  21 

• CSM-CERES-Maize v. 4.5 was used to fit the anthesis date parameter for 5266 genetic lines grown at 11 22 

site-years. 23 

• Despite the high predictive value of the model outputs, numerous artifacts emerged in the estimation 24 

process. 25 

• The model was unable to express the observed variation in anthesis date data for many lines. 26 

• More than one parameter set (equifinality) were found for 2254 lines that equally reproduce the data. 27 

• These results revealed cautionary insights regarding a major current paradigm for linking process based 28 

models to genetics.  29 

Keywords  30 

CERES-Maize; Genotype-Specific-Parameters; Parameter estimations; Equifinality; Expressivity; Nested 31 

Association Mapping. 32 
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1. Introduction 33 

In the opening sentences of the 1968 book, The Population Bomb, Paul Ehrlich (and his wife Anne, 34 

uncredited at publisher behest) wrote, “The battle to feed all of humanity is over. In the 1970s hundreds of 35 

millions of people will starve to death in spite of any crash programs embarked upon now” and, in a subsequent 36 

chapter, “I don't see how India could possibly feed two hundred million more people by 1980."  Fortunately, 37 

research started in Mexico, India and elsewhere by Norman Borlaug before 1968 created high yielding dwarf 38 

wheat varieties that, worldwide, are credited with averting one billion deaths from famine.  India also 39 

introduced IR8, the so-called “miracle rice” developed at the International Rice Research Institute in the 40 

Philippines and the predicted human catastrophe was averted. 41 

Nearly 50 years later, the specter of global disruption is again upon us.  The challenges today are not 42 

only increasing human population (which has doubled since 1970) but emerging concerns like climate change 43 

and declining water resources.  The confluence of these manifold trends makes finding ways to feed nine billion 44 

people by 2050 one of the most pressing issues of our time (Stone, 2011).  However, the annual percentage 45 

increase rates for crop yields are only half those required to meet that goal (Godfray et al., 2010). 46 

Beginning over 20 years ago, a paradigm has emerged offering the promise of dramatically accelerating 47 

breeding programs via improved phenotype prediction of prospective crop genotypes in novel, time-varying 48 

environments subject to sophisticated management practices (Cooper et al., 2016; Hammer et al., 2006; Welch 49 

et al., 2005a; White and Hoogenboom, 1996; Yin et al., 2003).  The basic notion has two parts.  The first is to 50 

exploit ecophysiological crop models (ECM’s) to describe the intricate, dynamic, and environmentally 51 

responsive biological mechanisms that determine crop growth and development on daily or even hourly time 52 

scales.  The aim is to use highly detailed, nonlinear simulation models to predict the phenotypes of interest 53 

within a subsample of possible environments and in-field management options.  ECMs, whose origin is often 54 

credited to Wit. (1965), encode intra-species behavioral differences in terms of parameters that are intended to 55 
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summarize genotypic properties.  On the strength of that presumption, the constants are termed genotype-56 

specific parameters (GSP’s).   57 

The second part of the paradigm is to use quantitative genetic methods such as genomic prediction 58 

(Meuwissen et al., 2001) to relate the GSP’s to genotypic markers (Cooper et al., 2016). Next, the outcomes of 59 

crosses are estimated by (1) calculating the GSP values that would arise from possible offspring genotypes.  60 

These values are then (2) used in ecophysiological model runs to predict the phenotypes in the target 61 

population of environments (for which detailed descriptive data must be available).  In simplified instances, this 62 

approach has seen remarkable success (e.g., (Reymond et al., 2003).      63 

Composed of large coupled sets of continuous-time differential equations, ecophysiological models 64 

simulate many interacting processes (Jones et al., 2003; White and Hoogenboom, 2010) operating in the soil-65 

plant-atmosphere continuum.  These processes include physiology (e.g., photosynthesis, respiration, resource 66 

partitioning to various plant parts, and growth), phenology (leaf emergent timing, the date of vegetative-to-67 

reproductive development, etc.), as well as chemistry and physics (soil water flows, chemical transformations, 68 

energy fluxes, gas exchange, etc.). During simulation runs, model formulas compute instantaneous process 69 

rates based on plant status and environmental conditions at each time point.  These rates are integrated (sensu 70 

calculus) to output time series of dozens of plant variables.  The models typically have 10 to 20 GSP’s whose 71 

estimates are read from input files at the start of model execution.  Numerous other inputs (e.g. soil water 72 

holding capacities by layer; measured daily solar radiation, rainfall, maximum and minimum temperatures; etc.) 73 

further quantify the physical environment.  74 

The lynchpin of the two-step paradigm is the accurate estimation of the GSP’s so that these can be 75 

related to allelic states of the individual lines. Unfortunately, the direct measurement of GSP’s is so time- and 76 

resource-demanding as to be infeasible for large numbers of lines.  Indirect GSP estimation via model inversion 77 

is also challenging because easily-measured plant phenotypes exhibit strong interactions with the environment 78 

(Chenu et al., 2009) thus increasing data requirements by necessitating trait measurement in multiple settings 79 
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(Hammer et al., 1987).  Even so, ecophysiological crop models enjoy extensive global use in areas ranging from 80 

global climate change, policy analysis, crop management, etc.  Indeed, a Google search on the abbreviations of 81 

just two major model systems [namely “DSSAT” (Hoogenboom et al., 2015) and “APSIM” (Keating et al., 2003)] 82 

returned 134,000 hits. Not surprisingly, there is an extensive literature (reviewed briefly below) on 83 

ecophysiological model parameter estimation.        84 

Initially, the authors’ intent was to apply the two-step method to anthesis date using data from over 85 

5000 lines comprising the maize nested association mapping population (NAM) (McMullen et al., 2009), which 86 

was developed specifically to enable high-resolution studies of trait genetic architectures.  Not only is anthesis 87 

date a phenotype of major biological significance, but it was also studied in this same panel using conventional 88 

statistical genetic methods (Buckler et al., 2009; Hung et al., 2012).  Our hypothesis was that applying the 89 

proposed 2-step paradigm would demonstrate its merit in the specific context of the large data sets increasingly 90 

used in crop breeding programs to interrelate genotypes and phenotypes.  Contrasting the results of the 91 

standard and ecophysiological approaches was expected to be interesting and informative.    Granted, the 92 

model fitting methods to be used were not novel, but we expected that a further demonstration of their value 93 

with data sets much larger than ever used before would have utility.  94 

However, something quite different happened. We discovered modeling issues and estimation artifacts 95 

that are of sufficient severity and generality that, if not addressed, are likely to imperil the breeding 96 

acceleration paradigm.  Therefore, the objectives of this paper were 1) to describe these problems and the 97 

methods that revealed them (which can be applied as detection tools in studies of other traits) and 2) to discuss 98 

research directions that might ameliorate the problems.   99 

2. Background  100 

Numerous optimization methods have been used to estimate parameters for ECM’s. Surprisingly, 101 

perhaps the most common approach has been that of trial and error (Wallach et al., 2001), wherein different 102 

parameters values are manually tested until an acceptable match between simulated and observed data is 103 
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found. This approach, of course, becomes highly inefficient as the number of model parameter increases. Thus, 104 

numerous off-the-shelf, automated optimization techniques have been developed.  Examples include the 105 

simplex method (Grimm et al., 1993), simulated annealing (Mavromatis et al., 2002; Thorp et al., 2008), 106 

sequential search software (GENCALC) (Hunt et al., 2001), Uniform Covering by Probabilistic Region (UCPR) 107 

(Román-Paoli et al., 2000), particle swarm optimization (PSO) (Koduru et al., 2007), and generalized likelihood 108 

uncertainty estimation (GLUE) (He et al., 2010). While these traditional optimization techniques have 109 

advantages, they can be inefficient in terms of runtime and are highly dependent on optimization settings when 110 

thousands of combinations of line × planting site-years are involved – a situation that is becoming common in 111 

the era of massive genetic mapping populations.  The fundamental issue is that, as the number of lines and 112 

environments increases, estimating GSP’s for each line independently usually involves highly redundant 113 

simulation.  To this end, we adapted an algorithm pioneered by Welch et al. (2000) and Irmak et al. (2000), as 114 

described in methods section.  The approach exhibits particular efficiencies when individual plantings 115 

incorporate large numbers of lines and, serendipitously, supports a close examination of the estimation 116 

process, itself.   117 

The vast majority of prior ECM parameter estimation studies have been conducted in non-genetic 118 

contexts.  Against these backgrounds, the sole merit criterion has been the predictive skill demonstrated by the 119 

GSP estimates obtained.  However, the current setting, however, is markedly different. GSP’s are not just inputs 120 

to ecophysiological crop models; GSP’s simultaneously function as the outputs (i.e. dependent) variables of 121 

genetic prediction models.  As such, GSP’s are at least as closely related to tangible biochemical processes at 122 

the molecular level as they are summative of physiological properties (e.g. maximum photosynthetic rates) in 123 

higher organizational realms. Therefore, a deeper inspection of their estimation is warranted and two concepts 124 

are helpful in achieving the enhanced discernment now required. 125 

We employ the term “expressivity” (and the adjective “expressive”) to describe a model’s innate ability 126 

to reproduce a set of observations independent of particular parameter values.  An expressive model may fail 127 
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to replicate data because an unskilled optimizer cannot find a meritorious combination of parameter values.  In 128 

contrast, a model with low expressivity will fail to fully mimic actual data irrespective of what (biologically or 129 

physically reasonable) values are assigned to its parameters. In cases where the latter behavior is detected, 130 

remedies will be vigorously sought.  However, as shown below, however, systematic gaps in expressivity can 131 

coexist even within an overall framework of predictively skilled model performance.   132 

Another model property that has received little attention in previous estimation studies is equifinality.  133 

Equifinality describes a situation in which multiple sets of parameter values generate identical model 134 

predictions.  In statistics, a synonym for “equifinality” is “parameter non-identifiability” (Luo et al., 2009). When 135 

the only concern is prediction quality and that seems “good enough”, it is easy to consider equifinality a non-136 

problem.  However, when parameters are intermediaries rather than just inputs and equifinality exists, it begs 137 

the question as to what relationship, if any, putative GSP estimates might bear to allelic states across the 138 

genotype?  A moment’s reflection shows that equifinality and expressivity are different model properties.  The 139 

former relates to how many different estimates yield identical predictions; the latter refers to the possible 140 

existence of systematic failures of those predictions to mimic observed data.       141 

In this paper, we explore these issues in modeling and estimation using the anthesis phenology 142 

component of the CERES-Maize ECM (Jones et al., 1986; Kiniry and Bonhomme, 1991; Major and Kiniry, 1991) 143 

and observed dates from multiple plantings of three maize genetics panels totaling nearly 5300 lines. Anthesis 144 

initiates the period of grain development and is therefore a critical milestone toward grain yield. As such, it 145 

mediates the adaptation of the crop to its environment by determining the relative length of the vegetative and 146 

reproductive growth phases and is a key target of breeding programs (Buckler et al., 2009).   (Although at the 147 

apical meristem, floral initiation precedes the visible morphological change of anthesis, the linkage between the 148 

two is tight enough that we follow common modeling practice and consider them as effectively synonymous.)  149 

The genetics of flowering time has been intensively studied in the model plant Arabidopsis thaliana where well 150 

over 100 influential genes are now known (Bratzel and Turck, 2015).  Indeed, gene expression models of 151 
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flowering time of A. thaliana based on differential equations have been developed  (Valentim et al., 2015), and 152 

genetically-informed approaches have established the relationships between network-level function and 153 

common ecophysiological time formulations (Wilczek et al., 2009).  In maize, our understanding of the genetic 154 

control on flowering time is more limited but has been advancing in recent years.  More than 30 genes have 155 

been described and conservation of key features from A. thaliana seems apparent (Table 1 in (Dong et al., 156 

2012)).  A quantitative gene network model based on a number of these loci has been published (Dong et al., 157 

2012).     158 

The general desire within applied quantitative genetics to probe genetic architectures has led to the 159 

construction of ever-larger and/or special purpose mapping populations (Buckler et al., 2009).  The maize NAM 160 

panel (McMullen et al., 2009) was constructed by making bi-parental crosses between one common parent, 161 

B73, and each of a set of 25 other inbreds that collectively encompassed a wide range of maize diversity.  162 

Approximately 200 offspring from each of these 25 crosses were then inbred for a number of generations to 163 

ensure, to the greatest degree feasible, that the influence of each locus on any trait of interest reflected the 164 

contribution of one parent only.  Individual plant genotypes produced in this fashion are called “recombinant 165 

inbred lines” (RIL’s).  Buckler et al. (2009) reported a seminal study of maize anthesis dates using this NAM 166 

panel.  Demonstrating the power of these lines to finely dissect genetic contributions to traits of interest, they 167 

identified 36-39 QTL, where the exact number depended on the analysis method used.  Most of loci had small 168 

effects but collectively, they explained 89% of total variation in anthesis date.      169 

For the reasons outlined above, accurate prediction of anthesis date is a major target for 170 

ecophysiological crop models (Román-Paoli et al., 2000).  However, few studies exist have used large data sets 171 

for ECM calibration.  Mavromatis et al. (2002) reported 5,109 site-year-line-parameter combinations and Welch 172 

et al. (2002) estimated 4,620 site-year-line-parameters.  The effort presented herein encompassed 197,964 site-173 

year-line-parameter combinations – to our knowledge, the largest such study ever reported.  As the following 174 

sections document, it was the sheer scale of this data set and the resulting scatterplots depicting thousands of 175 
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lines that revealed worrisome issues of equifinality and expressivity that might be overlooked in studies of 176 

smaller scale.  177 

3. Materials and Methods 178 

3.1 Experimental data 179 

Observations collected on anthesis date for a total of 5266 maize lines were obtained from the Panzea 180 

data repository (http://www.panzea.org ). The lines used were members of three genetic panels.  In particular, 181 

4785 lines were from the 25 RIL panels comprising the maize NAM set described above. Also included were an 182 

additional 200 RIL lines commonly referred to as the IBM panel because they originated by Intermating B73 × 183 

Mo17 (Lee et al., 2002).  Finally, a maize diversity panel (Flint-Garcia et al., 2005) contributed data on 281 184 

additional lines.  Various combinations of these lines were grown at six US sites: New York (NY), North Carolina 185 

(NC), Illinois (IL), Missouri (MO), Florida (FL) and Puerto Rico (PR), during 2006 and 2007 for a total of eleven 186 

site-years. In what follows “NY6” denotes the 2006 planting in New York, respectively by state abbreviation and 187 

year for other site-years.  Table 1 gives the exact locations of the experimental sites, and the respective sowing 188 

dates.  The “Total Lines” row of the table gives the number of lines from the three panels that were present in 189 

each study.  The “Lines with data” row lists the number of lines with available observations on anthesis date.  190 

Data on daily maximum and minimum temperatures for each site were provided by the maize NAM 191 

collaborators (H. Hung, personal communication, 2010) and did not included metadata on position of the 192 

weather stations to the field plots, types and calibration of sensors or types of radiation shields used. 193 

  194 
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Table 1. Sowing dates, geographical coordinates, total number of lines planted and number of lines for which 195 

anthesis dates were observed for all site-year combinations used in this study.  196 

 NY6 NY7 NC6 NC7 MO6 MO7 IL6 IL7 FL6 FL7 PR6 

Sowing Date 

(DOY) 

128 135 122 120 137 138 128 137 265 280 314 

Latitude (deg) 42.73 42.73 35.67 35.67 38.89 38.89 40.08 40.08 25.51 25.51 18.00 

Longitude (deg) -76.66 -76.66 -78.49 -78.49 -92.23 -92.23 -88.2 -88.2 -80.49 -80.49 -66.51 

Number of total 

lines sown 

5478 5478 5478 5478 5478 5478 5478 5478 5026 3753 5131 

Number of lines 

with data 

4743 5236 5236 5160 3261 2555 5036 5178 4943 3742 4401 

3.2  CERES-Maize model 197 

The Crop Estimation through Resource and Environment Synthesis (CERES)-Maize model is one of the 198 

oldest, most widely used ecophysiological crop models for maize (Quiring and Legates, 2008).   We used the 199 

CERES-Maize version incorporated in CSM (Cropping System Model) 4.5 (Hoogenboom et al., 2015; Jones et al., 200 

2003).  The CERES-Maize simulation of development toward anthesis is controlled by a set of GSP’s and 201 

environmental inputs (Kiniry and Bonhomme, 1991; Major and Kiniry, 1991). Specifically, the GSP’s studied 202 

herein were thermal time from emergence to juvenile phase (P1), critical photoperiod (P2O), sensitivity to 203 

photoperiods longer than P2O (P2), and the phyllochron interval (PHINT) as measured in thermal time.  The 204 

duration of Stage 1, the interval from emergence through the end of the juvenile phase, is calculated by 205 
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accumulating daily thermal time until P1 is reached. Stage 2 follows immediately and lasts until tassel initiation.  206 

Stage 2 lasts a minimum of four days when the photoperiod (including civil twilight) is less than P2O.  P2 207 

specifies the number of extra days required for every hour by which the photoperiod exceeds P2O.  The model 208 

continues to accumulate thermal time through Stage 2.  The model assumes that (1) there are five embryonic 209 

leaves; (2) two new leaves initiate during each phyllochron interval; and (3) that anthesis date, which 210 

terminates Stage 3, occurs when all leaves present at the end of Stage 2 (i.e., total leaf number, TOLN) are fully 211 

expanded.   The date on which this happens is when the ongoing thermal time accumulation reaches TOLN × 212 

PHINT. 213 

Thermal time is calculated from inputs of daily maximum and minimum temperatures. Sowing dates 214 

(Table 1) determined the time series of weather data that control simulated plant growth and development.  215 

The model calculated daily photoperiods from geographic position. Other required model inputs did not affect 216 

predicted anthesis dates and were not considered here. For example, the soil water and nutrient balance 217 

components of the model do not affect simulated anthesis date in the CERES-Maize model and therefore were 218 

not used in this study.  The model also requires row spacing and planting depth, which were set to 0.5 m and 219 

2.5 cm, respectively. No tillage, pest, or disease effects were simulated. 220 

3.3.  Parameter estimation 221 

3.3.1 Search strategy 222 

In the conventional approach to parameter estimation (Fig. 1a), an optimizer iterates through a series 223 

of trial solutions for which model predictions are generated in each environment.  The entire process is 224 

repeated for each line.  This approach becomes inefficient when many lines are planted together in large 225 

experiments and are therefore exposed to identical environments.  This is because estimates approaching 226 

optimal goodness-of-fit will only emerge in the latter stages of an iterative optimization run.  Therefore, the 227 

majority of early iterations for each line entail the repeated evaluation of estimates with mediocre predictive 228 

ability in the same environment. 229 
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To overcome this problem, we adapted an approach described by Irmak et al. (2000) and  Welch et al. 230 

(2002, 2000).  In their scheme (Fig. 1b), model simulations were conducted for each planting across a 231 

multidimensional grid of parameter value combinations.  The resulting predictions were stored in a database. 232 

As a second step, for each line the root mean square error objective function (RMSE; (Gill et al., 1981)  between 233 

observed and predicted anthesis day of year was evaluated with respect to all combinations of parameter 234 

values across all site-years. That is, for line l,  235 

                                                             ����� � ��

�
∑ �	� 
 	��
��� ��   (1) 236 

where, n is the number of observations for that line (consisting of one observation per site-year 237 

combination), and Yp (Yo) is the predicted (observed) anthesis date. The optimizer goal was to minimize the 238 

RMSE for each line.  If a unique minimum existed, it defined the combination of GSP values that best fit each 239 

line.  Total computational time was reduced because time-consuming model simulations for each combination 240 

of GSP parameter values were only performed once, but those outputs were reused many times in the much 241 

faster RMSE calculations.  Another benefit is that a combination of GSP values that yielded poor predictability 242 

for one variety might perform better for a different line.  Additionally, this process ensured that identical 243 

parameter combinations were tested for each line, which can aid in comparing the results achieved.  Finally, 244 

simply by retabulating the database, any number of different optimizations could be performed using different 245 

observations, alternative subsets of site-years plantings or combinations of parameter values. The use of 246 

alternative objective functions is also possible without requiring additional simulations.  Because of the central 247 

role played by the database of simulation outputs, we will refer to this scheme as the database method.  248 
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 249 

Fig. 1. Parameter search strategies a. Conventional method b. Database method. L1…N is the number of lines. 250 

3.3.2 Sampling the model parameter space with sobol sequences 251 

Unlike  Irmak et al. (2000) and  Welch et al. (2002, 2000) who sampled the parameter space with a 252 

rectilinear grid, we employed Sobol sequences so as to avoid the combinatorial explosion in computational 253 

requirements that accompany increasing dimensionality.  Sobol sequences belong to a family of quasi-random 254 

processes designed to generate samples of multiple parameters dispersed as uniformly as possible over the 255 

multi-dimensional parameter space (Press et al., 1992). Sobol sequences are specifically designed to generate 256 

samples with low discrepancy – that is, a minimal deviation from equal spacing. Unlike random numbers, quasi-257 

random algorithms can effectively identify the position of previously sampled points and fill the gaps between 258 

them (Saltelli et al., 2010), thus avoiding the formation of clusters. Further, Sobol sequences offer reduced 259 

spatial variation compared to other sampling methods (e.g., random, stratified, Latin hypercube; see Fig. 2a vs. 260 

2b), make this method more robust (Burhenne et al., 2011). We used a Python-based algorithm to generate a 261 

Sobol sequence of quasi-random numbers for calculating 32,400,070 sets of the four CERES-Maize GSP’s, 262 

leading to a uniformly-sampled four-dimensional parameter space for P1, P2, P2O, and PHINT.  To construct the 263 
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database, CERES-Maize calculated anthesis date for each GSP combination in each of the 11 site-years – a total 264 

of 356,400,770 model runs. Table 2 describes the upper and lower bounds and the number of distinct values 265 

obtained for each parameter.   266 

 267 

Fig. 2. (a) The first 275 quasi-random points from a two-dimensional Sobol sequence. (b) The first 275 268 

points produced by the commonly used Mersenne twister pseudo-random number generator 269 

(Matsumoto and Nishimura, 1998). The Sobol sequence covers the space more evenly.  The first 20 270 

points are green, the next 80 are blue, and the final 175 are red, thus demonstrating Sobol gap filling.  271 

  272 

a b
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Table 2. Parameter ranges used in generating sobol sequence. 273 

Parameter Definition Unit Min Max No. of unique 

values 

P1 Thermal time from seedling emergence to end 

of juvenile phase 

GDD (
o
C) 150 450 30,001 

P2O Critical photoperiod hour hrs. 10 14 401 

P2 Days of anthesis date delay for each hour by 

which the day length exceeds P2O 

rate 0 2 20,001 

PHINT Phylochron interval (Interval between 

successive leaf tip appearances) 

GDD (
o
C) 25 70 45001 

 274 

3.3.3 High performance computing 275 

The number of model runs was too large for lab-scale computing facilities, so  we used the “Stampede” 276 

supercomputer at the Texas Advanced Computing Center (TACC) (Burhenne et al., 2011). In toto, the CERES-277 

Maize runs required 63,372 CPU-hours, which equates to ca. 176 simulations per second distributed across 112 278 

processors. The predicted anthesis dates were collated and transferred to the “BeoCat” computing cluster at 279 

Kansas State University (https://support.beocat.ksu.edu/BeocatDocs/index.php/Compute_Nodes).  There, 280 

RMSE values were tabulated for each line × parameter value combination across all site-years in which anthesis 281 

date was observed.  As combinations of GSP values were found that had progressively lower RMSE values, they 282 

were recorded by the computer. This process required ca. 15 minutes of wall clock time per line so the total 283 

estimation process was completed in ca. 7 h on 200 Xeon E5-2690 cores.  284 

3.4 Assessing estimate properties 285 

3.4.1. Equifinality 286 
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Equifinality occurs when multiple combinations of parameter estimates generate the same minimal 287 

RMSE value, often because they generate identical model predictions (Luo et al., 2009), in this case identical 288 

integer DOY values for anthesis dates.  We quantified "equifinality” by defining “number of ties” as the number 289 

of Sobol sets of parameter combinations that produced the same optimal RMSE values, minus one. No 290 

equifinality is present in a line if there is only one combination of parameter values that minimizes the RMSE. 291 

That is, there are zero ties among its estimates.  To illustrate the magnitude of the problem and our motivation 292 

to study it more closely, we note that 2254 (43%) of the 5266 lines available in the data exhibited equifinality.  293 

The worst case was represented by a line that had 1,043,933 distinct combinations of GSP values that produced 294 

identical anthesis date predictions, and thus the same RMSE, thereby yielding 1,043,932 ties.   295 

During the database tabulation phase, the values of the “best combination of parameter estimates seen 296 

so far” was updated only if its RMSE value was strictly better than all previously evaluated ones.  So, when 297 

equifinality was present, the final GSP estimate was the first combination of parameter values encountered that 298 

had a minimal RMSE value. As a result, some of the analyses described below are sensitive to equifinality, 299 

illustrating the fact that subtle optimizer algorithm idiosyncrasies can have marked impacts on the overall 300 

results.  Such cases are noted explicitly along with the procedures used to mitigate the effects.   301 

3.4.2.  Interrelationships between parameter estimates  302 

Correlations and other relations among parameter estimates are highly important to breeding programs 303 

and related simulation studies.  When correlations between parameter estimates are present, opportunities 304 

exist to select on one plant trait by selecting on a related phenotype instead.  Additionally, there have been a 305 

number of in silico studies where CERES models were used to design crop ideotypes (Laurila et al., 2012; 306 

Semenov and Stratonovitch, 2013).  Such efforts find combinations of model parameter values that predict 307 

phenotypes well suited to the target population of environments.  Once identified, lines with those values 308 

become breeding targets.  However, a potential pitfall arises if realizing the desired genotype involves changing 309 

parameter values in directions contrary to the correlations that exist between them.   310 
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For this reason, we explored the pairwise correlation structure of the GSP parameter estimates and 311 

generated pairwise scatter plots of their line-specific values.  However, the latter revealed a bizarre pattern, the 312 

diagnosis of which ultimately led us to the second problem alluded to in the introduction – the inability of the 313 

model to reproduce certain observational combinations – and to the methods presented next.               314 

3.4.3. Model expressivity 315 

A common graphical method to assess the quality of model fit is to plot the predicted vs. observed 316 

values (e.g., Fig. 3). Such scatterplots can be informative in detecting areas of mismatch between observed and 317 

predicted values, thus providing specific characterization of the model’s lack of fit.  By definition, each point in 318 

the scatterplot corresponds to a prediction that a model is able to make given an optimized set of parameter 319 

values.  However, an entirely different question is whether there are observations that a given model cannot 320 

reproduce using any reasonable combination of parameter values?  That is, one might seek to assess whether a 321 

given model has the requisite expressivity to reproduce the data.  322 

The database approach allows such a question to be addressed using what we term phenotype space 323 

scatter plots.  In such plots, each axis corresponds to a different site-year.  The coordinates along the axes 324 

represent the observed or predicted anthesis dates for each site-year.  Model expressivity is then assessed by 325 

comparing the scatter of predicted anthesis date generated from a wide range of GSP value combinations to 326 

the scatter of observed values in large data sets.  Because equifinality does not affect predictions, this method 327 

of evaluating model expressivity is independent of the order in which an optimizer locates points that minimize 328 

RMSE values (see the second paragraph in section 3.4.1).   329 

3.4.4 Testing for parameter stability across environments 330 

In order for the two-step paradigm outlined in the Introduction to work, the estimates of GSP’s should 331 

not vary across the set of environments used to estimate them, a property called “stability” (Hammer et al., 332 

2006).  If GSP estimates did vary across environments, there would be no way to tell what GSP values to input 333 

to the ecophysiological model to predict traits whenever daily weather time series or soils differed from those 334 
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used in the paradigm’s first step.  This might seem an insuperable barrier to readers for whom G×E interactions 335 

are virtually ubiquitous among quantitative plant phenotypes, but it is not.  This is because the raison d’etre of 336 

models like CERES-Maize is to explain crop variety × environment interactions mechanistically based on 337 

physiological principles. 338 

Many GSP’s, including the ones in this study, explicitly relate plant behaviors (e.g., development toward 339 

anthesis) to environmental variables (e.g., temperature and photoperiod in the current case).  Modelers assert 340 

that GSP’s are properties of the individual lines (i.e., stable) and, therefore, by implication, have a genetic basis 341 

because genotypes do not change with the environment.  Over time, it is thus expected that research will 342 

mechanistically link at least some GSP’s to molecular genetic processes.  For example, both short (P2O) and long 343 

day critical photoperiods are determined by the dynamics of the CONSTANS protein in a range of plants 344 

including Arabidopsis (Andrés and Coupland, 2012) and a number of grasses (Hammer et al., 2006), albeit not 345 

maize (Mascheretti et al., 2015). In rice (Oryza sativa), critical short day length has even been successfully 346 

predicted from a differential equation model of the diurnal expression patterns of the CONSTANS ortholog 347 

(Welch et al., 2005b).  348 

Because stability is both important and reasonable to expect given the goals of ecophysiological 349 

modeling, it has been argued (Welch et al., 2005a) that finding a putative GSP to be unstable is prima facie 350 

evidence of a problem.  Possible causes of instability include: (1) the model incompletely or incorrectly 351 

disentangles G × E; (2) a stable answer exists but the optimizer is insufficiently skilled to find it; (3) undiscovered 352 

equifinality is present, and the solutions found depend on low-level algorithmic idiosyncrasies of the optimizer 353 

(e.g. section 3.4.1); and (4) unique best GSP estimates exist that the optimizer can find, but because the model 354 

is over-parameterized, the values obtained reflect noise signals that differ between environments.      355 

All sources of instability, whether these or others, are detrimental to the two-step ecophysiological 356 

genetic approach to phenotype prediction.  Thus, it is critical to know when parameter instability is present, so 357 

herein we developed a statistical approach to detect and test for it.  The specific question asked was "Do the 358 
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GSP estimates depend on the particular set of environments used to construct them?"  A conceptually simple 359 

way to answer this might be to (1) obtain a combination of parameter estimates from one subset of site-years, 360 

(2) repeat the estimation with a different subset, and (3) test whether the two sets of parameter estimates 361 

differ according to an appropriate statistical test.   362 

A more general and robust approach, however, might be to obtain parameter estimates from many 363 

site-year subsets chosen according to a principled method.  Preliminary tabulations of the Sobol database 364 

revealed that equifinality increased dramatically when fewer than seven site-years were used for estimation 365 

(see Results).  Therefore, the subset size was set to seven site-years.  One method for selection of site-year 366 

subsets might be to resample site-years with replacement. However, as shown by analogy in Fig. 2b, 367 

randomization adds a source of variability to the results that could be of concern given that sampling by 368 

replacement would have 
11
7P 39,916,800= possible site-year subsets. Therefore, analogous to Fig. 2b, we used 369 

a combinatorics-based sampling pattern leading to more uniformly-distributed site-year subsets by taking all 370 

combinations of 11 site-years 7 at a time, of which there are 
11
7C 330= possibilities.  To maximize the amount 371 

of data available for each line in any subset, we focused on the 539 lines for which observation were available in 372 

all 11 site-years.   373 

We then conducted 177,870 four-dimensional optimizations to obtain GSP parameter estimates for 374 

each of the 539 line × 330 site-year set combinations.  These optimizations involved only Sobol database 375 

retabulations rather than new model runs, again illustrating the computational efficiency of the database 376 

approach.  When forced to generate a single result, the database search returned the combination of GSP 377 

estimates yielding a minimal RMSE that it happened to encounter first.  To focus on the subset that lacked this 378 

element of optimizer arbitrariness, we first dropped the 114,314 line × site-year combinations that had ties (i.e. 379 

more than one set of GSP estimates yielding the same RMSE).  Because our primary interest was in the 380 

variability that different site-year combinations might contribute to GSP estimates, we further restricted our 381 

attention to the 297 site-year subsets that had at least 100 lines remaining after ties were removed.  Each of 382 
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the 539 lines was present in at least 28 site-year subsets, which was deemed adequate for GSP estimation.  383 

These actions left a total of 60,834 estimates for each of the four GSP’s in the study.  This became our base 384 

group for analysis.  We acknowledge that the estimates dropped share a common property (i.e., ties) that might 385 

have systematic effects influencing the results.  So, in addition to the base group just described above, we also 386 

examined the set of (1) all 177,870 GSP sets and (2) the 114,314 results for which ties existed.  In both cases we 387 

used the optimizer-selected values 388 

We then specified a statistical model to test for stability in parameter estimates across environmental 389 

subsets, as follows:  390 

 , ,l e l e l eρρ μ α β ε= + + +   (2) 391 

where ,lρ e  represents an estimate of the GSP ρ  (i.e. either P1, P2, P2O, or PHINT) for the l
th

 line (l = 392 

1,2,… 539) obtained from the e
th

 site-year set (e = 1,2,… 297), μ is the intercept parameter, acting as an overall 393 

mean of GSP ρ  across all lines and site-year subsets;  lα  is the differential random effect of line l, assumed to 394 

be distributed ( )2~ 0,l lNα σ ; eβ  is the differential random effect of the e
th

 set of site-years, assumed to be 395 

distributed ( )2~ 0,e eNβ σ  ;  and 
,l eε  is the left-over residual unique to the 

th,l e  observed GSP estimate and 396 

assumed .  The differential line effects lα   are considered to be random, as is common in 397 

field studies of plant population biology.  Further, the differential effects of site-year sets, 
eβ , were treated as 398 

random because the corresponding environmental sets are combinations of 7 out of 11 plantings considered to 399 

be a representative, if not random, sample of the population of possible site-years to which we are interested in 400 

inferring. 401 

If the estimation of any GSP parameter ρ  were stable across the site-year subsets, one would expect 402 

the variance of eβ , namely 
2
eσ , to be zero; alternatively, if estimation is unstable, one would expect 

2 0eσ > .  403 

( )2
, ~ 0,l e NIID εε σ
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To test this hypothesis set, we fit two competing versions of the statistical model in equation (1), one with and 404 

one without the random effect of site-year subsets eβ  for each of the GSP’s   P1, P2, P2O, and PHINTρ = . 405 

For each GSP, we then compared the two competing models using a likelihood ratio test statistic against a 406 

central chi-square distribution with half a degree of freedom to account for the fact that the test is being 407 

conducted on the boundary of the parameter space.  Statistical models were  fitted using the liner mixed-408 

effects model package lmer in R (Bates et al., 2014) with optimization based on the log-likelihood option. The 409 

lmer package also calculated the Akaike and Bayesian Information Criteria [AIC (Akaike, 1973) and BIC (Schwarz, 410 

1978), respectively], which allowed for an additional assessment of fit for statistical models that included or 411 

excluded the random effects of site-year subsets. 412 

4.   Results 413 

4.1 Observations vs. Predictions 414 

Fig. 3 shows a color-coded scatterplot of observed vs. predicted days to anthesis for 49,491 line × site-415 

year combinations; the cloud of points is concentrated along the identity line, therefore suggesting accurate 416 

prediction; the overall estimated RMSE is 2.39 days. Also, there seem to be considerable differences between 417 

sites on anthesis days, whereby Florida and Puerto-Rico show very short vegetative durations (ca. 50 d), which 418 

are more than doubled in New York (120 d). Empirical correlation coefficients ( r̂ ) were high across site-years 419 

and ranged from 0.86 to 0.95, thus indicating an overall responsiveness across lines to the range of site-year 420 

conditions on anthesis dates.  The standard deviations of the predicted values and their corresponding 421 

observations are 10.336 and 10.639, respectively, which, with the overall empirical correlation coefficient of 422 

0.974,  account for a close to 1-to-1 estimated regression slope of observations vs. predictions [i.e. 1.002 = ( 423 

10.639 /10.336) *0.974], as per the established statistical identity between these four sample quantities 424 

(Harrison and Tamaschke, 1984).  425 
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 426 

Fig. 3. Predicted and Observed anthesis days of all 5,266 lines from 11 site-year combinations.  The graph has 427 

49,491 points and an overall RMSE of 2.39 days. 428 

4.2 Equifinality 429 

A more complex picture emerges when the prevalence of equifinality is considered.  As noted in 3.4.1, 430 

for the 2,254 lines exhibiting equifinality, the number of ties can exceed 1M.  The histogram in Fig. 4a tabulates 431 

the frequency of ties across lines.  There are 2,153 lines with fewer than or equal to 40 ties.  The line trace along 432 

the upper portion of the top and bottom panels shows the average number of site-years in each bin.   433 

In Fig. 4a, the empirical distribution of ties was right skewed, thereby indicating that a relatively large 434 

number of maize lines had few ties and thus low levels of equifinality. This is particularly true when parameter 435 

estimates were computed using data from 7 to 11 site-years (right axis of Fig. 4b).  Further, the distribution of 436 
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ties appears to have a very long tail to the right, whereby the number of lines with increasing amounts of 437 

equifinality declines very slowly while the number of site-year combinations used for estimation seems to 438 

plateau (Fig. 4a).  This pattern continues into Fig. 4b, which shows the 101 lines with more than 40 ties. (No bars 439 

are shown in Fig. 4b due to scale of the y-axis, as each bin generally contains one to three lines.) Interestingly, 440 

the number of ties, and thus equifinality, seems to increase precipitously for the 56 out of 5,266 lines that have 441 

fewer than seven site-years of data (Fig. 4b).      442 

As the number of ties increases, one can expect that the range of indistinguishable estimates for any 443 

GSP will widen.  To illustrate this phenomenon, a set of GSP estimates were obtained using just two illustrative 444 

site-years (NY6 and NY7) so as to artificially inflate equifinality.  Fig. 5 shows scatterplots of coordinate pairs of 445 

either predicted (a) or observed (b) values for anthesis days from NY6 (horizontal axes) and NY7 (vertical axes). 446 

Points in each scatterplot are color-coded to represent the number (on a log10 scale) of tied GSP combinations.  447 

Each tied GSP combination, when simulated using the weather data for NY6 and NY7, predicts the same 448 

anthesis dates that form the point’s coordinates.  Dark red indicates 235,976 ties and blue indicates 1 tie.  It is 449 

reasonable to expect that as the number of ties increases, the range (max minus min) of the equifinal estimates 450 

will increase.  The size of each circle indicates the range of tied P1 estimates expressed as a percentage of the 451 

mean.  These percentages extend from 0.36% to 65.68%.  The association of redder colors with larger circles 452 

indicates that estimate ranges do, indeed, increase with the level of equifinality.  453 

This is an example of a phenotype space plot that can be used to show how properties of interest (e.g. 454 

number of ties and estimate ranges in this case) are distributed across the range of predictions made by the 455 

model given the weather in a pair of site-years.  Notice that (1) the cloud of observed points (Fig. 5b) is more 456 

dispersed than that of the predicted points (Fig. 5a), suggesting that model responses to the environment were 457 

less plastic than those of real plants and (2), as indicated by the red lines, the lowest numbers of ties in Fig. 5b 458 

(blue points) appear to fall in empty regions of Fig. 5a where predictions are lacking.  This pattern has important 459 

consequences to be explained later in section 4.4. 460 
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 461 

Fig. 4. Histogram depicting the frequency distribution of number of ties for 2,254 lines, used here to 462 

characterize equifinality. (a): Histogram of number of ties for 2153 lines with fewer than or equal to 40 ties. (b): 463 

Continuation of the histogram tail from the upper panel figure representing frequency of ties for the 101 lines 464 

with more than 40 ties. The trace at the top of each panel represents the average number of site-year 465 

combinations (right axis) used as data for parameter estimation.   466 

 467 
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 468 

Fig. 5. Phenotype space plots of predicted (a) and observed (b) values of anthesis dates for site-years NY6 and 469 

NY7.  The marker sizes and colors respectively express the levels of equifinality based on number of ties for P1 470 

(log10 scale) and the relative ranges of its tied values. The red line is explained in the text. 471 

4.3 Interrelationships between parameter estimates  472 

Fig. 6 presents a combined plot depicting histograms of GSP parameter estimates based on all 5,266 473 

lines along the main diagonal and corresponding pairwise GSP scatterplots in the upper right panels.  The GSP 474 

estimates were obtained using all site-years. The lower left panels in Fig. 6 show the estimated Pearson 475 

correlation coefficients ( r̂ ), estimated regression slopes (b�), and corresponding p-values for each mirrored 476 

scatterplot. Two immediately apparent features on the scatterplots are to be noted, which might readily escape 477 

notice in data sets with fewer lines.  The first is the pronounced banding pattern appearing in all plots except, 478 

perhaps, P2O vs. PHINT.  Most bands seem to be linear except for those on the scatterplot of P2O and P2 plot, 479 

which exhibits curvilinearity. The second is the pronounced vertical gap in all P2O scatterplots. In an attempt to 480 

understand the reasons for such patterns, the authors explored multiple seemingly plausible hypotheses, 481 

ranging from genetics to input file coding quirks (e.g., unintended rounding of parameter values) and many 482 

a b
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more, all of which were tested and discarded.  Ultimately, the results presented in the following sections 483 

provided the explanations.  484 

 485 

Fig. 6. Empirical distribution of selected GSP parameter estimates (main diagonal), pairwise scatterplots (upper 486 

right triangle) and empirical estimates of Pearson correlation coefficients, regression coefficients and p-values 487 

(Lower left triangle).  Each dot in the scatter plots represents a pair of GSP estimates from a single line. 488 

4.4 Model expressivity  489 

The first clue to the cause of the banding pattern emerges from the phenotype space plots in Fig. 7.  490 

Each plot corresponds to an independent fit to just one particular pair of site years. The blue regions in each 491 

panel of Fig. 7 outline predicted anthesis date pairs for two consecutive years in a given site, where model 492 
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prediction are constrained by the bounds imposed on the range of values allowed for each of the four GSP’s 493 

(Table 2). Also, for each panel in Fig. 7, a dot depicts an observed anthesis date pair for a line present in a given 494 

site in both 2006 and 2007. Yellow (red) dots represent observed anthesis date pairs that the model was able 495 

(unable) to reproduce. We characterize each observation corresponding to a yellow (red) dot as “expressible” 496 

(“inexpressible”). Except for the two North Carolina site-years, there were many lines (Table 3) for which 497 

observations on anthesis date could not be predicted despite: (1) the seeming breadth of GSP values allowed by 498 

Table 2; and (2) the fact that the model was only being asked to match two data points, which would seem to 499 

greatly relax the constraints on GSP estimates.   500 
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Fig. 7.  Phenotype space plots for predicted and observed anthesis dates. Each panel corresponds to a pair of 502 

site-years for which fits were done. Regional color codes are described in the text.  503 

Table 3. Numbers of model expressible and inexpressible observations for selected site-year pairs. 504 

Lines that are
a
: NY6/NY7 NC6/NC7 IL6/IL7 MO6/MO7 FL6/FL7 

Expressible 2189 4964 2024 146 193 

Inexpressible 2542 168 2946 637 3339 

a
 These numbers refer to lines with data in both years of each pair and therefore do not precisely align with Table 1. 505 

This begs the question as to what would happen to model expressivity if an even broader range of GSP 506 

values were allowed.  In an attempt to investigate in a computationally efficient way how the outputs of a more 507 

conventional optimizer might appear when viewed in phenotype space, the CERES-Maize anthesis date routine 508 

was ported to Python and fit to NY6/NY7 via Differential Evolution (DE) (Das and Suganthan, 2011).  DE is a well-509 

established (63K Google Scholar hits on “Differential Evolution” as of October 21, 2016) and highly effective 510 

evolutionary algorithm that embodies mechanisms reminiscent of techniques ranging from the Nelder-Mead 511 

Simplex (Nelder and Mead, 1965) method to Particle Swarm Optimization (Kennedy, 2011).   Among the 512 

algorithm’s initiating inputs is the range of parameter values within which to search, which were set as shown in 513 

Table 4. These ranges are greatly broadened from that used in the database search (Table 2); in fact, the values 514 

in Table 4 are intentionally broader than biological experience would suggest as reasonable. 515 

Table 4. Extended range of parameter values used for DE search. 516 

Parameter Definition Unit Min Max Percent of 

Sobol Range 

P1 Thermal time from seedling emergence to 

end of juvenile phase 

GDD (
o
C) 75 600 175% 
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 517 

Fig. 8 shows overlapping predictions based on the database search under the range of parameters in 518 

Table 2 and on the DE search under the extended range of parameter values (Table 4).  Specifically, the light 519 

blue area represents the anthesis date region that was reachable through predictions based on the database 520 

search.  In contrast, the dark blue area is the predicted anthesis date region within which the DE algorithm 521 

converged.  Note the almost perfect overlap of the lower edges of the light blue (i.e. database search) and dark 522 

blue (i.e. DE search) areas, indicating that, despite its much larger starting parameter search space, DE did not 523 

extend model predictions. This suggests limitations in model expressivity that go beyond the method of 524 

parameter estimation or the initial parameter space used for the search.   525 

As a corollary, it is worth noting that more site-years of data of similar quality are unlikely to improve 526 

model expressivity, as illustrated by the following thought experiment.  Suppose a community has developed 527 

the univariate deterministic model ( )arctany θ= , where θ  is a parameter, with 0 10θ≤ ≤  by solid prior 528 

knowledge and y is some dependent variable of interest. Assume that this is viewed as a very complex model 529 

requiring simulation to solve.  The community understands that no model is perfect, but no specific flaws of this 530 

one are known.  Extant data for y ranges from 1.31 to 1.61 and yields the point estimate ˆ 5 .79θ =  (RMSE = 531 

0.12).  Due to its complexity, no one has noticed that the model cannot reproduce any ( )arctan 10 1.47y > =  532 

or, for any θ , a 2 1.57y π> ≈ .  Now suppose that: a very large set of new y data is collected.  Depending on 533 

the distribution of the new data either: (1) a new ˆ 1 0θ <  will be found or (2) θ̂  will rise significantly above 10, 534 

P2O Critical photoperiod hour hrs. 6 21 300% 

P2 Days of anthesis date delay for each hour by 

which the day length exceeds P2O 

rate 0 6 375% 

PHINT Phylochron interval (Interval between 

successive leaf tip appearances) 

GDD (
o
C) 20 110 200% 
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leading to a rejection of the model.  However, what will not happen is that the increase in data will enable 535 

observations >1.57 to be reproduced.  The model simply lacks the expressivity to do so.  Analogously, increasing 536 

the amount of anthesis date data may narrow GSP estimate confidence limits, but the reachable region of 537 

predicted phenotype space is unlikely to extend beyond the edges of the light blue regions.  Therefore, any 538 

improvement in the ability to predict the large numbers of red points in Fig. 7 and 8 is unlikely.      539 

 540 

Fig. 8. Superimposed anthesis date results using NY6 and NY7 data illustrating that searches via database and 541 

DE optimization over a much larger parameter space are equally unable to reproduce the observations for lines 542 

shown as red dots.   543 
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Given these issues, a sensible follow-up question might be about what specific GSP estimates were 544 

reported for the red points?  Here we report answers only for P1. 545 

 546 

 547 

Fig. 9. Scatterplot of P1 vs. P2O estimates using data from NY6 and NY7 based on the database search (a) and 548 

Differential Evolution (b).  Yellow and red dots are, respectively, observations characterized as expressible and 549 

inexpressible by model predictions.   550 

Fig. 9 shows scatterplots of P1 and P2O estimates generated using data from NY6 and NY7 via the 551 

database search and DE. The color coding is consistent with that in Fig. 7a.  The pronounced bands at ca. 552 

P1=250 in both panels are immediately striking – although the scale is small, a corresponding band is quite 553 

evident at the same position in Fig. 6.  A tabulation reveals that, of all 4,731 lines represented in the Fig. 9a, 554 

3,227 (68.2%) have estimates of P1 ranging from 245 to 260.  Of these, 1,493 are expressible (yellow) and 1,734 555 

(red) are not expressible. Out of the total 4,731 points in the graph 2,189 (46.2%) are expressible and 2542 556 

(53.8%) not.  The Fig. 9b has similar proportions of expressible and inexpressible points (2327, 49.1%; and 2404, 557 

50.9%; respectively), reinforcing the similarity of results for parameter estimates from DE and database 558 

searches.  The differences are likely due to the ability of DE to explore the parameter space continuously 559 

a b
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whereas the database search is restricted to the predefined discrete Sobol points.   Still, one may wonder why 560 

so many P1 estimates are near the 250 degree-days?  Fig. 10 reveals the answer. 561 
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 562 

 563 

Fig. 10. P1 estimates from the database search (black) and the numbers of lines with inexpressible observations (red) arranged in a tableau organized 564 

as a phenotype space plot corresponding to the center portion of Fig. 8.  The dark red line is the expressibility frontier and the green arrow shows the 565 

P1 value (254) from the GSP combination that minimizes the RMSE for one illustrative line. Horizontal and vertical yellow strips are the anthesis dates 566 

for NY6 and NY7 567 
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The numbers in black are the “first-best-found” P1 estimated values that generate the corresponding 568 

row × column anthesis date combinations.  A comparison with the corresponding dot colors and sizes in Fig. 5b 569 

indicates that, on the frontier (red borders Fig.  5a,b and 10) between expressible and inexpressible 570 

observations, there was essentially no equifinality and, concomitantly, narrow ranges of P1 values.  Fig. 10 571 

shows that the P1 values along the frontier were all quite close to 250.  For lines with observations falling 572 

outside the frontier, the RMSE was minimized by assigning GSP values associated with the closest achievable 573 

dates, i.e. those directly on the frontier.  Therefore, all the lines counted by the red numbers were assigned P1 574 

values that are very close to 250 and have essentially no equifinality.  The green arrow in Fig. 10 illustrates this 575 

phenomenon for one line.  The nearest P1 estimate is 254 and the length of the arrow (ca. 5.8 days) is 576 

proportional to that line’s RMSE.  Specifically, in this case the length is 1 2  times the RMSE because there are 577 

2n = site-years.   578 

Recall that the upper limit placed on P1 was 450 (and 600 in the DE search), therefore this outcome is 579 

likely not an artifact of constraints in the GSP search space but, rather, a result of poor model expressivity, that 580 

is the model inability to predict anthesis date pairs beyond those on the frontier.  This mechanism accounts for 581 

the P1 band at 250 in Fig. 9a.  Furthermore, as previously presented, more data cannot improve the prediction 582 

of inexpressible lines, the banding in Fig. 6 is not surprising.   583 

4.5 P2O gap  584 

We now investigate the vertical gap in scatterplots involving P2O estimates (Fig. 6), which documents 585 

the intricacy of the interactions that can occur between model mechanisms, parameter ranges searched, 586 

optimization algorithms used, and environments included. Exploratory re-tabulations of the Sobol-based 587 

parameter database revealed that the P2O gap was clearly present in the three site-years having shorter day 588 

lengths (FL6, FL7, and PR6) but absent in fits obtained by only including the remaining eight site-years with 589 

longer days (Fig. 11).  Fig. 12 shows that a substantial number of observations for short-day site-years are 590 

outside the predicted phenotype ranges expressible by the model under either database or DE optimization.  As 591 
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described in section 3.2, the model operated by calculating the number of leaves initiated by the end of Stage 2 592 

and predicts anthesis only after leaves are fully emerged.  For any line, leaf number was a constant across all 593 

site-years, namely P1/(2×PHINT)+5.  The variation of anthesis dates across plantings was such that there were 594 

few, if any, combinations of P1 and PHINT that were compatible with the data from all site-years.  Therefore, 595 

the optimizer relied more heavily on the P2 and P2O parameters.  596 

Specifically, the optimizer settled on very small P2O estimates, much smaller than the short southern 597 

photoperiods. Instead, the optimizer relied on P2 estimates to generate anthesis date predictions that were 598 

delayed to the greatest extent possible by lengthening Stage 2.  Recall that P2O values above the day length 599 

make Stage 2 only four days long, which is not enough time for temperature differences to accumulate the 600 

needed variation.  The abundance of low P2O estimates thus created the gap observed in scatterplots of P2O 601 

with other GSPs (Fig. 11a).  In contrast, the photoperiods in the remaining longer-day site-years exceeded the 602 

maximum allowed P2O values in the P2O database search during (and long after) the juvenile period.  603 

Therefore, there was no empty band in the scatter plot (Fig. 11b) because the optimizer was able to exploit 604 

delays for any value of P2O. 605 

With the broader range of parameter values available to the DE runs and the increased flexibility 606 

available between P1 and PHINT, other options became available.  In particular, in many cases DE found GSP 607 

combinations wherein P2O exceeded the southern day lengths so photoperiod had no influence on anthesis 608 

date and no gap artifact was generated (Fig. 11d,i).  P1 and PHINT thus became the major explanatory 609 

parameters.  This is shown in Fig. 13, whereby for each line, the parameter differences are plotted against the 610 

RMSE differences that result from changing the estimation methods from database to DE optimization.  The DE 611 

estimate of P2O were larger in 4,507 out of 5,240 lines (87%; Fig. 13d), almost always by enough to put it above 612 

the local day lengths.  In tandem, P1 values fell in 3,559 lines (Fig. 13a), whereas PHINT rose in 4,102 lines (Fig. 613 

13c). 614 
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Note, however, that for any (P1, PHINT) combination, any P2O that exceeds the local day length will 615 

give the same RMSE – a clear source of equifinality.  Thus, the changes in P2O will not, in all likelihood, lead to 616 

values that can be more closely related to genetics.  Moreover, because of the limits on model expressivity, 617 

none of the DE solutions gave significantly better fits than the database estimates.  This is why virtually all 618 

points in Fig. 13 had DE RMSE’s within 0.5 days (horizontal axes) of the database-based parameter estimates.  619 

This, too, is an illustration of equifinality because the two optimizers were finding different GSP estimates 620 

although the RMSE were of similar magnitude.  621 

 622 

Fig. 11.  P2O and PHINT scatter plots (top row) and P2O cumulative density functions (bottom row) using (a & 623 

e) all 11 site-years, ( b & f) longer day site-years, (c & g) shorter day site-years based on the database approach, 624 

and (d & i) shorter day site-years using the DE approach.  All horizontal axes in both rows have the same scale. 625 
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 626 

Fig. 12.  Phenotype space plots of observed and predicted values based on the three site-years with shorter 627 

days.   Note the large number of points in the FL6-PR6 and FL6-FL7 plots that lie above the dark blue prediction 628 

region based on DE.  629 
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 631 

Fig. 13. The differences in parameter estimates from database search vs. DE (vertical axes) plotted against the 632 

corresponding difference in RMSE for 5240 lines in FL6, FL7, and/or PR6.  The color encodes the sum of residual 633 

(observed minus mean) across site-years for each line.   634 

4.6 Tests for stability of GSP estimates 635 

Table 5a shows the effect of including or excluding the effect of different subsets of site-years on the 636 

modeling of estimates (Equation 1) for each GSP for the base set.  For all GSP parameters, AIC and BIC values 637 

were considerably smaller for models that included the random effect of site-year subsets, eβ , therefore  638 

suggesting non-negligible variability across site-year subsets on the GSP estimates.  The table illustrates the size 639 

of the site-year set effects as follows.  For scaling purposes, we provide the estimated intercept, ˆρμ , which also 640 

serves also as an estimated GSP grand mean across all lines and site-year subsets.  The Index of Variability 641 

(expressed as a percent) is the standard deviation of the eβ  effect normalized by the grand mean.  The 642 

a
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percentage of the total GSP variance (��
�
� ��

�
� ��

�) attributable to site-year subsets is also shown.  Both of 643 

these descriptors indicate substantial variability between site-year sets, with indexes of variability ranging from 644 

5.9% for P2O to 33.6% for P2 and over 20% of the total variance related to site-year sets for all GSP’s.  645 

The Chi square values from the likelihood ratio test and the associated p-values are presented in the 646 

last two columns of Table 5a.  The extreme p-values demonstrate that the GSP values depend on the set of site-647 

years used to estimate them. Therefore, the GSP’s are not, in fact, genotype specific despite the goodness-of-fit 648 

displayed in Fig. 3.  This result is completely understandable given the range of artifacts due to equifinality and 649 

model expressivity issues identified above.  650 

Table 5b shows the results when only estimates having ties are tested (left) vs. an analysis that includes 651 

all estimates (right). The former corresponds to estimates for lines whose observations fall inside the 652 

expressivity frontier and the latter includes the estimates for all lines. It is clear that the grand means, index of 653 

variability, and percentages of GSP variance are highly similar between all three groupings in Table 5. Also, all p-654 

values are extremely significant and increase with the amount of data used. 655 

 656 

  657 
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Table 5a. Estimated log likelihood, fit statistics, selected summary measures, and a likelihood ratio test for 658 

competing statistical models fitted on GSP estimates with and without the random effect of site-year subset, 659 

based on GSP estimates for the base group (N=60,834).  660 

GSP 

Log 

likelihood 

w/o (top) 

and w/ (bot) 

a site-year 

set effect
a
 

AIC w/o (top) 

and w/ (bot) a 

site-year set 

effect
b
 

BIC w/o (top) 

and w/ (bot) 

a site-year 

set effect
b
 

GSP Grand 

Mean 

ˆρμ   

Index of 

Variablility
c 

ˆe ρσ μ   

Variance 

pcts. for 

site-year 

sets
c 

2 2
e totσ σ   

Chi-

square 

test 

statistic 

Chi-

square 

p-value
d
 

(df =0.5) 

P1 

-338046 

-322689 

676098 

645386 

676125 

645422 

264.625 12.30 34.38 30714 10-13334 

P2 

-46154 

-25237 

92313 

50482 

92340 

50518 

1.037 33.55 33.92 41833 10-18163 

P2O 

-105304 

-95357 

210614 

190723 

210642 

190759 

12.2440 5.88 27.83 19894 10-8635 

PHINT 

-254875 

-246903 

509756 

493815 

509783 

493851 

44.167 15.44 22.62 15943 10-6919 

a Larger is better  b Smaller is better  c Chernoff upper bound on Chi-squared cum. dist. function.  661 

 662 

  663 
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Table 5b. Summary measures and likelihood ratio p-values for competing statistical models fitted on GSP 664 

estimates with and without the random effect of site-year subset from data only having ties (left) and all data 665 

(right).  666 

GSP 

GSP 

Grand 

Mean 

ˆρμ  

Index of 

Variablility
c 

ˆe ρσ μ  

Variance 

pcts. for 

site-year 

sets
c 

2 2
e totσ σ  

Chi-

square 

p-value
d
 

(df =0.5) 

GSP 

Grand 

Mean 

ˆρμ  

Index of 

Variablility
c 

ˆe ρσ μ  

Variance 

pcts. for 

site-year 

sets
c 

2 2
e totσ σ  

Chi-

square 

p-value
d
 

(df =0.5) 

With Ties (N=114,314) With all Data (N=177,870) 

P1 273.5 11.37 29.77 10-23283
 270 11.48 29.94 10-34955

 

P2 0.9137 36.33 35.23 10-34723
 0.9593 35.5 33.8 10-52518

 

P2O 12.49 4.43 19.70 10-11883
 12.42 4.88 21.27 10-19806

 

PHINT 43.57 18.65 26.31 10-17348
 43.94 17.3 24.35 10-23740

 

a Larger is better  b Smaller is better  c Chernoff upper bound on Chi-squared cum. dist. function.  667 

5. Discussion 668 

Since their inception, ecophysiological models have been evaluated in terms of predictive ability, which 669 

are superb in many circumstances (Batchelor et al., 2002). The model parameters were considered to be inputs 670 

whose genesis was secondary as long as the model outputs proved useful.  However, as often happens in 671 

science, perceived needs, desiderata, and requirements escalate as technologies evolves.  In particular, we are 672 

now demanding that the model inputs themselves be the accurate outputs of processes at the genetic level 673 

that can be modeled by genomic prediction. It is not surprising, therefore, that modeling technologies (ranging 674 

from data collection to estimation) that were adequate for past applications now require improvement. 675 
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From a fundamental but traditional perspective, there are several issues of perennial concern in crop 676 

modeling.  The first is model functional structure including both its degree of expressivity and its behavior under 677 

optimization. For example, estimation procedures like DE, that primarily yield point estimates, are limited in 678 

their ability to assess equifinality.  At best, one can query the flatness of the goodness-of-fit function in the 679 

neighborhood of the estimate, but this does not tell anything about the ubiquity of equifinality across the 680 

parameter space.  Nor do these procedures allow one to detect observations that fall outside of the model’s 681 

scope of expressivity unless the discrepancies are quite large. Doing so requires methods like the Sobol 682 

database scheme used here that can make broader assessments in both parameter and phenotype space.  It 683 

may well be that the rarity with which database methods have been used has led to an underappreciation as to 684 

the prevalence of these adverse situations.  685 

When expressivity issues are identified, results like those above are not likely to be solved merely by 686 

acquiring more data of the same type.  In such situations, better models will often needed and modern genetic 687 

studies can help. A great many plant component subsystems are currently under study at the molecular level.  688 

Indeed, some of these (e.g., Chew et al., 2014) are even being combined into multi-scale organ and whole plant 689 

models.  Even without modeling directly at the genetic level one can use the derived insights to make informed 690 

choices between alternative representations of individual ecophysiological processes. Tardieu (2003) refers to 691 

such representations as “meta-mechanisms”.  It would seem plausible that building models from component 692 

parts of increased biological realism should increase the ability to reproduce field variation – at the very least, it 693 

is hard to see how it can hurt.  As a concrete example, the B73 parent is photoperiod insensitive.  In CERES-694 

Maize, however, the only way to express this is by setting P2O in excess of the observed photoperiods, with the 695 

consequences we have seen.  696 

This is not to say, however, that both more and better data are not needed.  Indeed, data quality issues 697 

can impact both expressivity and GSP stability.   For example, while the date seed that are physically sown in a 698 

field is usually known and not subject to error, researchers often report a subjective notion of “effective sowing 699 
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date” based on their interpretation of whether low soil moisture delayed germination.  If errors in sowing date 700 

push an anthesis observation across the expressivity frontier, erroneous GSP estimates will result.  Such errors 701 

can also arise if different personnel are involved across locations or growing seasons, especially for visually 702 

evaluated phenotypes like most phenological traits. Providing the emergence date can provide a partial check 703 

for these problems and also for errors in simulating time from sowing to emergence.  Unfortunately, 704 

emergence dates were not reported for the maize NAM dataset. 705 

Another traditional modeling concern has always been the relationship between the observed 706 

environmental data and the immediate environmental conditions actually experienced by individual plants.  707 

Weather data can suffer from multiple sources of bias and error (Fall et al., 2011). For example, stations that 708 

are not located within or directly adjacent to experiments may have bias due to local variation in weather 709 

conditions. Additionally, although of limited concern for anthesis dates, the quality of soil and management 710 

data.  In this study any systematic differences in protocols for collection of weather data between the sites as 711 

aggravated by small sample effects, might have contributed to some degree to the significance levels in Table 5.  712 

It would certainly be desirable to have a method by which this potential effect might be quantitatively assessed.  713 

Such a method could be instrumental in designing experimental procedures for reducing the problem.  One 714 

potential example might be to eschew external measurements of some environmental variables (e.g., air 715 

temperature) and use sensors onboard UAV’s or other automated vehicles to measure plant temperatures or 716 

other critical features directly at high temporal and spatial frequencies.  717 

More involved data types and structures are also needed to resolve issues of equifinality when they 718 

arise.  Equifinality is fundamentally a problem of discernment.  In simple terms, given an equation  c a b= + , if 719 

one only has data on c, then estimates of a and b are doomed to be equifinal.  If one desires otherwise, one 720 

must find a way to measure either a or b.  Current technological efforts to develop high throughput 721 

phenotyping approaches might be quite helpful in this regard.  For example, assuming that 722 

TOLN=P1/(PHINT×2)+5 is the correct way to model the number of leaves at anthesis, data on total leaf number 723 
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would help constrain the parameter estimates.  This leads toward a range of constrained and/or multiobjective 724 

estimation procedures on which there has been significant amounts of research (Rabotyagov et al., 2012; 725 

Tatsumi, 2016). Maximum entropy methods offer another opportunity wherein one identifies a probability 726 

distribution of values that is constrained by but mathematically no more informed than is justified by a set of 727 

potentially diverse data types (Hess et al., 2002).  Another alternative might be Bayesian methods with 728 

multivariate likelihood functions that combine several observational variables (Franks et al., 1999). 729 

Another approach to reduce equifinality would be to use simpler models.  The fewer the number of 730 

processes and GSP’s in a model, the smaller the opportunity for hard-to-spot tradeoffs to exist wherein 731 

adjustments to one parameter can be offset by tweaking another one.  Of course, the tradeoff may be less 732 

expressivity leading to other problems.  However, Welch et al. (2005) presented 12 dichotomies comparing 733 

gene network modeling and quantitative genetics approaches, where aspects of the former might also apply to 734 

ecophysiological modeling.  They opined that an optimal modeling approach should entail a synthesis of both.  735 

The key features to be contributed from the network (i.e., ecophysiological) side would be (1) the ability to 736 

handle time-varying dynamics, (2) a far more parsimonious approach to expressing biological and biology × 737 

environmental interactions, and (3) a more mechanistic explanation of how traits originate.  It is at least 738 

conceivable that some way station of moderate complexity exists between statistical genetics and full crop 739 

models that can achieve this. 740 

At whatever level of complexity proves appropriate, one cannot accurately estimate the parameters 741 

controlling model components without collecting data on settings wherein the relevant processes operate 742 

differentially.  This is clear from the P2O gap phenomenon, which was apparent when only short day data was 743 

used and absent under long days.  Both settings distorted the results, in one case compressing estimates into a 744 

restricted range, leaving a gap, and, in the other, allowing them to spread out.  Furthermore, this interacted 745 

with the range of values allowed, which caused shifts between (P1, PHINT) and (P2, P2O) as to which 746 
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parameters appeared to be “explanatory”.  The debilitating influence of such behavior on linking parameter 747 

values to genes is terribly obvious.      748 

However, it also should not escape notice that the gap was evident even in a mixture of environments, 749 

suggesting that good experimental design entails more than just making sure that a suitable range of 750 

environments is included.  There is some notion of balance that needs to be established and applied globally to 751 

data selection.  In this context, it is worth noting that despite the fact that thousands of lines were planted in 752 

each location, there were only 539 lines where data were reported from all 11 trials.  However, given the 753 

expense of such large-scale trials and the multiple purposes each one will serve, “balance” cannot mean 754 

“orthogonality” where all lines are planted at all sites.  Of course, an established benefit of ecophysiological 755 

models is to serve as guides to help prioritize experimentation over time.  It seems likely that as their 756 

integration with statistical genetic models expands, they might also be able to assist in the rational planning and 757 

resource allocation for large, multi-site trials. 758 

Another approach entirely would be to seek to move beyond a two-step “estimate and then map” 759 

paradigm.  Conventional mapping methods essentially isolate genetic markers whose pattern of assignment to 760 

lines mirrors the pattern of phenotype values of interest.  A general linear model is assumed to mediate 761 

between marker states and realized phenotypes.  There is no conceptual reason why that general linear model 762 

might not be replaceable by a crop model. In effect, one could conceive a hierarchical model in which a first-763 

level model is specified on the data and higher order submodels are specified on the parameters that 764 

characterize the behavior of observed data, much like proposed by Bello et al. (2010). 765 

One could conceptually implement this hierarchy in the context of crops by fitting phenotypes with an 766 

ECM whose GSP’s are then specified as functions of genetic markers at another level of the hierarchical model.  767 

Indeed, this is what the current paradigm attempts, except that the two-step estimation process curtails 768 

smooth borrowing of information across hierarchical levels of the model that could potentially help resolve the 769 

equifinality problem. 770 
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We acknowledge that one-step hierarchical model approach might not solve the sort of expressivity 771 

problems described in the thought experiment and documented in our results (both in 4.4). Yet, it would enable 772 

the genetic structure of the population to inform the GSP estimation process.  The potential utility of this 773 

hierarchical modeling approach is currently under study in one of our labs.  The approach would also enable 774 

more efficient use of data.  Currently, the two-step approach requires data from multiple environments (Welch 775 

et al., 2002) for each line in order to estimate the GSP’s  before mapping can proceed.  However, consider a line 776 

that was culled very early in the selection process, perhaps even after a single round.  Because the parameters 777 

estimated in putative one-step hierarchical modeling schemes would include marker effects, even just one 778 

planting becomes a usable observation if the line is genotyped.  This is a sufficiently inexpensive operation now 779 

that some programs (e.g. CIMMYT; (Battenfield et al., 2016) are doing so routinely for the offspring of all 780 

crosses.   781 

A one-step hierarchical modeling approach might also make it possible to utilize data taken on lines 782 

after they enter the market place.  Analogously to high throughput phenotyping in breeding programs, 783 

precision agricultural management is also investing in sensor- and model-based approaches to improve 784 

productivity (Thompson et al., 2015; Thorp et al., 2015) while collecting a wealth of multivariate data.  Usually, 785 

of course, hybrids are released into areas where they show low G×E interactions.  For example, a line with a 786 

particular P2O is not likely to be released across a sufficient range of latitudes to have great differences in day 787 

length.  This would make it difficult to directly estimate P2O for the line using the methods described in this 788 

paper.   789 

However, in a one-step hierarchical model approach, one would only be looking for markers that 790 

influenced P2O.  In this case, data from many lines and geographical areas could be used together.  This would 791 

also make such data usable for the sorts of hypothesis testing about genes discovered by other means, thus 792 

facilitating genetically-informed ecophysiological modeling.  For such approaches to be workable, however, 793 

there are many policy issues to be resolved including information property rights and fair economic returns to 794 
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data, not to mention the need to greatly harden cybersecurity protections (FBI, 2016). However, if this can be 795 

done then issues of environmental coverage would likely be ameliorated due to the extent of the data that 796 

would become available. 797 

6. Conclusions 798 

The original and seemingly simple goal of this study was to first fit the anthesis date component of the 799 

CERES-Maize model to data from over 5000 genotyped lines and then genetically map the resulting GSP values.  800 

However, we were unexpectedly detoured when we found that despite the high predictive quality of the values 801 

obtained, there were numerous artifacts that emerged in the estimation process, thereby making our 802 

immediate goal unachievable.  We find it interesting that the problems we encountered would likely be 803 

invisible, though present, in smaller data sets and, unless addressed by suitable research, these problems bode 804 

ill for understanding any genetic underpinnings of ecophysiological models.  This is worrisome given the recent 805 

escalating attention that has been given to this method of melding ecophysiological and statistical genetic 806 

models as a way of accelerating the crop improvement process so as to help meet global food and fiber needs 807 

by 2050. 808 

The constraining issues fall into two categories.  The first arises in situations where the model is unable 809 

to express the observed data for some line even by a relatively few days.  In this circumstance, the line is 810 

assigned the GSP associated with the nearest point on model’s expression frontier – values which can, however, 811 

change only slowly along that boundary.  The result is that many and in some cases a large majority of lines are 812 

assigned the same GSP values independent of their actual genetics. 813 

The second symptom arises when the model can reproduce the data.  In these instances, there can be 814 

many combinations of GSP values that predict equally well. When such equifinality exists, there is no principled 815 

way to assign the line a genetically relevant value.  In short, when the model can express the data there is no 816 

unique combination of GSP values and, when unique combinations do exist they are often values being given to 817 

many lines because of a deficiency in model expressivity. 818 
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This finding is rather remarkable because in both breeding efforts and, indeed, genetic studies as a 819 

whole, anthesis date is considered, if not a simple trait, at least one that has proved much easier to elucidate 820 

than many others.  In addition, it is generally, much more readily predicted by classical phenology models for 821 

reasons that, themselves, have become generally understood (Wilczek et al., 2009).  This cannot but make one 822 

wonder, what pitfalls might lie in wait for efforts to probe other, more involved traits.  823 

Therefore, the next question to be asked by follow-on research is how prevalent are these phenomena.  824 

The best way to do that would seem to be to use Sobol database search methods.  This is because, unlike 825 

optimizers that find single “best estimates”, the database approach will reveal the both the extent of the 826 

expressible phenotype regions as well as a direct measure of the extent of any equifinality.         827 

However, despite the ability to reuse results databases for many searches, undertaking such a program 828 

in any broadly based fashion will be highly demanding computationally.  For this reason, strong consideration 829 

should be given to disaggregating comprehensive models into separate modules that can be studied 830 

independently at much lower computational cost.   (This is what we did for the limited DE run, although Python 831 

certainly is not a high performance language.)  A better long-term strategy would be to program future models 832 

in a manner that supports single-module testing at the source code level.  Doing so will facilitate the whole-833 

model verifications needed to ensure that fragmentation into modules for testing and improvement by 834 

different labs does not compromise integration at the level of the scientific community.  835 

As module testing and innovation progress, it will be of strategic value to ground improvements in 836 

advancing genetic understanding at the molecular level.  While this might seem daunting to those versed in 837 

purely physiological approaches, it need not be so.  One of the most venerable concepts in all of the life 838 

sciences is that of the biological hierarchy that is, a series of many functional levels extending from molecules to 839 

the biosphere.  One of the perspectives emerging from molecular science is that that hierarchy might, be 840 

operationally much flatter than commonly believed.  That is, simple changes at lower levels can easily create 841 

tangible responses multiple levels higher.  To the extent that this is true, it greatly reduces the complexity of 842 
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bridging across those levels.  This is the philosophy behind the meta-mechanism approach mentioned earlier 843 

(Tardieu, 2003; Tardieu and Tuberosa, 2010). 844 

That approach has a proven ability to account for environmental interactions with sufficient skill to 845 

eliminate observed G×E interactions from GSP’s in the data sets used (Reymond et al., 2003).  However, as 846 

shown by the p-values in Table 5, the very large data set used herein conveyed an extraordinary power to 847 

detect site-year dependencies in GSP estimation.  Indeed, so powerful as to make one wonder if an insignificant 848 

result is scientifically achievable by any even remotely feasible research effort?  A better number to use for 849 

practical evaluations might be the index of variability in Table 5.  This would give a clear index of the size of the 850 

effect as a percentage of the parameter values.  Also, means exist for comparing such indices to see if 851 

reductions in their values (i.e. by an improved model with lowered site-year set dependency) are statistically 852 

significant (Vangel, 1996).  853 

A final message from our research is that one cannot fix problems that one does not know exist.  854 

Community interest in the fitting-and-mapping paradigm has been high as shown by the heavy citation rates for 855 

the seminal papers in this area.  For example, as of September, 2016, the Hammer et al. (2006) paper had been 856 

cited 257 times and those publications, themselves, had been cited by 6,370 others (Source: Google Scholar). 857 

There is also no doubt as to the importance of the ability to predict the behaviors of novel genotypes in novel 858 

environments while crosses are still in the planning stage.  Indeed, this is precisely the genotype-to-phenotype 859 

problem, which has been declared by the National Research Council to be a top-priority goal for applied biology 860 

(NRC, 2008).  So these impediments need to be overcome.  However, with methods now in hand to detect 861 

adverse model behaviors under estimation, research that is probing ever more deeply into the control 862 

mechanisms of plant growth and development, and concrete tests to document model improvements, there is 863 

no reason to believe that we cannot do so.   864 
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