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 25 

Abstract: 26 

Background 27 

Genome wide association studies (GWAS) have contributed significantly to the field of 28 

complex disease genetics. However, GWAS only report signals associated with a given trait and 29 

do not necessarily identify the precise location of culprit genes. As most association signals 30 

occur in non-coding regions of the genome, it is often challenging to assign genomic variants to 31 

the underlying causal mechanism(s). Topologically associating domains (TADs) are primarily 32 

cell-type independent genomic regions that define interactome boundaries and can aid in the 33 

designation of limits within which a GWAS locus most likely impacts gene function.  34 

Results 35 

We describe and validate a computational method that uses the genic content of TADs to 36 

assign GWAS signals to likely causal genes. Our method, called “TAD_Pathways”, performs a 37 

Gene Ontology (GO) analysis over all genes that reside within the boundaries of all TADs 38 

corresponding to the GWAS signals for a given trait or disease. We applied our pipeline to the 39 

GWAS catalog entries associated with bone mineral density (BMD), identifying ‘Skeletal 40 

System Development’ (Benjamini-Hochberg adjusted p = 1.02x10
-5

) as the top ranked pathway. 41 

Often, the causal gene identified at a given locus was well known and/or the nearest gene to the 42 

sentinel SNP. In other cases, our method implicated a gene further away. Our molecular 43 
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experiments describe a novel example: ACP2, implicated at the canonical ‘ARHGAP1’ locus. We 44 

found ACP2 to be an important regulator of osteoblast metabolism, whereas a causal role of 45 

ARHGAP1 was not supported. 46 

Conclusions 47 

Our results demonstrate how basic principles of three-dimensional genome organization can 48 

help define biologically informed windows of signal association. We anticipate that 49 

incorporating TADs will aid in refining and improving the performance of a variety of 50 

algorithms that linearly interpret genomic content. 51 

 52 

Keywords: 53 

Genome wide association study, gene prioritization, topologically associating domains, 54 

pathway analysis, bone mineral density 55 

 56 

Background: 57 

Genome-wide association studies (GWAS) have been applied to over 300 different traits, 58 

leading to the discovery and subsequent validation of several important disease associations [1]. 59 

However, GWAS can only discover association signals in the data. Subsequent assignment of 60 

signal to causal genes has proven difficult due to these signals falling principally within 61 

noncoding genomic regions [2–4] and not necessarily implicating the nearest gene [5]. For 62 

example, a signal found within an intron for FTO, a well-studied gene previously thought to be 63 

important for obesity [6], has been shown to physically interact with and lead to the differential 64 

expression of two genes (IRX3 and IRX5) directly next to this gene, and not FTO itself [7–9].  65 

Moreover, there is evidence suggesting a type 2 diabetes GWAS association previously 66 

implicating TCF7L2 [10] also influences the nearby ACSL5 gene [11]. It remains unclear how 67 
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pervasive these kinds of associations are, but similar strategies are necessary in order for GWAS 68 

to better guide research and precision medicine [12]. 69 

Three-dimensional genomics has changed the way geneticists think about genome 70 

organization and its functional implications [13,14]. Genome-wide chromatin interaction maps 71 

have facilitated the development of several genome organization principles, including 72 

topologically associating domains (TADs) [15–18]. TADs are sub-architectural units of the 73 

overall genome organization that have consistent and functionally important genomic element 74 

distributions including an enrichment of housekeeping genes, insulator elements, and early 75 

replication timing regions at boundary regions [19–21]. TADs are largely consistent across 76 

different cell types and demonstrate synteny [22,23]. These observations can therefore allow the 77 

leveraging of TADs to set the bounds of where non-coding causal variants can most likely 78 

impact promoters, enhancers and genes in a tissue independent fashion [24,25]. Therefore, we 79 

sought to develop a method that integrates GWAS data with interactome boundaries to more 80 

accurately map signals to the mostly likely candidate gene(s).  81 

We developed a computational approach, called “TAD_Pathways”, which is agnostic to gene 82 

locations relative to each GWAS signal within TADs. We scanned publically available GWAS 83 

data for given traits and used TAD boundaries to output lists of genes likely to be causal. We 84 

demonstrate this approach by assessing the influence of GWAS signals on bone mineral density 85 

(BMD) [26–29]. This trait is clinically of great importance as low BMD is an important 86 

precursor to osteoporosis, a disease condition affecting millions of patients annually [30]. We 87 

also chose BMD as a trait for analysis because BMD GWAS primarily points to very well-88 

known genes involved in bone development (positive controls) but there remain a number of 89 

established loci where no obvious gene resides, therefore offering the opportunity to uncover 90 
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novel biology. After applying our TAD_Pathways discovery approach, we investigated putative 91 

causal genes using cell culture-based assays, identifying ACP2 as a novel regulator of osteoblast 92 

metabolism. 93 

 94 

Results: 95 

The Genomic Landscape of SNPs across Topologically Associating Domains 96 

We observed a consistent and non-random distribution of SNPs across TADs derived from 97 

human embryonic stem cells (hESC), human fibroblasts (IMR90), mouse embryonic stem cells 98 

(mESC), and mouse cortex cells (mcortex) cells. As expected, SNPs are tightly associated with 99 

TAD length for each cell type, but there are substantial outlier TADs (Figure 1). For example, 100 

the TAD harboring the largest number of common SNPs (minor allele frequency (MAF) greater 101 

than 0.05) in hESC is located on chromosome 6 (UCSC hg19: chr6:31492021-32932022) and 102 

has 19,431 SNPs. Not surprisingly, this TAD harbors an abundance of genes including HLA 103 

genes, which are well known to have many polymorphic sites [31]. However, the other human 104 

cell line (IMR90) outlier TAD is located on chromosome 8 (UCSC hg19: chr8:2132593-105 

6252592) and has 27,220 SNPs and could be potentially biologically meaningful. Indeed, 106 

although this TAD harbors relatively few genes, it does include CSMD1, a gene implicated in 107 

cancer and neurological disorders such as epilepsy and schizophrenia [32,33].  108 

Common SNPs were enriched near the center of TADs (Figure 1A). This is the opposite of 109 

gene (Supplementary Figure S1) and repeat element (Supplementary Figure S2) distributions 110 

(also see Dixon et al. 2012) [22]. The repeat element distribution was driven largely by the 111 

SINE/Alu repeat distribution, which could not be explained by GC content and estimated 112 

evolutionary divergence (Supplementary Figure S3). We also observed that common SNPs are 113 
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significantly enriched in the 3’ half of TADs in hESC and mcortex cells (Supplementary Table 114 

S1).  There was also a slight increase in GWAS implicated SNPs near hESC TAD boundaries 115 

(Figure 1B).  Given the non-random patterns observed across the TADs, we went on to explore 116 

the gene content further in an attempt to imply causality at given GWAS loci. 117 

 118 

 119 

Figure 1. Distributions of single nucleotide polymorphisms (SNPs) across topologically 120 
associating domains of four cell types. (A) Top – The length of TADs is associated with the 121 

number of SNPs found in each cell type. Bars on the top and right side of the plots represent 122 
histograms of each respective metric. hESC and IMR90 TADs are based on 1000 genomes phase 123 
3 SNPs (hg19) and  mESC and mcortex TADs represent 15 strains from the mouse genomes 124 

project version 2 (mm9). Bottom – Number of SNPs found in each cell type. (B) Number of 125 
GWAS SNPs from the NHGRI-EBI GWAS catalog that reached genome-wide significance in 126 
replication required journals. In each case, we independently discretized TADs into 50 bins 127 
where the distribution of elements is linear from 5’ to 3’ (bin 0 is the 5’ most end of all TADs). 128 

 129 

 130 
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TAD_Pathways reveals potentially causal genes within phenotype-associated TADs 131 

Seeking to leverage TADs and disease associated SNPs, we integrated GWAS and TAD 132 

domain boundaries in an effort to assign GWAS signals to causal genes. Alternative approaches 133 

to understand the gene landscape of a locus that do not consider TAD boundaries typically either 134 

assign genes to a GWAS signal based on nearest gene [34] or by an arbitrary or a linkage 135 

disequilibrium-based window of several kilobases [35,36] (Figure 2A).  Instead, we used TAD 136 

boundaries and the full catalog of GWAS findings for a given trait or disease to assign genes to 137 

GWAS variants based on overrepresentation in a gene set in an approach we termed 138 

“TAD_Pathways”. For a given trait or disease, we collected all genes that are located in TADs 139 

harboring significant GWAS signals. We then applied a statistical enrichment analysis for 140 

biological pathways using this TAD gene set and assign candidate genes within a TAD based on 141 

the pathways significantly associated with a phenotype (Figure 2B). In our implementation, we 142 

used GO biological processes, GO cellular components, and GO molecular functions to provide 143 

the pathway sets [37]. We included both experimentally confirmed and computationally inferred 144 

GO gene annotations, which permit the inclusion of putative casual genes that do not necessarily 145 

have literature support but are predicted by a variety of computational methods. 146 

To validate our approach, we applied TAD_Pathways to bone mineral density (BMD) 147 

GWAS results derived from replication-requiring journals [26–29]. Our method implicated 148 

‘Skeletal System Development’ (Benjamini-Hochberg adjusted p = 1.02x10
-5

) as the top ranked 149 

pathway. We provide full TAD_Pathways results for BMD in Supplementary Table S2. 150 

Despite a high content of presumably non-causal genes, which we expect would contribute noise 151 

to the overrepresentation analysis [38], our method demonstrated enrichment of a skeletal system 152 

related pathway and selected a subset of potentially causal genes belonging to the same pathway.  153 
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Many of these genes (24/38) were not the nearest gene to the GWAS signal and several also had 154 

independent expression quantitative trail loci (eQTL) support (Supplementary Table S3, 155 

Supplementary Figure S4). 156 

 157 

 158 

Figure 2. Concepts motivating our approach. Topologically associating domains (TADS) are 159 
shown as orange triangles, genes are shown as black lines, and a genome wide significant 160 
GWAS signal is shown as a dotted red line. (A) Three hypothetical examples illustrated by a 161 
cartoon. The ground truth causal gene is shaded in red. The method-specific selected genes are 162 
shaded in blue. The top panel describes a nearest gene approach. The nearest gene in this 163 
scenario is not the gene actually impacted by the GWAS SNP. The middle panel describes a 164 

window approach. Based either on linkage disequilibrium or an arbitrarily sized window, the 165 
scenario does not capture the true gene. The bottom panel describes the TAD_Pathways 166 
approach. In this scenario, the causal gene is selected for downstream assessment. (B) The 167 
TAD_Pathways method.  An example using Bone Mineral Density GWAS signals is shown. 168 

 169 

siRNA Knockdown of TAD Pathway Gene Predictions in Osteoblast Cells 170 

The loci rs7932354 (cytoband: 11p11.2) and rs11602954 (cytoband: 11p15.5) are currently 171 

assigned to ARHGAP1 and BETL1 but our method implicated ACP2 and DEAF1, respectively. 172 

The two genes implicated by TAD_Pathways, ACP2 and DEAF1, lacked eQTL support and were 173 

not the nearest gene to the BMD GWAS signal. We tested the gene expression activity and 174 

metabolic importance of these four genes, ARHGAP1, BETL1, DEAF1, and ACP2. Specifically, 175 

our assays in a human fetal osteoblast cell line (hFOB) evaluate whether or not the 176 
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TAD_Pathways method identifies causal genes at GWAS signals beyond those captured by 177 

closest and eQTL connected genes. Though these two genes were annotated to the identified GO 178 

process, the annotation had been made computationally and their known biology did not provide 179 

obvious links to bone biology.  180 

We targeted the expression of all four of these genes in vitro using small interfering RNA 181 

(siRNA), assessing knockdown efficiency at the mRNA level relative to untreated controls and 182 

determined corresponding p values relative to scrambled siRNA controls. We used an siRNA 183 

targeting tissue-nonspecific alkaline phosphatase (TNAP) as a positive control. Knockdown 184 

efficiencies were: TNAP siRNA 48.7±9.9% (p=0.141), ARHGAP1 siRNA 68.7±14.3% 185 

(p=0.015), ACP2 siRNA 48.9±6.4% (p=0.035), BET1L 56.4±1.0% (N.S.) and DEAF1 186 

52.7±9.2% (p=0.021) (Figure 3). siRNA targeted against each gene of interest did not down-187 

regulate the expression of the other genes under investigation, indicating specificity of 188 

knockdown, although we noted that TNAP siRNA did reduce DEAF1 gene expression, though 189 

this did not reach the threshold for statistical significance (p= 0.077). 190 

We noted significant variation across the three controls, with the scrambled siRNA control 191 

altering expression of OCN (osteocalcin), IBSP (bone sialoprotein), TNAP and BET1L (p < 0.05). 192 

Relative to the scrambled siRNA control, OCN was downregulated in all siRNA groups (p < 193 

0.05) except for BET1L siRNA (p = 0.122). OSX, IBSP and TNAP were not significantly altered 194 

by any siRNA treatment (Figure 3). 195 

 196 

Metabolic Activity of TAD Pathway Gene Predictions 197 

Use of ACP2 siRNA led to a 66.0% reduction in MTT metabolic activity versus the 198 

scrambled siRNA control (p = 0.012). ARHGAP1 siRNA caused a 38.8% reduction, which fell 199 
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short of statistical significance (p = 0.088). siRNA targeted against TNAP, BET1L or DEAF1 did 200 

not alter MTT metabolic activity (Figure 4A). 201 

 202 

Figure 3: Real-time PCR of osteoblast differentiation genes and GWAS/TAD hits in hFOB cells. 203 
siRNA was used to knock down expression of TNAP (positive control), ARHGAP1, ACP2, 204 
BET1L and DEAF1. Relative expression of the osteoblast marker genes OSX, OCN and IBSP 205 
suggest that GWAS/TAD hits are not major regulators of bone differentiation in this model. Red 206 
bars highlight specificity of each siRNA knockdown. Values represent mean ± standard 207 

deviation. Statistical significance relative to the scrambled siRNA control is annotated as: *p ≤ 208 
0.05 and #p ≤ 0.10 using a two-tailed Student’s t-test. 209 
 210 

 211 

 212 
Figure 4. Validating two ‘TAD Pathway’ predictions for Bone Mineral Density GWAS hits on 213 

hFOB cells. siRNA was used to knock down expression of TNAP, ARHGAP1, ACP2, BET1L and 214 
DEAF1. (A) Knockdown of ACP2 decreases cellular metabolic activity, demonstrated using an 215 
MTT assay. (B) ALP staining and quantitation indicates that knockdown of TNAP or ACP2 216 
inhibits performance in an osteoblast differentiation assay. Values represent mean ± standard 217 
deviation. Statistical significance relative to the scrambled siRNA control is annotated as: *p ≤ 218 

0.05 and #p ≤ 0.10 using a two-tailed Student’s t-test. 219 
 220 
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Influence of TAD_Pathways Gene Predictions on Alkaline Phosphatase Activity 221 

Alkaline phosphatase (ALP) is highly expressed in osteoblasts; disruption of proliferation or 222 

osteoblast differentiation would result in downregulation of ALP. Treatment with siRNA 223 

resulted in changes in ALP staining that we analyzed further by quantitation. TNAP siRNA 224 

significantly reduced ALP by 5.98±1.77 versus the scrambled siRNA control (p = 0.006). ACP2 225 

siRNA also significantly reduced ALP intensity by 8.74±2.11 versus the scrambled siRNA 226 

control (p = 0.003). The scrambled siRNA group stained less intensely than untreated or 227 

transfection reagent control wells, but this did not reach statistical significance (0.05 < p < 0.10) 228 

(Figure 4B). 229 

 230 

Discussion: 231 

We observed a nonrandom enrichment of SNPs in the center of TADs that was consistent 232 

across different cell types, but was in the opposite direction of the gene and repeat elements 233 

distributions. It is possible that the gene distribution is driving this phenomenon, since coding 234 

regions are under higher evolutionary constraint and are thus more averse to SNPs [39]. 235 

Nevertheless, GWAS SNPs also appeared to be distributed closely to boundary regions in hESC 236 

cells. This may support GWAS causally implicating nearest genes more frequently since genes 237 

are also distributed near boundaries. The observation may also suggest that polymorphism in 238 

regions near TAD boundaries are more important drivers of disease risk associations than 239 

polymorphism in the center of TADs. However, we do not observe this pattern in IMR90 cells. 240 

The SNP distribution was also opposite of the SINE/Alu repeat distribution. Given that Alu 241 

elements tend to insert into GC-rich regions [40], we tracked GC content across TADs and 242 

observed only a slight increase in GC content near TAD boundaries. There was also a slightly 243 
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inverse distribution of Alu evolutionary divergence [40]. Our results suggest that the Alu 244 

distribution is primarily driven by intronic clustering [41] rather than GC-biased insertion or 245 

evolutionary divergence. Recently, retrotransposons have been shown to act as genomic 246 

insulators [42], while Alu repeats have been shown to be correlated with functional elements 247 

[43]. However, the relationships between polymorphic sites, repeat elements, and genes across 248 

TADs and higher level genome organization have yet to be explored in detail and warrants 249 

further investigation.  250 

TAD boundaries offer a unique computational opportunity to use biologically informed 251 

windows to predefine areas of the genome that are more likely to interact with themselves. We 252 

showed, as a proof of concept, that TADs can reveal functional GWAS variant to gene 253 

relationships using BMD. Several of the TAD_Pathways implicated genes, including LRP5 and 254 

other Wnt signaling genes, are bona fide BMD genes already identified by nearest gene GWAS, 255 

eQTL analyses and human clinical syndromes [44,45], thus providing positive controls for our 256 

approach. However, several BMD GWAS signals do not have obvious nearest gene associations, 257 

which allowed us to validate our approach with two candidate causal, non-nearest gene 258 

predictions: ACP2 and DEAF1. Both genes also did not have eQTL associations, but this is 259 

likely a result of the eQTL browser lacking bone tissue. 260 

To assess the validity of our predictions, we experimentally knocked down ACP2 and 261 

DEAF1 in hFOB cells. siRNA for ACP2 and DEAF1 did not significantly alter expression of the 262 

osteoblast marker genes OSX, IBSP or TNAP. OCN was downregulated in each of the 263 

experimental groups relative to the scrambled siRNA control, but comparison with the reagent 264 

control indicated no significant difference in any group, suggesting an off-target effect on OCN 265 

in the scrambled siRNA group. Because osteoblast differentiation genes were not downregulated 266 
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following knockdown of the genes of interest, we concluded that these genes do not directly 267 

regulate the transcriptional processes of osteoblast differentiation in vitro. The decrease in 268 

DEAF1 expression following TNAP siRNA treatment, though not statistically significant, 269 

suggests that DEAF1 may function downstream of TNAP. 270 

There was a pronounced and statistically significant reduction in metabolic activity in hFOB 271 

cells treated with ACP2 siRNA. This result carried through to the ALP assay, in which staining 272 

intensity and ALP+ area fraction were dramatically reduced in only the TNAP siRNA and ACP2 273 

siRNA groups. The combination of these results with the gene expression data suggests that 274 

ACP2 regulates early osteoblast proliferation/viability, but does not directly regulate osteoblast 275 

differentiation. 276 

We provide evidence that our approach can steer researchers from GWAS signals toward 277 

genes relevant to the pathogenesis of the given trait.  Furthermore, because our method treats all 278 

genes in implicated TADs equally, functional classification extends to the identification of single 279 

variant pleiotropic events; as was the case with an intronic FTO variant impacting both IRX3 and 280 

IRX5 [8].  281 

Despite the advantages presented by TAD_Pathways, the method has a number of 282 

limitations. Currently, our method will not overcome the possibility of a gene being 283 

inappropriately included in a pathway that it does not actually contribute to, plus all other 284 

propagated errors related to pathway curation and analyses [46]. Network based methods built on 285 

gene-gene interaction data also suffer from similar biases [47], but potentially to a lesser extent 286 

than curated pathways. We include both curated and computationally predicted GO annotations 287 

to ameliorate this bias. The computational predictions provide additional support that these genes 288 

may be important disease associated genes that we would have missed using only experimentally 289 
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validated pathway genes. We are also unable to implicate a gene to a trait if it is not assigned to a 290 

curated or predicted pathway, or if it does not fall within a TAD corresponding to a GWAS 291 

signal. It is also likely that our approach will not work well with every GWAS. Indeed we are 292 

implicating causality to given genes - we are not making a direct connection between the gene 293 

and the given variant. Furthermore, our method does not include the possibility of finding genes 294 

associated with a disease that is impacted by alternative looping, which has been observed to 295 

occur in cancer [48,49] and sickle cell anemia [50]. As research on 3D genome organization 296 

increases, it is likely that more diseases will include chromosome looping deficiencies as part of 297 

their etiology. Additionally, we used TAD boundaries defined by Dixon et al. 2012. A more 298 

recent Hi-C analysis at increased resolution substantially reduced the estimated average size of 299 

TADs [51]. Nevertheless, there remains disagreement about how TADs are defined [52]. Despite 300 

our method using larger TAD boundaries, thus promoting the inclusion of more presumably false 301 

positive genes, we retain the ability to identify biologically logical pathways. The larger 302 

boundaries permit us to screen a larger number of candidate genes but makes the method 303 

analytically conservative by increasing the pathway overrepresentation signal required to surpass 304 

the adjusted significance threshold. 305 

The validation screen is also limited: it was performed in a simplified in vitro cell culture 306 

system lacking organismal complexity, and the cell line selected is largely tetraploid which may 307 

partially compensate for gene knockdown. This is particularly true for the lack of reduction in 308 

TNAP gene expression in the TNAP siRNA group, in light of the historical selection of the hFOB 309 

cell line based on robust ALP staining in culture [53]. As well, while the TAD approach 310 

identifies potentially several GWAS associated genes, herein we only examined two genes per 311 

TAD – one immediately adjacent to the GWAS SNP and another that we postulated could play a 312 
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role in the skeleton. Further work would need to systematically examine the relative importance 313 

of each gene in a TAD. 314 

Other recent mechanisms and algorithms used to assign causality from association signals or 315 

enhancers to genes typically leverage multiple data types including expression [54] or epigenetic 316 

features [24]. For example, TargetFinder uses several high throughput genomic marks to identify 317 

features predictive of a chromosome physically looping together enhancers and promoters [24]. 318 

Looping occurs at sub-TAD level resolutions [55] and sub-TADs are variable across cell types. 319 

Therefore, in order for a chromosome looping signature to generalize to GWAS signals, a user 320 

must assay tissue-specific and high resolution Hi-C to identify more specific interactions. 321 

Alternatively, one could also query variants that affect gene expression in high-throughput and 322 

systematically match signals to gene expression [56].  A major limitation to these approaches is 323 

that several diseases do not yet have a known tissue source or involve multiple tissues. This is 324 

particularly true for osteoporosis whereby multiple cell types, as well as systemic factors, 325 

influence bone mass [57]. Therefore, identifying these specific signals may require the 326 

procedures to be repeated across competing tissue types.  In contrast, a TAD_Pathways analysis 327 

is computationally cheap and uses publicly available TAD boundaries and GO terms as a guide 328 

for assigning genes to GWAS signals. The method is effective in a wide variety of settings and 329 

across tissues because TADs are consistent across cell types [25]. In summary, TAD_Pathways 330 

can be used to guide researchers toward the most likely causal gene implicated by a GWAS 331 

signal. We have also identified ACP2 as a gene involved in BMD determination, which warrants 332 

further investigation. 333 

 334 

Conclusions: 335 
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TADs offer a novel tool in the investigation of genome function. We present an approach, 336 

called TAD_Pathways, to leverage 3D genomics to prioritize and predict causal genes implicated 337 

by GWAS signal. At the foundation of our method is the principle that genomic regions within 338 

the same TAD more often interact with each other, and therefore, provide the genomic 339 

scaffolding that can impact gene function and gene regulation within each TAD. We applied our 340 

method to established BMD GWAS signals. By selecting two GWAS signals and two classes of 341 

genes for each signal (nearest gene and predicted gene by TAD_Pathways), we demonstrated 342 

that our approach can causally implicate genes kilobases away from their associated GWAS 343 

signal. We validated ACP2 (TAD prediction), but not ARHGAP1 (nearest gene), and show that 344 

ACP2 influences the proliferation and differentiation of osteoblast cells. We were unable to 345 

validate either DEAF1 or BET1L and conclude that neither impacts osteoblast gene expression 346 

nor metabolic activity. Whether these genes influence other aspects of skeletal biology cannot be 347 

determined within the scope of the current study. Future studies focused on BMD GWAS would 348 

explore both osteoblast and osteoclast associated changes. In conclusion, as more information 349 

and data is collected regarding 3D genome principles, we propose that algorithms that leverage 350 

dynamic 3D structure rather than static linear organization will more accurately predict and 351 

discover the basic genomic biology of diseases. 352 

 353 

Methods: 354 

Data Integration 355 

We used previously identified TAD boundaries for hESC, IMR90, mESC, and mcortex cells 356 

for all TAD based analyses [22,58].  To describe the genomic content of TADs, we extracted 357 

common SNPs (major allele frequency ≤ 0.95) from the 1000 Genomes Phase III data (2 May 358 
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2013 release) [59]  and downloaded hg19 Gencode genes [60] and hg19 RepeatMasker repeat 359 

elements [61]. We downloaded hg19 FASTA files for all chromosomes as provided by the 360 

Genome Reference Consortium [62]. Furthermore, we downloaded the NHGRI-EBI GWAS 361 

catalog on 25 February 2016, which holds the significant findings of several GWAS’ for over 362 

300 traits [1]. Since the GWAS catalog reports hg38 coordinates, we used the hg38 to hg19 363 

UCSC chain file [63] and PyLiftover [64] to convert genome build coordinates to hg19. We 364 

assessed relevant expression quantitative trait loci (eQTLs) using all tissues in the NCBI GTEx 365 

eQTL Browser [65]. 366 

 367 

TAD_Pathways 368 

Our TAD_Pathways method is a light-weight approach that uses TAD boundary regions, 369 

rather than distance explicitly, to identify putative causal genes. We first build a comprehensive 370 

TAD based gene list that consists of all genes that fall inside TADs that are implicated with a 371 

GWAS signal (see Figure 2). This gene list assumes that all genes within each signal TAD have 372 

an equal likelihood of functional impact on the trait or disease of interest. We then input the 373 

TAD based gene list into a WebGestalt overrepresentation analysis [66].  WebGestalt is a 374 

webapp that facilitates a pathway analysis interface allowing for quick and custom gene set 375 

based analyses. We perform a pathway overrepresentation test for the input TAD based genes 376 

against GO biological process, molecular function, and cellular component terms with a 377 

background of the human genome. Specifically, this tests if the input gene set is associated with 378 

any particular GO term at a higher probability than by chance compared to background genes. 379 

We include both experimentally validated and computationally inferred genes in each GO term, 380 

which allows the method to discover associations for genes that lack literature support. We 381 
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consider genes that are annotated to the most significantly enriched GO term to be the associated 382 

set [65].  383 

 384 

Cell culture and siRNA transfection 385 

A human fetal osteoblast cell line (ATCC hFOB 1.19 CRL-11372) was obtained and 386 

subcultured twice at 34°C, 5% CO2 and 95% relative humidity in 1:1 DMEM/F12 with 2.5mM 387 

L-glutamine without phenol red (Gibco 21041025) supplemented with 10% FBS (Atlas USDA 388 

F0500D) and 0.3mg/mL G418 sulfate (Gibco 10131035). All experiments were conducted in 389 

three temporally separated independent technical replicates from cryopreserved P2 aliquots of 390 

these cells. 48 hours prior to transfection, media was switched to a G418-free formulation. 391 

Transfections were conducted in single-cell suspension using a commercial siRNA reagent 392 

system (Santa Cruz sc-45064) according to the manufacturer’s instructions, with 6μL of siRNA 393 

duplex and 4μL transfection reagent in 750μL of transfection media per 100,000 cells. Following 394 

trypsinization, cells were counted and divided into one of 8 experimental groups: 1) untreated 395 

control, 2) siRNA-negative transfection reagent control, 3) scrambled control siRNA (sc-37007), 396 

4) TNAP siRNA (sc-38921), 5) ARHGAP1 siRNA (sc-96477), 6) ACP2 siRNA (sc-96327), 7) 397 

BET1L siRNA (sc-97007) or 8) Suppressin (DEAF1) siRNA (sc-76613). Samples for RNA 398 

isolation were generated by plating 200,000 cells per well in tissue culture treated 6-well plates 399 

(Falcon 353046). Samples for MTT assay and alkaline phosphatase (ALP) staining were 400 

generated by plating 50,000 cells per well in tissue culture treated 24-well plates (Falcon 401 

353047). Cells were then switched to a 37°C incubator and transfected for 6 hours, at which 402 

point transfection cocktails were diluted with 2x hFOB media concentrate. Media was 403 

completely changed to 1x standard hFOB media 16 hours later. 404 
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 405 

Quantitative PCR 406 

RNA was harvested at Day 4 using TRIzol (Ambion) followed by acid guanidinium 407 

thiocyanate-phenol-chloroform extraction and RNeasy (Qiagen) spin-column purification with 408 

DNase (Qiagen) then reverse-transcribed using a high-capacity RNA-to-cDNA kit (Applied 409 

Biosystems). Duplicate qPCR reactions were conducted on 20ng of whole-RNA template using 410 

SYBR Select master mix (Applied Biosystems) in an Applied Biosystems 7500 Fast Real-Time 411 

PCR System. Primers for GAPDH, OSX, OCN and IBSP were adopted from the literature and 412 

synthesized by R&D Systems. New primer sets spanning exon-exon junctions were designed for 413 

ARHGAP1, ACP2, BET1L and DEAF1 using NCBI Primer Blast, verified by melt curve analysis 414 

and agarose gel electrophoresis. Sequences follow: ARHGAP1 F-415 

GCGGAAATGGTTGGGGATAG R-CCTTAAGAGAAACCGCGCTC (127bp), ACP2 F-416 

AGCGGGTTCCAGCTTGTTT R-TGGCGGTACAGCAAGGTAAC (165bp), BET1L F-417 

GGATGGCATGGACTCGGATT R-TCCTCTGGAGCCCAAAACAC (254bp), DEAF1 F-418 

GGAAGGAGCAGTCCTGCGTT R-TCACCTTCTCCATCACGCTTT (195bp). Results were 419 

analyzed using the 2
-ddCt

 method using GAPDH as a housekeeping gene and reported as (mean ± 420 

standard deviation) fold-change versus untreated controls. Statistical significance was 421 

determined using 2-way homoscedastic Student’s t-tests versus the scrambled siRNA control, 422 

annotated using *p≤0.05 and #p≤0.10. The acronym N.S. stands for “not significant”. 423 

 424 

MTT metabolic assay 425 

Cellular metabolism/proliferation was assessed using a commercial cell growth 426 

determination kit (Sigma CGD1). At 1 or 4 days post-transfection, media in assigned 24-well 427 
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plates was switched to 450μL hFOB media plus 50μL MTT solution. Cells were incubated at 428 

37°C for 3.5 hours, after which the media was aspirated and the resulting formazan crystals were 429 

solubilized in MTT solvent. Plates were shaken and read in a BioTek Synergy H1 microplate 430 

reader. Results are reported as the difference in mean absorbance at 570nm-690nm from Day 1 431 

to Day 4. Error bars represent root-mean-square standard deviation from the measurements at 432 

both days. Statistical significance was determined using 2-way homoscedastic Student’s t-tests 433 

versus the scrambled siRNA control, annotated using *p≤0.05 and #p≤0.10. 434 

 435 

Alkaline phosphatase (ALP) staining 436 

Plates were stained at 4 days post-transfection using a commercial ALP kit (Sigma 86C). 437 

Dried plates were then imaged at 600dpi using an Epson V370 photo scanner and staining was 438 

quantified using mean whole-well intensity measurements in ImageJ using raw output files. ALP 439 

area fraction was calculated using color thresholding. Values are reported as mean ± standard 440 

deviation. Statistical significance was determined using 2-way homoscedastic Student’s t-tests 441 

versus the scrambled siRNA control, annotated using *p≤0.05 and #p≤0.10. Images of plates 442 

presented as figures were edited using a warming filter and for brightness/contrast using Adobe 443 

Photoshop CS6. 444 

 445 

Computational Reproducibility 446 

We provide all of our source code under a permissive open source license and encourage 447 

others to modify and build upon our work [67]. Additionally, we provide an accompanying 448 

docker image [68] to replicate our computational environment 449 

(https://hub.docker.com/r/gregway/tad_pathways/) [69]. 450 
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Supplementary Figures: 497 

 498 

Supplementary Figure S1: Distributions of genes across topologically associating domains of 499 
four cell types. Bars on the top and right side of the plots represent histograms of each respective 500 
metric. We independently discretized TADs into 50 bins where the distribution of elements is 501 
linear from 5’ to 3’ (bin 0 is the 5’ most end of all TADs). 502 
 503 

 504 

Supplementary Figure S2: Distributions of all repeat elements across topologically associating 505 

domains of four cell types. Bars on the top and right side of the plots represent histograms of 506 
each respective metric. We independently discretized TADs into 50 bins where the distribution 507 
of elements is linear from 5’ to 3’ (bin 0 is the 5’ most end of all TADs). 508 
 509 
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 510 

Supplementary Figure S3: Distributions of SINE/Alu elements and potential confounding 511 
factors across topologically associating domains of four cell types. We independently discretized 512 
TADs into 50 bins where the distribution of elements is linear from 5’ to 3’ (bin 0 is the 5’ most 513 
end of all TADs). The distribution of Alu elements is strongly clustered toward TAD boundaries 514 
but neither the percentage of GC content across TADs nor the evolutionary divergence of Alu 515 
elements can explain the Alu distribution.  516 

 517 

 518 
 519 

Supplementary Figure S4: Bone Mineral Density gene counts associated with various classes 520 
of evidence. The gene LRP5 is implicated by all evidence codes. About 1/3 of all TAD_Pathways 521 

implicated genes are the nearest gene implicated by the GWAS signal. 522 
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Tables: 523 

Supplementary Table S1: Chi square testing the enrichment of genes at TAD boundaries and 524 

enrichment of SNPs towards the right half of TADs. 525 

 

Enrichment of SNPs in the Right of TADs 

 

Left Right Chi-square P 

hESC 3268781 3296450 116.6 3.5E-27 

IMR90 3211140 3210251 0.12 0.73 

mESC* 25161934 25129279 21.2 4.1E-06 

mcortex 24616532 24641931 13.1 3.0E-4 

* Note- mouse embryonic stem cells have an opposite enrichment. There are more SNPs in the 526 

left of TADs 527 

 528 

We provide Supplementary Tables S2 and S3 as attached .xls files. 529 

 530 

Abbreviations: 531 

 TAD – Topologically associating domain 532 

 GWAS – Genome wide association study 533 

 SNP – Single nucleotide polymorphism 534 

 BMD – Bone mineral density 535 

 hESC – Human embryonic stem cells 536 

 mESC – Mouse embryonic stem cells 537 

 IMR90 – Human fibroblast cells 538 

 mcortex – Mouse cortex cells 539 

 siRNA –  Small interfering RNA  540 

 eQTL – Expression quantitative trail loci 541 

hFOB – Human fetal osteoblast 542 
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TNAP - tissue-nonspecific alkaline phosphatase 543 

OCN – osteocalcin 544 

IBSP – bone sialoprotein 545 

ALP – Alkaline phosphatase 546 

GO – Gene ontology 547 

eQTL – Expression quantitative trait loci 548 

 549 
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