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Abstract

Wide-field optical imaging techniques constitute powerful tools to sample and study mesoscale
neuronal activity. The sampled data constitutes a sequence of image frames in which one can
perceive the flow of brain activity starting and terminating at source and sink locations
respectively. The most common data analyses include qualitative assessment to identify sources
and sinks of activity as well as their trajectories. The quantitative analyses is mostly based on
computing the temporal variation of the intensity of pixels while a few studies have also reported
estimates of wave motion using optical-flow techniques from computer vision. A comprehensive
toolbox for the quantitative analyses of mesoscale brain activity data however is still missing. We
present a graphical-user-interface based Matlab® toolbox for investigating the spatiotemporal
dynamics of mesoscale brain activity using optical-flow analyses. The toolbox includes the
implementation of three optical-flow methods namely Horn-Schunck, Combined Local-Global,
and Temporospatial algorithms for estimating velocity vector fields of perceived flow in mesoscale
brain activity. From the velocity vector fields we determine the locations of sources and sinks as
well as the trajectories and temporal velocities of activity flow. Using our toolbox, we compare
the efficacy of the three optical-flow methods for determining spatiotemporal dynamics by using
simulated data. We also demonstrate the application of optical-flow methods onto sensory-evoked
calcium and voltage imaging data. Our results indicate that the combined local-global method we
employ, yields results that correlate with the manual assessment. The automated approach permits
rapid and effective quantification of mesoscale brain dynamics and may facilitate the study of

brain function in response to new experiences or pathology.
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1. Introduction

In order to investigate and build physiological models of brain functions at various levels of
abstraction viz molecular, cellular, system, and behavioral levels, evoked or spontaneous activity
of the brain is observed at different spatial scales namely nano, micro, meso, macro, and eco. At
the mesoscale corresponding to spatial dimensions ranging from hundreds of micrometers to a few
centimeters, activity of thousands of neurons can be recorded simultaneously to study how
networks of neurons communicate with each other. Various methods have been developed to
monitor mesoscale brain activity such as intrinsic or extrinsic optical imaging, and multielectrode
electrophysiology (1-5). In optical imaging, brain is excited with light and imaged to detect
neuronal activity at the population level as changes in the intensity of captured light. The neuronal
activity is transduced into an optical signal by either intrinsic or extrinsic sensors (4,6-8). In
imaging with intrinsic sensors such as flavoprotein fluorescence imaging, endogenous
autofluorescence of molecules representing biological activity is detected. In imaging with
extrinsic sensors however, fluorescent molecules are introduced into the brain and depending upon
their chemical structure, the fluorescence changes are modulated by either neuronal membrane
voltage (voltage imaging), or concentration of an intracellular ion (e.g. calcium imaging) or
molecule (9-13). Thus the data obtained with optical imaging is a set of images where the intensity
of each pixel is representative of the summed activity of nearby neurons. Similarly, in
multielectrode electrophysiology, electrodes are spread over surface of the brain and enable
spatially discrete sampling of neuronal activity. The electrophysiology data can also be visualized
as a set of 2D images where the intensity of each pixel would represent the voltage measured by
an electrode (14). Mesoscale sampling of brain activity hence captures the spatiotemporal

dynamics of networks of neurons resulting in data with one temporal and two spatial dimensions
(Fig. 1).

There are a variety of features observed in optical imaging of brain activity. For example, if a
group of neurons become active spontaneously or in response to a stimulus, a source like activity
is observed where pixel intensities gradually increase. The observed shape of the source-like

activity in 2D might be a point, line, circle, ellipse, or a combination of them depending upon the
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anatomical organization of active neurons. The source activity, later in time, might disappear or
sink in the same spatial region or travel like a wave to another region following a path/trajectory
and then disappear into a sink where pixel intensities gradually decrease. The sink might also have
shapes in 2D similar to the source activity. For propagating activity, the paths might be a mix of
translational, rotational, expansion or compression trajectories. If multiple brain areas are
simultaneously active, multiple sources, travelling waves, and sinks would be observable. The

observation of brain activity at the mesoscale hence mimics the motion or flow of waves.

The most common analysis used for the extraction of physiological features from optical imaging
of brain activity is the quantitative assessment of temporal variation of intensity by plotting the
average intensity of pixels versus time for defined regions of interest. More recently, the temporal
correlations of optical signals were used to determine the functional connectivity between different
regions (Fig. 1) (15-21). To identify sources, sinks, and activity trajectories manual methods were
often used (16,22). However, few studies have reported estimates of neuronal activity spread using
techniques first developed in the field of computer vision referred to as “optical-flow methods”.
In these methods, velocity vector flow fields are calculated to determine speeds and directions of
motion (23,24). From the velocity vector fields, locations of sources and sinks are estimated using
vector calculus methods. Inouye et al. 1994 (25-27) reported the use of Horn-Schunk (HS) method
(28) to determine the flow of brain oscillations over the human scalp in flattened (3D surface to
2D) electroencephalography data. Takagaki et al. 2011 (29) developed and reported a new method
(Temporospatial — TS) in which temporal correlation of a given pixel with neighboring pixels was
used to estimate local motion in voltage sensitive dye (VSD) imaging data. Recently, Mohajerani
et al. 2013 (16) used the combined local-global (CLG) algorithm (30,31) to determine velocity
vector fields of flow in wide-field VSD imaging data. They also manually determined the location
of sources and sinks in space and time. Following Mohajerani et al., Townsend et al. 2015 (3) also
used the CLG method to estimate wave patterns in cortical activity recorded with multielectrode

arrays.

Only HS, CLG, and TS optical flow methods have been used for the analysis of brain activity but
there are numerous other optical flow algorithms that have been developed (32,23,24,33-35). In
spite of the above-mentioned attempts to estimate wave motion in brain activity, it is still pending
to compare the performance and analytical efficacy of optical-flow methods for determining
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velocity vector fields in brain activity. There also has been a scarcity of quantitative analysis for
extracting spatiotemporal dynamics in brain activity from velocity vector fields. Off the shelf tools
are also missing for streamlining data analysis i.e. estimating velocity vector fields followed by
automatically identifying sources and sinks, and calculating trajectories and velocities of brain
activity with respect to time. In addition to identifying sources and sinks in space-time, it would
also be useful to quantitatively characterize their properties such as outlines (what is the shape of
a source or a sink), sizes (how big a source or sink is in space) and strengths (how much activity

outflow or inflow is there in time).

In this paper, we present for the neuroscience community, a graphical user interface based Optical-
Flow Analysis Toolbox in Matlab® (Mathworks Inc.) for investigating the spatiotemporal
dynamics of mesoscale brain activity (OFAMM). We compare the performance and analytical
efficacy of three optical-flow methods namely, Horn-Schunck (HS), combined local-global
(CLG), and temporospatial (TS) for determining velocity vector fields of perceived flow in brain
activity monitored using voltage and calcium imaging. Also, we compare the performance of HS
and CLG methods based analyses in determining sources and sinks in space-time as well as
trajectories of brain activity waves and their temporal speeds. The three optical flow methods were
selected from numerous others (23), primarily, due to their previous use with brain activity. Since
in real data sets of brain activity, the ground true values are unknown, simulated data was first
used to investigate the accuracy of our analysis and its sensitivity to the addition of noise. Later,
we tested and validated the application of our analysis on real data acquired with wide-field voltage
and calcium imaging from mice brains. Similar to previous finding, higher instantaneous and
temporal speeds were estimated with voltage imaging as compared to calcium imaging. The results
are consistent with voltage signals reporting predominantly subthreshold activity and calcium

signals reporting suprathreshold spiking activity (36).
Materials and Methods
2.1 The General framework

The ultimate goal of analyzing the sampled brain activity with optical-flow methods is to
characterize and study the perceived motion of activity (in space-time). To do so, the set of two-
dimensional (2D) images collected over time are first preprocessed to filter noise and determine

the percentage change in fluorescence from a baseline (AF/Fo) for each pixel. Next using optical-
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flow methods “velocity vector fields” are determined by estimating the displacement of pixels over
time. Thus, a velocity vector is estimated for each pixel whose magnitude and direction represents
its speed and direction of motion. Here, we used three different optical flow methods HS, CLG,
and TS for determining the velocity vector fields (Fig. 1). With the TS method, only one vector
field is estimated for a group of image frames whereas with the CLG and HS methods vector fields
are obtained for all pairs of consecutive image frames. From the vector fields, the locations of
sources and sinks i.e. the regions of origin and termination of activity, can be determined using
vector calculus methods. Since with the TS method, only one vector field is estimated for a group
of frames, the location of sources and sinks can be estimated only in space but not in time (29).
However, from the vector fields estimated by the CLG and HS methods the location of sources
and sinks can be estimated in both space and time and more importantly, the trajectories of pixels
or regions of interest and their temporal velocities can also be calculated using vector calculus
methods (Fig. 1). The details of the optical-flow and vector calculus methods that we use in this

work are given below.
2.2 Optical-flow estimation methods
2.2.1 Horn-Schunck (HS) method

The HS method (28,37) operates on two consecutive frames and estimates the motion of pixels
from one frame to the other by iteratively solving an optimization problem (stated below)
formulated from two constraints. The first constraint called “brightness constancy” assumes a pixel

to have the same brightness level in both frames after movement i.e.
I(x+uy+vt+1)=I1(y,t) Eq. 1

where 1(x,y,t) is the pixel brightness in the first frame at time t and spatial location (x,y) and
[(x+u,y+v,t+1) is the pixel brightness in the second frame at t+1 after (u,v) displacements from
(x,y) inx and y directions respectively. The second constraint called “spatial Smoothness” prevents

discontinuities in the flow field. Mathematically,

IVul? = (g—z)z + (Z—;)Z and, |Vv|? = (Z—x)2 + (("j—y)2 Eq. 2

These two constraints are combined to get a minimization problem given by the following equation
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min {f(lt + Lu+ va)zdxdy +a [(|Vu]? + IVvIZ)dxdy} Eqg. 3
u,v

where I, I, and I,, are derivatives of I(x,y,t) with respect to time, spatial direction x, and spatial
direction y, respectively (17) and a is the ratio of the weights of spatial smoothness integral to that
of the brightness constancy. This constant regulates the contribution of the two terms. This
equation is solved to estimate the values of u and v. As the integral in the above equation is
calculated on the whole image field this method is called a global method. An implementation of

the HS method in Matlab® was downloaded from

(https://www.mathworks.com/matlabcentral/fileexchange/22756-horn-schunck-optical-flow-

method) and used here for analysis. a, and the number of iterations can be set in the graphical-
user-interface of the toolbox. We chose a = 0.1 and the number of iterations = 2000 for our
subsequent analysis by trial and error. We estimated velocities of pixels with the HS method for
the travelling plane and circular waves (simulated data) while tweaking parameter values to
minimize deviation from actual velocities. Alternately, a and the number of iterations were also
determined analytically by using simulated data with known values of trajectories and velocities
for the three Gaussian waves (see Supplementary Movie 1 — last clip). Different combinations of
the values of a (ranging between 0.05 and 100), and the number of iterations (ranging between
100 and 9000) were used to estimate the best combination that gave the minimum error for
estimated velocities. The best combination of a = 0.35 and number of iterations = 2000 was used

for analysis for generating supplementary figures S3-S7.
2.2.2 Combined local-global (CLG) method

The CLG method (30,31) combines the HS method and a second method called Lucas-Kanade
(LK). LK method assumes the constancy of motion in the neighborhood of a pixel i.e. the velocity
and direction of motion of pixels around the pixel of interest are equal. Mathematically, LK method

formulates the following minimization problem
. 2
min {, (L () + L(Pu + L, (p)v)*} Eq. 4

where p is selected from an n X n neighborhood of (x, y) pixel. In a more general formulation of
the LK method the optimization argument can be convolved with a Gaussian window to filter noise

in the images i.e.
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min {3, G, * (1(p) + L) + 1, (p)v) '} Eq. 5

where G, is a two dimensional normalized Gaussian window with standard deviation of o and *
denote the convolution operation. As the LK method assumes that the motion (speed and direction)
is constant in the neighborhood of a pixel, it is called a local method and works better while dealing

with small displacements.

The combination of HS and LK methods proposed by Bruhn et al. 2002 (30) constitutes the CLG

method and is formulated as bellow:
. 2
min {3, Go « (1(p) + L@)u + L, (p)v)” +a [(Vul? + |Vr[)dxdy}  Eq.6

An implementation of the CLG method in Matlab (38) was downloaded from

(http://people.csail.mit.edu/celiu/OpticalFlow/) and used here for analysis. The values of the

following parameters can be set via the graphical-user-interface of the toolbox. We chose the
values indicated below following (38), and trial and error in order to minimize the error in the

estimation of velocities for the travelling plane and circular waves (simulated data).

a = 0.03, ratio = 0.5, minWidth = Image Size X ratio X 0.5, nOuterFPlIterations =7,

ninnerFPIterations = 1, nSORIterations = 30
Alternately, the following values were used for generating supplementary figures S3-S7.

a = 0.04, ratio = 0.5, minWidth = Image Size X ratio X 0.5, nOuterFPlterations = 15,

ninnerFPIterations = 3, nSORIterations = 30

These values were obtained analytically by using trial and error application of CLG method onto
simulated data same as that used for the HS method (see Supplementary Movie 1 — last clip). First,
a large number of iterations was used and the values of « and ratio were determined which gave
the minimum error in the estimated velocities. Later, the number of iterations were reduced to a

desired number which kept the same error to a minimum.
2.2.3 Temporospatial (TS) method

The TS method proposed and demonstrated by Takagaki et al. 2011 (29) estimates motion of pixels
by identifying neighboring pixels whose temporal activity is highly correlated and hence was
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named Temporospatial method. To determine the speed and direction of motion of a pixel, the
correlation of its activity with that of neighboring pixels is calculated to determine the highest
correlation coefficient and thus estimate the next location of the pixel. The speed of motion is then
determined by dividing the displacement of pixel from one location to the other by the best
temporal lag (delay) that provides the highest correlation coefficient. Finding temporal correlation
of all pairs of pixels is a computationally intensive process. To reduce computational time,
Takagaki et al. defined spatial motion templates of pixels which represented different types of
motion (e.g. expansion, contraction, translation, and rotation) as bases along which the motion of
pixels could be resolved. The motion of a pixel was then estimated by finding the components of
its motion along the bases (see Takagaki et al. 2011 for details). Since the whole temporal activity
of a pixel in a group of frames is used to determine temporal correlations with neighboring pixels,
only one vector is obtained for a pixel representing the average movement of that pixel in time.
Thus for a group of image frames only one vector field is obtained. The implementation of TS

method we used in this work was written in Matlab®.
2.3 Vector calculus methods
2.3.1 Determination of the locations of sources and sinks from velocity vector fields

The locations of sources and sinks (points of outward or inward flow respectively) from velocity
vector fields were calculated using three methods. In the first method, divergence of the vector
field was calculated to obtain a scalar field with positive and negative numbers indicating locations
of sources and sinks respectively while their magnitude indicates the strength. Contours of constant
divergence values were also calculated. In the second method, Poincare index was calculated for
a pixel by finding the sum of differences of angles of neighboring pixels. Poincare index when
normalized by 27, has values of +1, 0, and -1 for a source or a sink, plane flow, and saddle points,
respectively. In the third method, trace and determinant values of the Jacobian matrix were
calculated for each pixel. A pixel is a source if the determinant and trace values are positive and is
a sink if the determinant is positive with a negative trace value. A pixel was only considered a
source (or a sink) if all the three methods identified it as a source (or a sink) and it had at least two
closed contours surrounding it. All three methods were implemented in Matlab®. The size and

strength of a source or a sink was determined from the closest (innermost) contour. The size was
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defined as the number of pixels inside the contour while the strength was defined as the contour

value. The contour borders defined the shape of the source or sink.
2.3.2 Determination of trajectories of pixels and their temporal speeds

In order to determine trajectories of pixels, streamlines were estimated from the velocity vector
fields using the built-in “stream3” function of Matlab®. A streamline represents the curve to which
a subset of velocity vectors in the field are tangent and thus it represents path of the flow of a pixel.
The stream3 function calculates a temporal streamline from the velocity vector fields for a pixel
of interest defined in space-time. The temporal velocity of the pixel along its trajectory was then
calculated from the streamline.

2.4 Simulated data and addition of noise

To compare the analytical efficacy of TS, CLG, and HS methods in determining velocity vector
fields and source/sink locations, trajectories of pixels and their temporal speeds, simulated data
were generated in Matlab® with known shapes of sources and sinks, and motion profiles (velocities
and directions of movement). Three image sequences (explained in the results section) were
generated; Traveling half-sinusoid plane wave, traveling half-sinusoid circular wave originating at
the center (single source), and complex multisource/multisink traveling Gaussian waves. To add
noise to the simulated image sequences, the average power of all pixels (over space and time) was
calculated. The amplitude of Gaussian white noise added to each pixel was proportional to the
average power. The code for generating simulated data and the addition of noise is provided with

the toolbox.
2.5 Optical imaging - Data acquisition and analysis
2.5.1 Animals and Surgery

Adult (~25 g) male C57BL/6J mice were used for voltage sensitive dye imaging experiments.
“Emx-GCaMP6f” animals were used for calcium imaging. The “Emx-GCaMP6” mice produced
by crossing homozygous B6.129S2-Emx1 ™MC®K/j strain (Jax no. 005628) with B6;129S-
Gt(ROSA)26Sor M9SLECAC-GCaMPeHze/y strain (Jax no. 024105,Ai95) (39). The presence of
GCaMP6f expression was determined by genotyping each animal before each surgical procedure.

Mice were housed in clear plastic cages in groups of two to five under a 12 h light, 12 h dark cycle.
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Mice were given ad libitum access to water and standard laboratory mouse diet at all times. The
animal protocols were approved by the University of Lethbridge Animal Care Committee and were
in accordance with guidelines set forth by the Canadian Council for Animal Care. At
approximately 3 months of age, mice were given an acute craniotomy. Mice were anesthetized
with isoflurane (1.0-1.5%) for induction and during surgery, and a reduced maintenance
concentration of isoflurane (0.5%) was used later during data collection. Mice were placed on a
metal plate that could be mounted onto the stage of the upright macroscope, and the skull was
fastened to a steel plate. A 7 <6 mm unilateral craniotomy (bregma 2.5 to —4.5 mm, lateral 0 to 6
mm) was made, and the underlying dura was removed, as described previously (16,40).
Throughout surgery and imaging, body temperature was maintained at 37 <C using a heating pad

with a feedback thermistor.
2.5.2 Optical imaging

For voltage-sensitive dye based wide-field optical imaging (VSDI), the dye RH-1691 (Optical
Imaging, New York, NY) (41) was dissolved in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES)-buffered saline solution (0.4 mg mI™*) and applied to the exposed cortex for 30-60
min, as previously described (42-45). After staining, rest of the dye was washed out and the
cortical surface was covered with 1.5% agarose in HEPES-buffered saline and a coverslip on top
to reduce movement artifacts. The dye was excited by a red LED (Luxeon K2, 627 nm center) and
the excitation and emission optical filters for imaging were 630 15 nm and 688 =+ 15 nm
(Semrock, New York, NY), respectively. For calcium imaging, mice were anesthetized with
isofluorane and their skull was exposed (left hemisphere). Thinning of the skull bone was then
performed followed by affixing of a glass coverslip with cyanoacrylate glue and implantation of a
metal head plate. The fluorophore GCaMP6f was excited with a blue LED (Luxeon, 470 nm
center) filtered by an excitation filter 470 240 nm (Semrock, New York, NY). The emitted light
was filtered by a 542 +27 nm emission filter (Semrock, New York, NY). 12-bit CCD camera
(1M60 Pantera, Dalsa, Waterloo, ON) was used to acquire images at a rate of 150 and 30 frames
per second for VSD and calcium imaging. Because animal brain states show spontaneous change,
we averaged 10-45 trials of stimulus presentation to reduce these effects. To correct for time-
dependent changes in fluorescent signals that accompany all imaging, we also collected a number

of nonstimulation trials that were used for normalization of the stimulated data. A 10-s interval
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between each sensory stimulation was used. The camera was focused 0.5-1 mm below cortical
surface to avoid distortion of signal due to movement of superficial blood vessels. The
preprocessed data is provided with the toolbox data residing in subfolder “SampleData” in the

main toolbox folder.
2.5.3 Sensory stimulation

Sensory forelimb stimulation was done by passing a current (0.2-1 mA for 1 ms) through a thin
needle (0.14 mm) inserted into the forepaw. For auditory stimulation, a 12 kHz pure tone at 80 dB
was played using a Tucker-Davis Technologies (TDT) RX6 and delivered to animal’s right ear
while the animal was sitting in a sound proof booth in the laboratory. The speaker (TDT, ES1
electrostatic loudspeaker) was calibrated to emit uniformly distributed amplitude of all

frequencies.
2.5.4 Data Preprocessing

To reduce regional bias in caused by uneven dye staining or brain curvature, the VSD and calcium
responses were expressed as a percentage change relative to baseline (AF/FOx 100%) using
Matlab®. To reduce the effect of heartbeat in our calcium imaging data, the calcium signal was

filtered with a finite-impulse-response low-pass filter (cut-off frequency 5Hz).
2.5.5 Statistical Analysis

All statistical analysis was done in Matlab®. Two sample t-test was used for statistical comparison

and a p-value of 0.05 was used to determine significance.
3. Results

We first present the comparison of the performance of the three optical-flow (OF) methods using
simulated data for which the ground true values of wave motion are known. Later, we demonstrate

the use of OF methods on real voltage and calcium optical imaging data.
3.1  Optical-flow characterization of simulated data
3.1.1 Travelling plane wave (no source and sink): a half-sinusoid moving in one direction

One of the most commonly observed wave pattern in brain activity is a travelling plane wave

(3,16,29,46-49) which is encountered when an activity has emerged from a source and is travelling
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towards a sink. It would also be seen in situations where the imaging field of view is limited. We
mimicked such activity by a half-sinusoid travelling plan wave at a constant speed (1 pixel per

frame — p/f) in the horizontal direction (angle = 0, see Fig 2A and Supplementary Movie 1).

Determination of velocity vector fields: With the three algorithms (TS, CLG, and HS), optical-flow
of the travelling half-sinusoid was determined i.e. velocity vector fields were estimated where
velocity vectors obtained for all pixels represent their speeds and directions of motion (see Fig.
2A). Note that with the TS method only one vector field for the whole image sequence representing
average speeds and directions is obtained. With the CLG and HS methods however, vector fields
are estimated from all pairs of consecutive frames and thus their number is one less than the
number of frames in the image sequence. The velocity vectors for the CLG and HS methods thus
represent instantaneous speeds and directions. The estimated vector fields with all three methods
very well matched with the actual flow (Fig. 2A). Moreover, flow fields calculated with the CLG
and HS methods were similar to each other. The time required for the calculation of velocity vector
fields was longest for the TS method (~79 secs for estimating 1 velocity vector field from 242
frames each having 128x128 pixels). The time took by the CLG and HS methods were 0.52 secs
and 0.59 secs respectively for generating 1 velocity vector field from two consecutive frames.
These times were obtained on a 64-bit PC with the following specifications; Processor Intel ®
Core™ i7-4770K CPU @ 3.50GHz, RAM 32GB, and with toolbox running in Matlab® R2013b.

Performance of HS, CLG, and TS methods for determining velocity vector fields: In order to gauge
the efficacy of the three methods in determining velocity vector fields (speeds and angles), we
compared estimated and actual instantaneous velocity vectors by determining the errors for a range

of values of speeds and angles (directions of motion) of the sinusoids:
Eis = estimated speed (Se) — actual speed (Sa), and
Eia = estimated angle (Ae) — actual angle (As)

First, Eis was measured for all pixels and the trend of means and standard deviations of Eis was
calculated for values of actual speeds ranging between 0 and 10 pixels/frame - p/f (Fig. 2B) while
keeping the angle = 0 (horizontal direction of motion). The TS method performed well for actual
speeds less than 2p/f but its performance steeply declined for greater speeds because of limited

size of the time window used for determining temporal correlations (see methods). The TS method
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is therefore sensitive to the size of window chosen for analysis. A larger window would produce
better estimates for higher actual speeds but with an added computational cost (Supplementary
Fig. S1B). The performance of CLG and HS methods was better than TS for higher speeds with
CLG performing better than HS (small standard deviation for CLG in Fig. 2B). Similarly, Eia was
determined for all pixels and the trend of mean and standard deviations of Eia was observed for
values of angles ranging between 0 and 90 °(Fig. 2C) while keeping the speed constant = 1p/f. Eia
remained within 35<for all the three methods with individual variations in the values of means
and standard deviations. Although the mean value of Eia calculated with the TS method is closer
to zero as compared to means calculated by using the HS and CLG methods, the standard deviation
of Eia calculated with the TS method is much higher. The performance of CLG and HS in
estimating the angles is similar with a very small standard deviation of error with the CLG method.
Based on these results, the CLG method should be preferred over TS and HS methods for

determining velocity vector fields for travelling plane waves.

Efficacy of HS, CLG, and TS methods in determining vector fields from noisy data: Since, the
experimental data representing brain activity is noisy, we tested the performance of the three
optical-flow methods by adding noise to the simulated data (see methods). By adding various
levels of noise to each pixel in the image sequence, the errors Eis and Eia in speed and angle
estimation respectively were calculated in the same way as mentioned above. The addition of noise
adversely affected the estimates of speeds and angles with larger errors in estimation for larger
noise levels (Fig. 2D and 2E). The estimate of angles however, were more affected with greater
noise (Eia ~30<for 30% noise level). From all the three methods, the temporospatial method was
more robust in the estimation of angle and velocity from noisy data as compared to the other two
methods. This is because determining the temporal correlation between pixels improves the signal
to noise ratio. The performance of CLG and HS methods was similar to each other for all noise
levels with CLG having smaller standard deviations of errors. Our results thus suggest that filtering

imaging data to remove noise is preferable before determining vector fields.

Determination of trajectories of pixels and their speeds versus time: To determine underlying
anatomical and physiological communication pathways within different brain regions, it is relevant
to follow the course of travel of activity. Hence, using vector calculus methods, the trajectories of

travel (streamlines) of pixels or regions of interest were determined from velocity vector fields
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calculated with CLG and HS methods. Note that this analysis cannot be done with the single
velocity vector field obtained with the TS method. Estimation of trajectories from velocity vector
fields determined with the CLG method were better than that of the HS method (compare red lines
in Fig. 2F and 2H). However, when noise (10% and 30%) was added to the simulated data, the
performance of estimation declined similarly for both methods. Temporal speeds (St) of pixels
along the trajectory were also estimated and the error (Es = estimated S¢— actual St) was calculated.
The error was zero for simulated data with no noise but increased for 10% and 30% noise levels
(purple and green lines in Fig. 2G and 21). The error was worse for analysis based on the HS
method (Fig. 21). Note that the displacement (direct distance from start to finish) of a pixel was
smaller at higher noise levels. This is mainly because of error in the estimate of angles resulting in
zig-zag shaped trajectories of pixels. The zig-zag effect grows larger with increasing noise levels.
Our results thus suggest that the trajectories of pixels and their speeds are better estimated from

velocity vector fields determined with the CLG method after noise reduction.

3.1.2 Travelling circular wave: a half-sinusoid originating at a source and propagating in
all directions

Another frequent pattern of activity in the imaging data is propagation of a signal originating from
a source such as those seen after sensory stimulation (16,49-51). In order to mimic this type of
activity, a circular ring of half-sinusoid was generated which originated at the center of a frame
and spread outwards to the edges with a constant velocity of 1 p/f (Supplementary Movie 1). The
optical-flow was estimated with the three methods to obtain velocity vector fields (Fig. 3A). Errors
in the estimates of instantaneous speeds and angles (Eis and Ei) were determined for propagation
speeds ranging between 0 and 10 p/f (Fig. 3B-C). Note that in this simulated data all directions of
motion i.e. all angles are concurrent and hence only the propagation speed was changed. Similar
to the results above, performance of the TS method degraded for estimation of higher speeds (Fig.
3B) because of limited size of window used for finding temporal correlations between pixels (see
methods). The TS method also failed to estimate the directions of motion for higher speeds for the
same reason (Fig. 3C). The performance of the CLG and HS methods was similar to each other
with CLG’s performance better than that of HS for estimating speeds as well as angles (smaller

standard deviations of errors for CLG curves).
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The efficacy of the three methods for determining velocity vector fields from noisy data was
assessed by adding different noise levels to all pixels and observing the errors in estimates of
instantaneous speeds and angles. The propagation speed was set to 1p/f for this analysis. The TS
method was most robust to noise as computing temporal correlations averages out some noise (Fig.
3D-E). However, all three methods were better in estimating speeds from noisy data than angles.
With the addition of even small noise levels, the performance of the HS method in estimating
angles degrades quickly. These results suggest that it is preferable to filter raw data before applying
any of the three methods for determining velocity vector fields.

Next, trajectories of selected pixels and their velocities were calculated from velocity vector fields
that were estimated with the CLG and HS methods with and without adding noise to all pixels.
Without the addition of noise, the estimated trajectories were accurately determined (red lines in
Fig. 3F and 3H). However, with the addition of 10% noise level, the estimated trajectory is such
that the total displacement of pixels is shorter than the actual (purple lines). This is because the
estimation of angles of velocity vector fields is adversely affected with the addition of noise and
thus the estimated path is zig-zag. The zig-zag effect becomes more pronounced with the addition
of 30% noise level (green lines). The effect of noise on the estimation of temporal speeds was
negligible (Fig. 3G and 3l) with the CLG method based analysis showing smaller standard
deviations of error. Combined these results also favor the use of CLG method for determining
velocity vector fields.

3.1.3 Travelling Gaussian waves: Complex simulated data containing three Gaussian

sources, travelling waves, and sinks

When multiple brain regions are active simultaneously (16,42,50,52), multiple travelling waves
are observed (see Fig. 1b in (16)). In order to gauge the correctness of our analyses in estimating
the spatiotemporal dynamics of activity in such data, we generated similar simulated data by
forming an image sequence in which three two-dimensional Gaussian sources (with same
amplitude = 1) originate at three distinct space-time locations i.e. the spatial points of origin are
distinct as well as the frames in which they start (Supplementary Movie 1). Based on their shapes,
these activity-like events were named C1 (circular), E1 (elliptical), and C2 (circular). The temporal
order of their appearance was C1, E1, and C2. All events originate and expand to reach their final

size and when fully expanded, undergo translation and/or rotation. The trajectories of C1 and E1

Afrashteh et al 2016 Neurolmage Page 16 of 31


https://doi.org/10.1101/087676

bioRxiv preprint doi: https://doi.org/10.1101/087676; this version posted November 14, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

form arcs of different circles and the trajectory of C2 is linear. E1 while translating also rotates
30<=counter-clockwise about its center. Finally, all of them contract and sink into three distinct
space locations. For each event, the full expansions and contractions happen in 15 frames (~0.1
secs). For C1 and E1 during translations while following arcs of circles, the variation in angular
speed follows a half-sinusoid while for C2, the linear translation happens at constant speed. By
generating this multi-brain activity-like complex simulated data our goal was to determine how
accurately our analysis would estimate the underlying dynamics and to compare the performance
of CLG and HS methods. The TS method was not used here because it requires large computational

time and provides only a single vector field for the whole image sequence.

Velocity vector fields were first estimated (Fig. 4A for the CLG method) and later using methods
of vector calculus, the trajectories of pixels of interest and their speeds were calculated (Fig. 4B-I
for C1 and E1). The analysis based on the CLG method accurately captured the dynamics of C1
and E1 (with a few exceptions for E1 — see below). The analysis based on the HS method however
was not as much efficient. For example, the center of C1 is static while the Gaussian is expanding,
follows a half sinusoid speed curve while translating along the arc, and is static again while the
Gaussian is contracting (see dashed magenta line for actual speed of center in Fig. 4C). The
estimated speed of the center of C1 with the CLG method based analysis closely matched the
actual speed (see green lines in Fig. 4B and 4C for trajectory and speed respectively). However,
the HS method based analysis failed to capture the dynamics accurately during the expansion and
contraction phases (green lines in Fig. 4D-E). For non-center points in C1, after their temporal
appearance, the actual speed is ~2p/f while C1 is expanding, follows a half sinusoid speed curve
(linear speed =radius of point x angular speed), and is ~2p/f while C1 is contracting. The estimated
speeds of these non-center points also closely matched the actual speeds (see blue, black, and red
lines in Fig. 4B-C for CLG method based analysis). The HS method based analysis fails to
accurately capture the dynamics of non-center points (Fig. 4D-E). Note, that there is a momentary
pause of C1 Gaussian for two frames between expansion and translation, and for two frames
between translation and contraction. This is also nicely captured in the estimates of speeds of non-

center pixels of C1 especially with the CLG method based analysis.

For E1 also, the estimated trajectory and speed of the center pixel (green line in Fig. 4F-G) closely
matched the actual trajectory and speed (dotted magenta line) respectively with the CLG method
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based analysis. However, the estimated trajectories and speeds were slightly erroneous for non-
center pixels (see black, blue, and red lines in Fig. 4F-G). This error could in part be due to discrete
spatial sampling and rotation of E1 event during translation. Here also, the analysis captures the
momentary pause before translation along the arc. With the HS method based analysis, the
estimation of event dynamics (trajectories and speeds) was not as accurate (Fig. 4H-1). These
results thus demonstrate the superiority of the CLG method based analysis over that of HS in

tracking pixel trajectories and determining temporal speeds.

Since simulated data had sources and sinks associated with three simulated activity patterns, we
applied vector calculus methods on each velocity vector field determined by the CLG and HS
methods to identify the location, outlines, and strengths of sources and sinks in space-time (see
methods). Both CLG and HS method based analyses performed well in identifying the location of
sources and sinks (see black dots in Fig. 4J-M). Although there were only three events, but since
the outflow of activity from a region is identified as a source, multiple sources were detected in
space-time where C1, E1, and C2 were detected as expanding. Similarly, multiple sinks were
detected. Most of the identified source and sink locations except a few, were very close (within a
few pixels) to the actual locations. A weak source (relatively smaller contour value) identified with
the HS method based analysis and a weak sink identified with the CLG method based analysis
were a little farther from the actual locations (arrows in Fig. 4K and 4L). These fake sources and
sinks are perceived in regions where events are spatially close and move away or towards each
other respectively. Hence, caution is advised while interpreting whether a detected location is a
real source or a sink when multiple events are present and approach or move away from each other

in experimental data.

The characteristics of sources and sinks i.e. their outlines (shapes), sizes, and strengths were also
estimated by finding the contours from the divergence of vector fields (see methods). The size of
a source (or a sink) was defined as the area of the contour detected around it while the contour’s
value (divergence) was its strength. Both CLG and HS methods based analyses identified the
outlines (contours) of sources and sinks with the former performing better qualitatively (see
contours in Fig. 4J-M). With both types of analyses, the stronger sources (yellower contours in
Fig. 4J-K) and sinks (bluer contours in Fig. 4L-M) were correctly detected close to the center
location. Additionally, larger sizes were detected gradually with increasing time (frame numbers)
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as C1, E1, and C2 expanded. We also observed the product of size and strength (strength weighed
size or vice versa) as a useful parameter to determine the significance of a source or sink i.e. larger
product would indicate a significant source or sink activity (data not shown). The quantification
of parameters for sources and sinks discussed here will be useful for pin pointing the origin and

termination of activity spread in real image sequences as discussed below in section 3.2.1.

Limitations of the CLG method based analysis in estimating trajectories and speeds of pixels; a
word of caution: The CLG method based analysis failed to accurately estimate the dynamics of
pixels which were shared by multiple dynamic events in space-time. For example, the C2 activity
starts and ends in frames 24 and 68 of the image sequence respectively (see Supplementry Movie
1). The estimated trajectories and speeds of all C2 pixels between these frames were erroneous
(representative pixels in Fig. 5A-B). The actual speeds of all C2 pixels except the center were
~1.43p/f during expansion and contraction with a momentary pause and linear translation at 1.3p/f
in between. The center pixel only moves during translation. The estimated trajectories and speeds
however, were nowhere close to the actual ones because the existence of C2 wave in frame 24 is
concurrent and within the boundaries of C1 event (see Supplementary Movie 1). The CLG method
based analysis thus captures the motion dynamics of the pixels of C1 and continue to follow its
wake in subsequent frames. For the center pixel of C2, the estimated trajectory is that of pixel of
C1. When the center C2 pixel appears in time (in frame 24), it causes a discontinuity in the flow
field which is ignored by the CLG method due to the spatial smoothness constraint (Eq. 2 — see
methods) and perhaps due to the motion constancy constraint as well (Eg. 4). When the C2 was
estimated starting frame 29 after coming out of the wake of C1, the trajectories and speeds of both
center and non-center pixels were accurate compared to previous values (Fig. 5C-D) with the
exception of some pixels which towards the end entered into the wake of E1 activity and thus the
estimates of their trajectories and speeds were erroneous (see blue line in Fig. 5C-D). These results
suggest that if events are overlapped in space-time, the estimation of trajectories and speeds can
be erroneous and caution has to be taken in identifying the pixels of interest in both space and

time.

We further tested the errors in optical-flow estimation (with both CLG and HS methods) due to
overlapping events by changing the amplitude of individual Gaussian events (C1 = 2.5, E1 = 10,
and C2 = 5; see supplementary movie 1 and Fig. S2). With these values of amplitudes, there is a
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larger spatiotemporal overlap between the values of three motion patterns. When E1, C1, and C2
are concurrent in a frame, farther away from E1’s center, its pixel values would be close to the
amplitudes of C1 and C2. New position of an overlapping pixel in the next frame hence will not
be estimated accurately. With executing optical-flow analyses on this dataset, the performance of
both CLG and HS methods degraded. However, the CLG method based analyses still performed
better than the HS method in determining pixel trajectories and temporal speeds (compare Fig. S2
B,C and F,G with D,E and H,I respectively). The locations of sources determined from velocity
vector fields estimated with the CLG method were qualitatively better than those estimated with

the HS method while the opposite was true for determining sink locations (Fig. S2 J-M).

Limitations of the CLG method based analysis - sensitivity to the addition of noise: The efficacy
of the CLG method based analysis in determining velocity vector fields, trajectories of pixels and
temporal speeds from noisy data was assessed by adding 10% and 30% noise levels to all pixels.
The addition of noise adversely affected the estimates of trajectories and speeds of pixels and
identification of the location of sources and sinks with larger effects observed for larger noise
levels (Fig. 5E-L shown only for C1; compare with Fig. 4B-C, 4J, and 4L). For example, the
trajectory of the center pixel (green line in Fig. 5E and 51) was not estimated to be purely arc of a
circle but has a translation component as well. For non-center pixels, the estimated trajectories are
incomplete (red, blue, and black lines) with dislocated final pixel points. Similarly the estimated
speed is erroneous for center and non-center pixels (Fig. 5F & 5J) but the overall trend of motion
was successfully captured i.e. expansion, translation, and contraction. These errors in the estimates
of pixel trajectories and temporal speeds are due to errors in the estimates of velocity vector fields
by the CLG method i.e. the errors in the estimates of instantaneous speeds and angles (see Fig. 2B-
E and 3B-E). The estimates of characteristics of sources and sinks were also adversely affected
e.g. multiple sources and sinks are estimated near the actual source/sink points (Fig. 5G-H & 5K-
L). However, non-existing sources and sinks that were estimated were spatiotemporally located
very close to the actual space-time locations. Estimates of outlines of sources and sinks were also
adversely affected with the addition of noise however, the strengths were still the highest near the
origin point of sources and sinks (yellower and bluer contours respectively near the center). These
results thus suggest that noise adversely affects the analysis and filtering of raw data is advisable

before determining velocity vector fields.
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3.2  Optical-flow characterization of real optical imaging data
3.2.1 W.ide-field optical imaging of mouse brain with forelimb sensory stimulation

Wide-field imaging of mouse brain was done using voltage-sensitive dye while mouse forepaw
was electrically stimulated. An increase in the intensity of the fluorescence signal was observed
10-15 ms after forelimb stimulation in the primary forelimb (FLS1) area of the sensory cortex (Fig.
6A and supplementary movie 2). The activity expanded initially after appearing and translated
towards the medio-caudal direction. Sequentially, another activity appeared in the secondary
forelimb sensory area (FLS2) smaller in size and with small translation towards the medio-caudal
direction. Two regions of interest (ROIs) were defined on the primary and secondary forelimb
cortical areas (Fig. 6B) after visual inspection of the image sequence. The average intensity of
pixels in the ROIs sharply increased around frame 34 and then decreased in two steps (Fig. 6C).
First, a sharp decrease to a value greater than half of the peak value was observed and then a
gradual decrease to the baseline. This is in accordance with previously reported trends of FLS1

and FLS2 evoked responses to forelimb stimulation in isofluorane anesthetized mice (16,43).

Determination of velocity vector fields: The CLG method was used to estimate velocity vector
fields of the image sequence, which captured the flow of activity spread (montage Fig. 6A). To
analyze the global dynamics of pixel intensity changes in the whole imaged region, instantaneous
speeds and angles were determined from velocity vectors for all pixels (in space and time). The
distribution of these instantaneous speeds (black bars in Fig. 6D) showed a peak around 20 mm/sec
(10 mm/sec = 1 p/f) with a mean =std value of 33.3 +24.7 mm/sec and some pixels (~5%) moving
as fast as 100 mm/sec. The distribution of angles showed a peak in the medio-caudal direction
(black line in Fig. 6E) which is in accordance with the visually observed features of the largest
activity in the FLS1 area. Further, analysis was done for FLS1 and FLS2 ROIs to observe local
dynamics and compare these functionally connected regions. The distributions of speeds indicated
that the activity propagation was faster in the primary as compared to the secondary forelimb area
(compare cyan and magenta in Fig. 6D). Mean=std values of speeds for FLS1 and FLS2 ROls
were 42 £32.3 mm/sec and 23.2 x6.2 mm/sec respectively and the two distributions were
significantly different from each other (*** p<0.001) The distribution of angles for the FLS1 ROI
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showed the largest peak in the medio-caudal direction (Fig. 6E) whereas the FLS2 ROI did not

prefer this direction.

Next, to determine the flow of activity of individual pixels, trajectories of pixels, their speeds over
time, and lengths of trajectories were calculated for all pixels in both FLS1 and FLS2 ROIs (Fig.
6G-1). Pixels in the FLS1 ROI covered longer distances at higher speeds as compared to pixels in
the FLS2 ROI. However, the distribution of distances traveled by pixels in the FLS1 ROI was
bimodal indicating two peaks at 1.3 mm and 1.67 mm. As can be seen from the trajectories, the
longer distances covered were in the medio-caudal direction (Fig. 6F) whereas the smaller travel
was in the opposite and orthogonal directions. The distribution of the maximum value of speeds
(Fig. 61) indicated that most of the pixels in the FLS1 and FLS2 ROlIs traveled at speeds of 50

mm/s and 20 mm/s respectively, which agrees with visually observed values.

Identification of sources and sinks: Using vector calculus methods, the locations of sources and
sinks both in space and time were determined from the velocity vector fields (Fig. 7A-B). Their
strengths and sizes were also calculated from contours. Significant sources i.e. ones generating
observable activity, were identified by calculating the product of sizes and strengths. Three
noteworthy sources (1, 3, and 4 in Fig. 7C) were further analyzed which collocated in space and
time with the FLS1 and FLS2 ROIs selected in the analysis shown above (see Fig. 7E-F). For these
sources, pixel trajectories for pixels within the contours were determined and their speeds as well
as distances covered were determined. The distributions of distances (Fig. 7H) and max speeds

(not shown) were very similar to ones obtained with the manual analysis.

Validation of Analysis: The CLG method based analysis allows the study of spatiotemporal
dynamics of brain activity sampled with voltage sensitive dye optical imaging. However, since the
true velocity vector fields are unknown, we validated the values of speeds and angles of some
randomly chosen pixels by determining them manually. Manual validation of results for the FLS1
activity was satisfactory as pixel trajectories and temporal speeds were faithfully estimated.
However, the estimated pixel trajectories seemed to be smaller than actual for the FLS2 activity
perhaps because of overlapping smaller activities within the same region and smaller sampling

rate i.e. discretization in time.
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3.2.2 Quantitative comparison of voltage and calcium imaging data

To further validate the efficacy of our analysis, the spatiotemporal dynamics estimated from
calcium and voltage imaging were compared (see methods for VSD and Ca imaging with
GCaMP6f). With the assumption that the underlying biological activity in the brain is similar for
mice stimulated with similar tone stimulus (i.e. frequency and amplitude), we hypothesized that
the imaged data using different fluorophores would capture similar spatial dynamics from the
auditory cortical area with differences originating from the temporal response dynamics of
fluorophores. Since the temporal dynamics of the VSD signal is much faster than that of the
GCaMP6f fluorescent protein, we expected estimation of faster velocities in VSD compared to
GCaMP6f signal from the auditory cortex (9,36).

After collecting image sequences with the two methods, preprocessing was done similarly to
obtain the changes in fluorescence from the baseline (AF/F,). For both datasets, cortical responses
were observed in the primary auditory cortex (AC) and other cortical areas as well. In both image
sequences, the latency of response in the AC area was similar (10-20 msec for VSDI and 20-30
msec for Ca imaging). Both activity expanded from primary auditory cortex and after some
translation started to sink in the same area. Velocity vector fields for both image sequences were
obtained as the output of optical flow analysis with the CLG method. To compare the instantaneous
speeds and angles for pixels in the auditory cortical area of the two image sequences, we manually
chose regions encompassing the auditory cortex (Fig. 8A-B). As expected, higher instantaneous
speeds (Fig. 8C) were sampled with the VSDI (red) as compared to calcium imaging (blue). The
distributions of angles (Fig. 8D) qualitatively were different but the largest peaks are in the
mediocaudal direction (fourth quadrant) suggesting that the largest flow of activity was

comparable in the two datasets.

3.3 Optical-Flow Analysis Toolbox in Matlab® for investigating the spatiotemporal dynamics of
Mesoscale brain activity (OFAMM)

We present version 1.0 of the OFAMM toolbox for the analysis of brain activity to be freely used
by the research community under the GNU General Public License, version 3 (GPL-3.0) (53). The
toolbox and sample data including simulated and real optical imaging data can be downloaded

from [http://lethbridgebraindynamics.com/ofamm/]. The toolbox contains a graphical user

interface (GUI) shown in Figure 9. This GUI follows the optical brain activity data analysis
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framework described in Figure 1. The detailed procedure to use the toolbox is provided in the
supplementary material. Briefly, one can load image sequence and mask (if applicable) into the
GUI. On the image sequence, all or any of the three optical flow methods, HS, CLG, and TS, can
be executed to estimate velocity vector fields which can be viewed in the GUI. The distributions
of instantaneous speeds of all pixels in space-time within a region of interest can be plotted.
Source/sink locations and trajectories of pixels of interest can then be obtained from the velocity
vector fields by applying vector calculus analyses. Graphs of source/sink locations and those of
pixel trajectories and speeds can be plotted. All the results are stored in mat files and the user can
plot additional graphs at will (see supplementary material).

4. Discussion

Brain activity sampled with optical imaging consists of travelling waves which originate at sources
and terminate at sinks. These waves are perceived in sampled image sequences as neurons in
different brain regions become sequentially active (3,16,46,54). It is physiologically very relevant
to quantify characteristics of such waves, sources, and sinks that might be used to specify the
functionality of a brain area and its connectivity with other brain areas (16,17,27,29,55,56) during

different brain states and various health status (43).

It is known that many brain disorders result in part from circuit malfunction. The impairment
developed in neural circuits and network activity cause instability in neural communication (57—
61) which might increase or decrease the cortical dynamics of signal flow or due to circuit
remodeling displace the location of sources or sinks. Thus, using these characteristics, normal and
diseased brain circuits and their connectivity could be compared (62—64).

Different methods used for the analysis of brain activity in optical imaging datasets have been
reported previously but a consolidated toolbox for analyses is missing. Here we present a Matlab®
based software toolbox for the optical flow analyses of brain activity datasets. We have
incorporated three optical flow methods into the toolbox namely HS, CLG, and TS. Using all three
optical flow methods, we have estimated the characteristics of traveling waves, sources, and sinks

in brain activity dynamics.

To compare their performance, we generated simulated data with known speeds and directions of
movement (data which other investigators can use). The performance of HS, CLG, and TS for

determining velocity vector fields was assessed by comparing the estimation errors in speeds and
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angles without and with the addition of noise (2" row in Fig. 2 and 3). The results suggest that for
noisy data the TS method is quite robust. However, since the TS method relies on determining
temporal correlations in a group of frames, only one vector field is obtained where each vector
represents average speed and direction. From this single vector field, the location of sources and
sinks are determined only in space and not in time. The computational time for executing TS
method is also large (Supplementary Fig. S1). In contrast, HS and CLG methods are
computationally fast and provide vector fields for pairs of consecutive frames and thus
instantaneous speeds and directions. From multiple vector fields location of sources and sinks can
be determined in space as well as time. The trajectories of pixels and their temporal speeds can
also be determined. For the complex simulated data containing Gaussian propagating waves, we
thus compare the performance of HS and CLG methods for determining activity trajectories, their
temporal speeds, sources, and sinks. We demonstrate that the CLG method based analyses provide
favorable estimates as compared to the analyses based on the HS method (Fig. 4). This is in
agreement with previously reported studies where the CLG method performed better in estimating
speed of large moving objects in videos and displacement of fluorescently labeled proteins (65,66).
For this reason, we perform the analysis of real imaging data only with the CLG method. The user
of the toolbox is however encouraged to experiment with all three optical flow methods for their

simulated as well as real data.

The parameters for applying optical-flow methods e.g. window size for the TS method, and o and
number of iterations for HS and CLG methods can also be set via the graphical user interface
before executing the algorithms on an image sequence. Different values of these parameters could
affect the estimated velocity vector fields, source and sink locations, and calculated pixel
trajectories as well as temporal speeds. For our simulated and real optical imaging data, we also
used alternate values of parameters (see methods) to compare their performance (see
Supplementary Figures S3-S7). With the use of alternate parameters, the best parameter that
improved the performance of HS and CLG algorithms were found (e.g. compare Fig. S5 with Fig.
4). The same conclusions were still valid that (1) the CLG method performs better than HS and
(2) filtering data before using optical-flow algorithms is desirable. Since the application of optical-
flow methods is sensitive to the choice of algorithm and associated parameters whose values can

be set subjectively, we recommend that manual validation of results must be performed.
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The CLG method, although is the most favorable, has few limitations. When two or more events
overlap in space-time, the CLG method provides erroneous results for the estimation of trajectories
of pixels as well as their speeds (Fig. 5 and S2). The errors in estimation were worse with the HS
method (data not shown). Caution is thus advised in selecting the pixels or regions of interest in
space-time to correctly trace the pathways of activity patterns. Additionally, when noise was added
to the signal, the errors in estimation with the CLG method based analysis increased. Thus it is

very important to filter the real imaging data before performing the CLG method based analysis.

We demonstrate how the CLG optical-flow method can be applied to real optical imaging data and
the distributions of instantaneous speeds and angles, temporal speeds and lengths of trajectories
are useful observations for studying population based cortical activity (Fig. 6). Additionally, with
the semi-automatic analysis significant sources can be identified and one can observe their spatial
distributions (Fig. 7). We validate our optical flow analysis by using two sets of imaging data
collected from two different animals with the same stimulation protocol but different fluorophores
(VSD and GCaMP6f) for imaging (Fig. 8). As expected, higher instantaneous speeds were
captured with VSD as compared to GCaMP6f since the response characteristics of VSD are much
faster than GCaMP6f. Finally we present the optical flow analysis toolbox for characterizing the

spatiotemporal dynamics in brain activity measured using optical imaging methods (Fig. 9).

Neuroscience relies on observing brain activity at various levels to make physiological models of
brain function. At the mesoscale level corresponding to spatial dimensions of the order of hundreds
of micrometers to a few millimeters, brain activity is sampled using methods like extrinsic or
intrinsic optical imaging. We present a toolbox “OFAMM?” for analyzing optical imaging data to

quantify wave motion and underlying spatiotemporal dynamics.
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Figure 1. Flow diagram summarizing mesoscale brain activity data acquisition and analysis. The data consists of perceived
motion of pixels i.e. traveling waves originating at sources and vanishing at sink locations. The most common analysis
includes observing temporal activity of pixels or regions of interest and determining functional connectivity between spatial
regions using temporal correlations. The less common analysis is estimating wave motion with “optical-flow methods”
(borrowed from computer vision) in which the spatiotemporal dynamics in brain activity are characterized for determining
source/sink locations and properties of traveling waves i.e. trajectories and temporal speeds of pixels. We compare the
performance of three optical flow methods; Horn-Schunk (HS), Combined local-global (CLG), and Temporospatial (TS)
for analyzing optical imaging data. We present a graphical user interface based Matlab toolbox for mesoscale brain activity
data analysis. Shaded boxes show methods included in the toolbox and bold outlined boxes show output entities of interest.
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Figure 2. Comparison of the performance of HS, CLG, and TS methods for estimating dynamics of a simulated traveling
plane wave. A. Representative frames from the image sequence with overlaid velocity vector fields. Note that with the TS
method only one vector field is obtained for the whole image sequence while with the HS and CLG methods, a vector field
is obtained for each pair of consecutive frames (see text) B. Instantaneous speed estimation error versus actual speeds of
plane wave for angle = 0< Performance of the TS method depends on the size of correlation window in space (see text) and
shows high error for speeds where displacements of pixels are beyond the size of the correlation window. HS shows an
increase in the standard deviation of the error with increasing speeds but CLG is robust. C. Instantaneous angle estimation
error versus actual angles (direction of motion) of plane wave with speed = 1 p/f. TS method shows large standard deviation
of error. HS and CLG methods show similar performance with the CLG method showing smallest standard deviation. D, E.
Instantaneous speed (D) and angle (E) estimation error versus noise level. The performance for three methods degrades with
increasing noise levels. F-1. Trajectories of pixels for 0% (orange), 10% (purple) and 30% (green) noise level shown in
single frame (F) for CLG, and (H) for HS methods. Temporal speed estimation error versus time (frame number) for the
three noise levels (G) for CLG, and (I) for HS methods. Overall the best performance is that of CLG.
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Figure 3. Comparison of performance of HS, CLG, and TS methods for estimating dynamics of a simulated traveling
circular wave. A. Representative frames from the image sequence with overlaid velocity vector fields. B, C. Instantaneous
speed estimation error (B) and instantaneous angle estimation error (C) versus actual speeds. D, E. Instantaneous speed
estimation error (D) and instantaneous angle estimation error (E) versus noise levels. F-1. Trajectories of pixels for 0%
(orange), 10% (purple) and 30% (green) noise level shown in single frame (F) for CLG, and (H) for HS methods. Temporal
speed estimation error versus time (frame number) for the three noise levels (G) for CLG, and (1) for HS methods. Overall

the best performance is that of CLG.
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Figure 4. Comparison of the performance of HS and CLG methods for estimating dynamics of an image sequence
simulating three sources, traveling events, and sinks (see text). A. Montage of frames from the image sequence overlaid
with velocity vector fields determined with the CLG method. B. Trajectories of selected pixels of C1 event (see text), center
pixel (green), non-center pixels (blue, black, and red), calculated with the CLG method based analysis. C. Estimated
temporal speeds of pixels in (B) - same colors, versus time (frame numbers). Magenta line shows actual speed of the center
pixel. D-E. Same as B-C but with the HS method based analysis. F-G, and H-1 Same as B-C and D-E respectively for E1
event. J-K. Estimation of source locations (black dots) and shapes/outlines (contours) with the CLG and HS methods. L-
M. Estimation of sink locations with the CLG and HS methods. Contour colors show source/sink strengths. The CLG
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method wins in estimating pixel trajectories and temporal speeds and works favorably for source/sink analyses.

Afrashteh et al 2016 - Figures

Neurolmage

Page 4 of 9


https://doi.org/10.1101/087676

bioRxiv preprint doi: https://doi.org/10.1101/087676; this version posted November 14, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 64

E 10% Noise Level

Figure 5. Limitations of the CLG method based analysis — errors due to the addition of noise and/or overlap of simulated
events in space-time. A. Erroneous estimation of trajectories of selected pixels of C2 starting frame 24 because at this time,
C2 is in the wake of C1 (see text). Center pixel (green), non-center pixels (blue, black, and red). B. Erroneous estimated
temporal speeds of pixels in (A) - same colors, versus time (frame numbers). C-D. Same as B-C but correct estimation of
trajectories and temporal speeds with analysis starting frame 29. E-H, Same as Figure 4 B-C, J, & L but with 10% noise
level added to the image sequence. I-L. Same as E-H with 30% noise level added to the image sequence. The addition of
noise reduces the performance of the CLG method. Caution is advised for selecting pixels and regions of interest in space-
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Figure 6. Optical flow characterization (with the CLG method) of forelimb stimulation-evoked VSD activation in
anesthetized mouse. A. Montage of selected frames from the image sequence with overlaid velocity vector fields. Magenta
dot in the first (top left) frame indicates bregma location. B. Regions of interest (ROIs) on the primary (magenta) and
secondary (cyan) forelimb areas. C. AF/F, vs time for ROIs in (B). D. Distribution of instantaneous speeds of all pixels in
space-time in the ROIs in B (same colors) and for all pixels within the mask (black bars). E. Similar to (D) but distribution
of instantaneous angles of all pixels within ROIs or the mask. F. Trajectories of pixels (shown only for some pixels) in ROls
from (B) — same colors as in (B). G. Estimated temporal speeds of all pixels in the ROIs. H. Distribution of lengths of

trajectories. 1. Distribution of maximum of temporal speeds. Blue lines in C and G indicate the stimulus onset.
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Figure 7. Semi-automatic optical flow analysis (with CLG method). A-B. Identified source (A) and sink (B) locations (black
dots) and associated contours of VSD imaging data presented in Figure 6. Contour colors indicate strength of sources and
sinks. C. Size times Strength versus source number for identifying significant sources. D. Same as (C) for sinks. E-F. Pixel
trajectories shown for three selected sources (1 - magenta, 2 - red, and 3 - black) with high size x strength values. Note that
source 1 was identified in 213.3 ms whereas sources 2 and 3 were identified in 220 ms. G-H. Distribution of temporal
speeds (G) and length of trajectories (H) of pixels of sources 1, 2, and 3 (see E-F). The blue line in G shows the stimulus
onset. The results here are comparable with those obtained using the manual analysis shown in Fig. 6.
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Figure 8. Quantitative comparison of voltage and calcium imaging data. A-B. Representative images showing extent of
activity over the auditory cortical area sampled with VSD (A) and calcium (B) imaging. White lines show travel trajectories
for some pixels. Magenta dots indicate bregma location. C. Distribution of instantaneous speeds from all pixels within the
regions of interest shown in A (red) and B (blue). D. Same as C but distribution of instantaneous angles.
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Figure 9. Graphical user interface of “Optical Flow Analysis Toolbox in Matlab for Mesoscale brain activity” (OFAMM).
The sequence of operation of the toolbox for analyzing optical imaging data parallels the flow chart of data analysis shown
in Figure 1 i.e. first finding velocity vector fields and then identifying sources, sinks, trajectories of regions or pixels of
interest, and their temporal speeds.
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