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Abstract 

The ability to computationally predict whether a compound treats a disease would 
improve the economy and success rate of drug approval. This study describes the 
Rephetio Project to systematically model drug efficacy based on 755 existing treatments. 
First, we constructed Hetionet (​neo4j.het.io​), an integrative network encoding knowledge 
from millions of biomedical studies. Hetionet v1.0 consists of 47,031 nodes of 11 types 
and 2,250,197 relationships of 24 types. Data was integrated from 29 public resources to 
connect compounds, diseases, genes, anatomies, pathways, biological processes, 
molecular functions, cellular components, pharmacologic classes, side effects, and 
symptoms. Next, we identified network patterns that distinguish treatments from 
non-treatments. Then we predicted the probability of treatment for 209,168 
compound–disease pairs (​het.io/repurpose​). Our predictions validated in two external 
datasets, suggesting they will help prioritize drug repurposing candidates. This study was 
entirely open and received realtime feedback from 36 community members. 

Introduction 

The cost of developing a new therapeutic drug has been estimated at 1.4 billion dollars 
[ ​1​], the process typically takes 15 years from lead compound to market [ ​2​], and the 
likelihood of success is stunningly low [​3​]. Strikingly, the costs have been doubling every 9 
years since 1970, a sort of inverse Moore's law, which is far from an optimal strategy 
from both a business and public health perspective [​4​]. Drug repurposing — identifying 
novel uses for existing therapeutics — can drastically reduce the duration, failure rates, 
and costs of approval [​5​]. These benefits stem from the rich preexisting information on 
approved drugs, including extensive toxicology profiling performed during development, 
preclinical models, clinical trials, and postmarketing surveillance. 

Drug repurposing is poised to become more efficient as mining of electronic health 
records (EHRs) to retrospectively assess the effect of drugs gains feasibility [​6​, ​7​, ​8​, ​9​]. 
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However, systematic approaches to repurpose drugs based on mining EHRs alone will 
likely lack power due to multiple testing. Similar to the approach followed to increase the 
power of genome-wide association studies (GWAS) [​10​, ​11​], integration of biological 
knowledge to prioritize drug repurposing will help overcome limited EHR sample size and 
data quality. 

In addition to repurposing, several other paradigm shifts in drug development have been 
proposed to improve efficiency. Since small molecules tend to bind to many targets, 
polypharmacology aims to find synergy in the multiple effects of a drug [​12​]. Network 
pharmacology assumes diseases consist of a multitude of molecular alterations resulting 
in a robust disease state. Network pharmacology seeks to uncover multiple points of 
intervention into a specific pathophysiological state that together rehabilitate an 
otherwise resilient disease process [​13​, ​14​]. Although target-centric drug discovery has 
dominated the field for decades, phenotypic screens have more recently resulted in a 
comparatively higher number of first-in-class small molecules [​15​]. Recent technological 
advances have enabled a new paradigm in which mid- to high-throughput assessment of 
intermediate phenotypes, such as the molecular response to drugs, is replacing the 
classic target discovery approach [​16​, ​17​, ​18​]. Furthermore, integration of multiple 
channels of evidence, particularly diverse types of data, can overcome the limitations and 
weak performance inherent to data of a single domain [​19​]. Modern computational 
approaches offer a convenient platform to tie these developments together as the 
reduced cost and increased velocity of ​in silico​  experimentation massively lowers the 
barriers to entry and price of failure [​20​, ​21​]. 

Hetnets (short for heterogeneous networks) are networks with multiple types of nodes 
and relationships. They offer an intuitive, versatile and powerful structure for data 
integration. In this study, we developed a hetnet (Hetionet v1.0) by integrating knowledge 
and experimental findings from decades of biomedical research spanning millions of 
publications. We adapted an algorithm originally developed for social network analysis 
and applied it to Hetionet v1.0 to identify patterns of efficacy and predict new uses for 
drugs. The algorithm performs edge prediction through a machine learning framework 
that accommodates the breadth and depth of information contained in Hetionet v1.0 [​22​, 
23​]. Our approach represents an ​in silico​  implementation of network pharmacology that 
natively incorporates polypharmacology and high-throughput phenotypic screening. 

One fundamental characteristic of our method is that it learns and evaluates itself on 
existing medical indications (i.e. a "gold standard"). Next, we introduce previous 
approaches that also performed comprehensive evaluation on existing treatments. A 
2011 study, named PREDICT, compiled 1,933 treatments between 593 drugs and 313 
diseases [​24​]. Starting from the premise that similar drugs treat similar diseases, 
PREDICT trained a classifier that incorporates 5 types of drug-drug and 2 types of 
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disease-disease similarity. A 2014 study compiled 890 treatments between 152 drugs and 
145 diseases with transcriptional signatures [​25​]. The authors found that compounds 
triggering an opposing transcriptional response to the disease were more likely to be 
treatments, although this effect was weak and limited to cancers. A 2016 study compiled 
402 treatments between 238 drugs and 78 diseases and used a single proximity score — 
the average shortest path distance between a drug's targets and disease's associated 
proteins on the interactome — as a classifier [​26​]. 

We build on these successes by creating a framework for incorporating the effects of any 
biological relationship into the prediction of whether a drug treats a disease. By doing 
this, we were able to capture a multitude of effects that have been suggested as 
influential for drug repurposing including drug-drug similarity [​24​, ​27​], disease-disease 
similarity [ ​24​, ​28​], transcriptional signatures [ ​25​, ​29​, ​17​, ​30​, ​18​], protein interactions [ ​26​], 
genetic association [​31​, ​32​], drug side effects [ ​33​, ​34​], disease symptoms [​35​], and 
molecular pathways [​36​]. Our ability to create such an integrative model of drug efficacy 
relies on the hetnet data structure to unite diverse information. On Hetionet v1.0, our 
algorithm learns which types of compound–disease paths discriminate treatments from 
non-treatments in order to predict the probability that a compound treats a disease. 

We refer to this study as Project Rephetio (pronounced as rep-​het​ -​ee​ -oh). Both Rephetio 
and Hetionet are portmanteaus combining the words repurpose, heterogeneous, and 
network with the URL ​het.io​. 

Results 

Hetionet v1.0 

We obtained and integrated data from 29 publicly available resources to create Hetionet 
v1.0 (​Figure 1​). The hetnet contains 47,031 nodes of 11 types (​Table 1​) and 2,250,197 
relationships of 24 types (​Table 2​). The nodes consist of 1,552 small molecule compounds 
and 137 complex diseases, as well as genes, anatomies, pathways, biological processes, 
molecular functions, cellular components, perturbations, pharmacologic classes, drug 
side effects, and disease symptoms. The edges represent relationships between these 
nodes and encompass the collective knowledge produced by millions of studies over the 
last half century. 
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Figure 1. Hetionet v1.0 

A) The metagraph, a schema of the network types. B) The hetnet visualized. Nodes are drawn as dots 
and laid out orbitally, thus forming circles. Edges are colored by type. C) Metapath counts by path 
length. The number of different types of paths of a given length that connect two node types is shown. 
For example, the top-left tile in the Length 1 panel denotes that Anatomy nodes are not connected to 
themselves (i.e. no edges connect nodes of this type between themselves). However, the bottom-left 
tile of the Length 4 panel denotes that 88 types of length-four paths connect Symptom to Anatomy 
nodes. 

For example, ​Compound–binds–Gene​  edges represent when a compound binds to a 
protein encoded by a gene. This information has been extracted from the literature by 
human curators and compiled into databases such as DrugBank, ChEMBL, DrugCentral, 
and BindingDB. We combined these databases to create 11,571 binding edges between 
1,389 compounds and 1,689 genes. These edges were compiled from 10,646 distinct 
publications, which Hetionet binding edges reference as an attribute. Binding edges 
represent a comprehensive catalog constructed from low throughput experimentation. 
However, we also integrated findings from high throughput technologies — many of 
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which have only recently become available. For example, we generated consensus 
transcriptional signatures for compounds in LINCS L1000 and diseases in STARGEO. 

Table 1. Metanodes 

Hetionet v1.0 includes 11 node types (metanodes). For each metanode, this table shows the 
abbreviation, number of nodes, number of nodes without any edges, and the number of metaedges 
connecting the metanode. 

Metanode Abbr Nodes Disconnected Metaedges 

Anatomy A 402 2 4 

Biological Process BP 11,381 0 1 

Cellular Component CC 1,391 0 1 

Compound C 1,552 14 8 

Disease D 137 1 8 

Gene G 20,945 1,800 16 

Molecular Function MF 2,884 0 1 

Pathway PW 1,822 0 1 

Pharmacologic Class PC 345 0 1 

Side Effect SE 5,734 33 1 

Symptom S 438 23 1 

 

Table 2. Metaedges 

Hetionet v1.0 contains 24 edge types (metaedges). For each metaedge, the table reports the 
abbreviation, the number of edges, the number of source nodes connected by the edges, and the 
number of target nodes connected by the edges. Note that all metaedges besides 
Gene→ regulates→ Gene​  are undirected. 

Metaedge Abbr Edges Sources Targets 

Anatomy–downregulates–Gene AdG 102,240 36 15,097 

Anatomy–expresses–Gene AeG 526,407 241 18,094 

5 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087619doi: bioRxiv preprint 

https://doi.org/10.1101/087619
http://creativecommons.org/licenses/by/4.0/


Anatomy–upregulates–Gene AuG 97,848 36 15,929 

Compound–binds–Gene CbG 11,571 1,389 1,689 

Compound–causes–Side Effect CcSE 138,944 1,071 5,701 

Compound–downregulates–Gene CdG 21,102 734 2,880 

Compound–palliates–Disease CpD 390 221 50 

Compound–resembles–Compound CrC 6,486 1,042 1,054 

Compound–treats–Disease CtD 755 387 77 

Compound–upregulates–Gene CuG 18,756 703 3,247 

Disease–associates–Gene DaG 12,623 134 5,392 

Disease–downregulates–Gene DdG 7,623 44 5,745 

Disease–localizes–Anatomy DlA 3,602 133 398 

Disease–presents–Symptom DpS 3,357 133 415 

Disease–resembles–Disease DrD 543 112 106 

Disease–upregulates–Gene DuG 7,731 44 5,630 

Gene–covaries–Gene GcG 61,690 9,043 9,532 

Gene–interacts–Gene GiG 147,164 9,526 14,084 

Gene–participates–Biological Process GpBP 559,504 14,772 11,381 

Gene–participates–Cellular Component GpCC 73,566 10,580 1,391 

Gene–participates–Molecular Function GpMF 97,222 13,063 2,884 

Gene–participates–Pathway GpPW 84,372 8,979 1,822 

Gene→regulates→Gene Gr>G 265,672 4,634 7,048 

Pharmacologic Class–includes–Compound PCiC 1,029 345 724 

 

While Hetionet v1.0 is ideally suited for drug repurposing, the network has broader 
biological applicability. For example, we have prototyped queries for a) identifying drugs 
that target a specific pathway, b) identifying biological processes involved in a specific 
disease, c) identifying the drug targets responsible for causing a specific side effect, and 
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d) identifying anatomies with transcriptional relevance for a specific disease [​37​]. Each of 
these queries was simple to write and took less than a second to run on our publicly 
available Hetionet Browser. While it is possible that existing services provide much of the 
aforementioned functionality, they offer less versatility. Hetionet differentiates itself in its 
ability to flexibly query across multiple domains of information. As a proof of concept, we 
enhanced the biological process query (b), which identified processes that were enriched 
for disease-associated genes, using multiple sclerosis (MS) as an example disease. The 
enhanced query identified genes that interact with MS GWAS-genes. However, interacting 
genes were discarded unless they were upregulated in an MS-related anatomy (i.e. 
anatomical structure, e.g. organ or tissue). Then relevant biological processes were 
identified. Thus, the single query spanned 4 node and 5 relationship types. Furthermore, 
the portion of the query to identify paths meeting the above specification required only 
four lines of Cypher code. 

The integrative potential of Hetionet v1.0 is reflected by its connectivity. Among the 11 
metanodes, there are 66 possible source–target pairs. However, only 11 of them have at 
least one direct connection. In contrast, for paths of length 2, 50 pairs have connectivity 
(paths types that start on the source node type and end on the target node type, see 
Figure 1C​). At length 3, all 66 pairs are connected. At length 4, the source–target pair with 
the fewest types of connectivity (Side Effect to Symptom) has 13 metapaths, while the 
pair with the most connectivity types (Gene to Gene) has 3,542 pairs. This high level of 
connectivity across a diversity of biomedical entities forms the foundation for automated 
translation of knowledge into biomedical insight. 

Hetionet v1.0 is accessible via a Neo4j Browser at ​https://neo4j.het.io​. This public Neo4j 
instance provides users an installation-free method to query and visualize the network. 
The Browser contains a tutorial guide as well as guides with the details of each Project 
Rephetio prediction. Hetionet v1.0 is also ​available for download​ in JSON, Neo4j, and TSV 
formats. The JSON and Neo4j database formats include node and edge properties — 
such as URLs, source and license information, and confidence scores — and are thus 
recommended. 

Systematic mechanisms of efficacy 

One aim of Project Rephetio was to systematically evaluate how drugs exert their 
therapeutic potential. To address this question, we compiled a gold standard of 755 
disease-modifying indications, which form the ​Compound–treats–Disease​  edges in 
Hetionet v1.0. Next, we identified types of paths (metapaths) that occurred more 
frequently between treatments than non-treatments (any compound–disease pair that is 
not a treatment). The advantage of this approach is that metapaths naturally correspond 

7 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087619doi: bioRxiv preprint 

https://thinklab.com/discussion/exploring-the-power-of-hetionet-a-cypher-query-depot/220
https://thinklab.com/p/rephetio/report#hetionet_figure
https://neo4j.het.io/
https://github.com/dhimmel/hetionet
https://doi.org/10.1101/087619
http://creativecommons.org/licenses/by/4.0/


to mechanisms of pharmacological efficacy. For example, the 
Compound–binds–Gene–associates–Disease​  (​CbGaD​ ) metapath identifies when a drug 
binds to a protein corresponding to a gene involved in the disease. 

We evaluated all 1,206 metapaths that traverse from compound to disease and have 
length of 2–4 (​Figure 2A​). To control for the different degrees of nodes, we used the 
degree-weighted path count (​DWPC​ ) — which downweights paths going through 
highly-connected nodes [​22​] — to assess path prevalence. In addition, we compared the 
performance of each metapath to a baseline computed from permuted networks. Hetnet 
permutation preserves node degree while eliminating edge specificity, allowing us to 
isolate the portion of unpermuted metapath performance resulting from actual network 
paths. We refer to the permutation-adjusted performance measure as Δ AUROC. 

 

Figure 2. Performance by type and model coefficients 

A) The performance of the DWPCs for 1,206 metapaths, organized by their composing metaedges. The 
larger dots represent metapaths that were significantly affected by permutation (false discovery rate < 
5%). Metaedges are ordered by their best performing metapath. Since a metapath's performance is 
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limited by its least informative metaedge, the best performing metapath for a metaedge provides a 
lower bound on the pharmacologic utility of a given domain of information. B) Barplot of the model 
coefficients. Features were standardized prior to model fitting to make the coefficients comparable 
[ ​38​]. 

Overall, 709 of the 1,206 metapaths exhibited a statistically significant Δ AUROC at a 
false discovery rate cutoff of 5%. These 709 metapaths included all 24 metaedges, 
suggesting that each type of relationship we integrated provided at least some 
therapeutic utility. However, not all metaedges were equally present in significant 
metapaths: 259 significant metapaths included a ​Compound–binds–Gene​  metaedge, 
whereas only 4 included a ​Gene–participates–Cellular Component​  metaedge. ​Table 3​ lists 
the predictiveness of several metapaths of interest. Refer to the ​Discussion​ for our 
interpretation of these findings. 

Table 3. The predictiveness of select metapaths 

A small selection of the ​1,206 metapaths​ is provided. Len. refers to number of metaedges composing 
the metapath. Δ AUROC and −log10( ​p​ ) assess the performance of a metapath's DWPC in 
discriminating treatments from non-treatments (in the all-features stage as ​described in Methods​). ​p 
assesses whether permutation affected AUROC. For reference, ​p​  = 0.05 corresponds to −log10(​p​ ) = 
1.30. Note that several metapaths shown here provided little evidence that Δ AUROC ≠ 0 
underscoring their poor ability to predict whether a compound treated a disease. Coef. reports a 
metapath's logistic regression coefficient as seen in ​Figure 2B​. Metapaths removed in feature selection 
have missing coefficients whereas metapaths given zero-weight by the elastic net have coef. = 0.0. 

Abbrev. Len. 
Δ 
AUROC −log10(​p​ ) Coef. Metapath 

CbGaD 2 14.5% 6.2 0.20 Compound–binds–Gene–associates–Disease 

CdGuD 2 1.7% 4.5  Compound–downregulates–Gene–upregulates
–Disease 

CrCtD 2 22.8% 6.9 0.15 Compound–resembles–Compound–treats–Dis
ease 

CtDrD 2 17.2% 5.8 0.13 Compound–treats–Disease–resembles–Diseas
e 

CuGdD 2 1.1% 2.6  Compound–upregulates–Gene–downregulates
–Disease 

CbGbCtD 3 21.7% 6.5 0.22 Compound–binds–Gene–binds–Compound–tre
ats–Disease 

CbGeAlD 3 8.4% 5.2 0.04 Compound–binds–Gene–expresses–Anatomy–l
ocalizes–Disease 

CbGiGaD 3 9.0% 4.4 0.00 Compound–binds–Gene–interacts–Gene–assoc
iates–Disease 

9 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087619doi: bioRxiv preprint 

https://thinklab.com/discussion/computing-standardized-logistic-regression-coefficients/205
https://thinklab.com/p/rephetio/report#metapath_table
https://thinklab.com/p/rephetio/report#discussion
http://het.io/repurpose/metapaths.html
https://thinklab.com/p/rephetio/report#machine-learning-approach
https://thinklab.com/p/rephetio/report#feature_figure
https://doi.org/10.1101/087619
http://creativecommons.org/licenses/by/4.0/


CcSEcCtD 3 14.0% 6.8 0.08 Compound–causes–Side 
Effect–causes–Compound–treats–Disease 

CdGdCtD 3 3.8% 4.6 0.00 Compound–downregulates–Gene–downregula
tes–Compound–treats–Disease 

CdGuCtD 3 -2.1% 2.4  Compound–downregulates–Gene–upregulates
–Compound–treats–Disease 

CiPCiCtD 3 23.3% 7.5 0.16 Compound–includes–Pharmacologic 
Class–includes–Compound–treats–Disease 

CpDpCtD 3 4.3% 3.9 0.06 Compound–palliates–Disease–palliates–Comp
ound–treats–Disease 

CrCrCtD 3 17.0% 5.0 0.12 Compound–resembles–Compound–resembles
–Compound–treats–Disease 

CtDdGdD 3 4.2% 3.9  Compound–treats–Disease–downregulates–Ge
ne–downregulates–Disease 

CtDdGuD 3 0.5% 1.0  Compound–treats–Disease–downregulates–Ge
ne–upregulates–Disease 

CtDlAlD 3 12.4% 6.0  Compound–treats–Disease–localizes–Anatomy
–localizes–Disease 

CtDpSpD 3 13.9% 6.1  Compound–treats–Disease–presents–Sympto
m–presents–Disease 

CtDuGdD 3 0.7% 1.3  Compound–treats–Disease–upregulates–Gene
–downregulates–Disease 

CtDuGuD 3 1.1% 1.4  Compound–treats–Disease–upregulates–Gene
–upregulates–Disease 

CuGdCtD 3 -1.6% 2.9  Compound–upregulates–Gene–downregulates
–Compound–treats–Disease 

CuGuCtD 3 4.4% 3.5 0.00 Compound–upregulates–Gene–upregulates–C
ompound–treats–Disease 

CbGiGiGaD 4 7.0% 5.1 0.00 Compound–binds–Gene–interacts–Gene–inter
acts–Gene–associates–Disease 

CbGpBPpGaD 4 4.9% 3.8 0.00 Compound–binds–Gene–participates–Biologic
al 
Process–participates–Gene–associates–Diseas
e 

CbGpPWpGaD 4 7.6% 7.9 0.05 Compound–binds–Gene–participates–Pathway
–participates–Gene–associates–Disease 
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Predictions of drug efficacy 

We implemented a machine learning approach to translate the network connectivity 
between a compound and a disease into a probability of treatment. The approach relies 
on the 755 known treatments as positives and 29,044 non-treatments as negatives to 
train a logistic regression model. The features consisted of a prior probability of 
treatment, node degrees for 14 metaedges, and DWPCs for 123 metapaths that were well 
suited for modeling. A cross-validated elastic net was used to minimize overfitting, 
yielding a model with 31 features (​Figure 2B​). The DWPC features with negative 
coefficients appear to be included as node-degree-capturing covariates, i.e. they reflect 
the general connectivity of the compound and disease rather than specific paths 
between them. However, the 11 DWPC features with non-negligible positive coefficients 
represent the most salient types of connectivity for systematically modeling drug efficacy. 
See the metapaths with positive coefficients in ​Table 3​ for unabbreviated names. As an 
example, the ​CcSEcCtD​  feature assesses whether the compound causes the same side 
effects as compounds that treat the disease. Alternatively, the ​CbGeAlD​  feature assesses 
whether the compound binds to genes that are expressed in the anatomies affected by 
the disease. 

We applied this model to predict the probability of treatment between each of 1,538 
connected compounds and each of 136 connected diseases, resulting in predictions for 
209,168 compound–disease pairs [​39​], available at ​http://het.io/repurpose/ ​. The 755 
known disease-modifying indications were highly ranked (AUROC = 97.4%, ​Figure 3​). The 
predictions also successfully prioritized two external validation sets: novel indications 
from DrugCentral (AUROC = 85.5%) and novel indications in clinical trial (AUROC = 70.0%). 
Together, these findings indicate that Project Rephetio has the ability to recognize 
efficacious compound–disease pairs. 
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Figure 3. Predictions performance on four indication sets 

We assess how well our predictions prioritize four sets of indications. A) The y-axis labels denote the 
number of indications (+) and non-indications (−) composing each set. Violin plots with quartile lines 
show the distribution of indications when compound–disease pairs are ordered by their prediction. In 
all four cases, the actual indications were ranked highly by our predictions. B) ROC Curves with 
AUROCs in the legend. C) Precision–Recall Curves with AUPRCs in the legend. 

Predictions were scaled to the overall prevalence of treatments (0.36%). Hence a 
compound–disease pair that received a prediction of 1% represents a 2-fold enrichment 
over the null probability. Of the 3,980 predictions with a probability exceeding 1%, 586 
corresponded to known disease-modifying indications, leaving 3,394 repurposing 
candidates. For a given compound or disease, we provide the percentile rank of each 
prediction. Therefore, users can assess whether a given prediction is a top prediction for 
the compound or disease. In addition, our table-based prediction browser links to a 
custom guide for each prediction, which displays in the Neo4j Hetionet Browser. Each 
guide includes a query to display the top paths supporting the prediction and lists clinical 
trials investigating the indication. 
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Nicotine dependence case study 

There are currently two FDA-approved medications for smoking cessation (varenicline 
and bupropion) that are not nicotine replacement therapies. PharmacotherapyDB v1.0 
lists varenicline as a disease-modifying indication and nicotine itself as a symptomatic 
indication for nicotine dependence, but is missing bupropion. Bupropion was first 
approved for depression in 1985. Owing to the serendipitous observation that it 
decreased smoking in depressed patients taking this drug, Bupropion was approved for 
smoking cessation in 1997 [​40​]. Therefore we looked whether Project Rephetio could 
have predicted this repurposing. Bupropion was the 9th best ​prediction for nicotine 
dependence​ (99.5th percentile) with a probability 2.50-fold greater than the null. ​Figure 4 
shows the top paths supporting the repurposing of bupropion. 

 

Figure 4. Evidence supporting the repurposing of bupropion for smoking cessation 

This figure shows the 10 most supportive paths (out of 365 total) for treating nicotine dependence with 
bupropion, as available in this prediction's ​Neo4j Browser guide​. Our method detected that bupropion 
targets the ​CHRNA3​  gene, which is also targeted by the known-treatment varenicline [​41​]. 
Furthermore, ​CHRNA3​  is associated with nicotine dependence [​42​] and participates in several 
pathways that contain other nicotinic-acetylcholine-receptor (nAChRs) genes associated with nicotine 
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dependence. Finally, bupropion causes terminal insomnia [​43​] as does varenicline [ ​44​], which could 
indicate an underlying common mechanism of action. 

Atop the nicotine dependence predictions were nicotine (10.97-fold over null), cytisine 
(10.58-fold), and galantamine (9.50-fold). Cytisine is widely used in Eastern Europe for 
smoking cessation due to its availability at a fraction of the cost of other pharmaceutical 
options [​45​]. In the last half decade, large scale clinical trials have confirmed cytisine's 
efficacy [​46​, ​47​]. Galantamine, an approved Alzheimer's treatment, is currently in ​Phase 2 
trial ​ for smoking cessation and is showing promising results [​48​]. In summary, nicotine 
dependence illustrates Project Rephetio's ability to predict efficacious treatments and 
prioritize historic and contemporary repurposing opportunities. 

Epilepsy case study 

Several factors make epilepsy an interesting disease for evaluating repurposing 
predictions [​49​]. Antiepileptic drugs work by increasing the seizure threshold — the 
amount of electric stimulation that is required to induce seizure. The effect of a drug on 
the seizure threshold can be cheaply and reliably tested in rodent models. As a result, the 
viability of most approved drugs in treating epilepsy is known. 

We focused our evaluation on the top 100 scoring compounds — referred to as the 
epilepsy predictions in this section — after discarding a single combination drug. We 
classified each compound as anti-ictogenic (seizure suppressing), unknown (no 
established effect on the seizure threshold), or ictogenic (seizure generating) according to 
medical literature [ ​49​]. Of the epilepsy predictions, 77 were anti-ictogenic, 8 were 
unknown, and 15 were ictogenic (​Figure 5​). Notably, the predictions contained 23 of the 
25 disease-modifying antiepileptics in PharamcotherapyDB v1.0. 
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Figure 5. Top 100 epilepsy predictions colored by their effect on seizures 

The predicted probability of treatment versus prediction rank is plotted for the top 100 epilepsy 
predictions. Note that all compounds shown received probabilities far exceeding the null probability of 
treatment. Furthermore, the highest predictions are almost exclusively anti-ictogenic. Further down the 
prediction list the prevalence of drugs with an ictogenic (contraindications) or unknown (novel 
repurposing candidates) effect on epilepsy increases. 

Many of the 77 anti-ictogenic compounds were not first-line antiepileptic drugs. Instead, 
they were used as ancillary drugs in the treatment of status epilepticus. For example, we 
predicted four halogenated ethers, two of which (isoflurane and desflurane) are used 
clinically to treat life-threatening seizures that persist despite treatment [​50​]. As inhaled 
anesthetics, these compounds are not appropriate as daily epilepsy medications, but are 
feasible for refractory status epilepticus where patients are intubated. 

Given this high precision (77%), the 8 compounds of unknown effect are promising 
repurposing candidates. For example, acamprosate — whose top prediction was epilepsy 
— is a taurine analog that promotes alcohol abstinence. Support for this repurposing 
arose from acamprosate's positive modulation of the GABAᴬ receptor and inhibition of 
the glutamate receptor. If effective against epilepsy, acamprosate could serve a dual 
benefit for recovering alcoholics who experience seizures from alcohol withdrawal. 

Also notable are the 15 ictogenic compounds in our top 100 predictions. As an example, 
we predicted five tricyclic antidepressants primarily based on their binding to the GABAᴬ 
receptor. However, these compounds are GABAᴬ antagonists, rather than agonists, likely 
resulting in their ictogenic properties. 

As isoflurane, desflurane, and acamprosate demonstrate, Project Rephetio is capable of 
predicting repurposing candidates that fulfil a therapeutic niche. In addition, a portion of 
Rephetio's predictions are likely contraindications. However, in the case of epilepsy, 
where the effect of most approved drugs is known, our approach was still able to 
overwhelmingly prioritize ictogenic compounds. 

Discussion 

We created Hetionet v1.0 by integrating 29 resources into a single data structure — the 
hetnet. Consisting of 11 types of nodes and 24 types of relationships, Hetionet v1.0 
brings more types of information together than previous leading-studies in biological 
data integration [​51​]. Moreover, we strove to create a reusable, extensible, and 
property-rich network. While all of the resources we include are publicly available, their 
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integration was a time-intensive undertaking. Hetionet allows researchers to begin 
answering integrative questions without having to first spend months processing data. 

Our public Neo4j instance allows users to immediately interact with Hetionet. Through 
the Cypher language, users can perform highly specialized graph queries with only a few 
lines of code. Queries can be executed in the web browser or programmatically from a 
language with a Neo4j driver. For users that are unfamiliar with Cypher, we include 
several example queries in a Browser guide. In contrast to traditional REST APIs, our 
public Neo4j instance provides users with maximal flexibility to construct custom queries 
by exposing the underlying database. 

As data has grown more plentiful and diverse, so has the applicability of hetnets. 
Unfortunately, network science has been naturally fragmented by discipline resulting in 
relatively slow progress in integrating heterogeneous data. A 2014 analysis identified 78 
studies using multilayer networks — a superset of hetnets with the potential for a time 
dimension. However, the studies relied on 26 different terms, 9 of which had multiple 
definitions [​52​, ​53​]. Nonetheless, core infrastructure and algorithms for hetnets are 
emerging. One goal of our project has been to unite hetnet research across disciplines. 
We approached this goal by making Project Rephetio entirely available online and inviting 
community feedback throughout the process [​54​]. 

Integrating every resource into a single interconnected data structure allowed us to 
assess systematic mechanisms of drug efficacy. Using the max performing metapath to 
assess the pharmacological utility of a metaedge (​Figure 2A​), we can divide our 
relationships into tiers of informativeness. The top tier consists of the types of 
information traditionally considered by pharmacology: ​Compound–treats–Disease​ , 
Pharmacologic Class–includes–Compound​ , ​Compound–resembles–Compound​ , 
Disease–resembles–Disease​ , and ​Compound–binds–Gene​ . The upper-middle tier consists 
of types of information that have been the focus of substantial medical study, but have 
only recently started to play a bigger role in drug development, namely the metaedges 
Disease–associates–Gene​ , ​Compound–causes–Side Effect​ , ​Disease–presents–Symptom​ , 
Disease–localizes–Anatomy​ , and ​Gene–interacts–Gene​ . 

The lower-middle tier contains the transcriptomics metaedges such as 
Compound–downregulates–Gene​ , ​Anatomy–expresses–Gene​ , ​Gene→ regulates→ Gene​ , 
and ​Disease–downregulates–Gene​ . Much excitement surrounds these resources due to 
their high throughput and genome-wide scope, which offers a route to drug discovery 
that is less biased by existing knowledge. However, our findings suggest that these 
resources are only moderately informative of drug efficacy. Other lower-middle tier 
metaedges were the product of time-intensive biological experimentation, such as 
Gene–participates–Pathway​ , ​Gene–participates–Molecular Function​ , and 

16 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087619doi: bioRxiv preprint 

https://thinklab.com/doi/10.1093/comnet/cnu016
https://thinklab.com/discussion/renaming-heterogeneous-networks-to-a-more-concise-and-catchy-term/104
https://thinklab.com/p/rephetio
https://thinklab.com/p/rephetio/report#feature_figure
https://doi.org/10.1101/087619
http://creativecommons.org/licenses/by/4.0/


Gene–participates–Biological Process​ . Unlike the top tier resources, this knowledge has 
historically been pursued for basic science rather than primarily medical applications. 
The weak yet appreciable performance of the ​Gene–covaries–Gene​  suggests the synergy 
between the fields of evolutionary genomics and disease biology. The lower tier included 
the ​Gene–participates–Cellular Component​  metaedge, which may reflect that the 
relevance of cellular location to pharmacology is highly case dependent and not 
amenable to systematic profiling. 

The performance of specific metapaths (​Table 3​) provides further insight. For example, 
significant emphasis has been put on the use of transcriptional data for drug 
repurposing [​30​]. One common approach has been to identify compounds with opposing 
transcriptional signatures to a disease [​55​, ​18​]. However, several systematic studies 
report underwhelming performance of this approach [​25​, ​24​, ​26​] — a finding supported 
by the low performance of the ​CuGdD​  and ​CdGuD​  metapaths in Project Rephetio. 
Nonetheless, other transcription-based methods showed some promise. Compounds 
with similar transcriptional signatures were prone to treating the same disease (​CuGuCtD 
and ​CdGdCtD​  metapaths), while compounds with opposing transcriptional signatures 
were slightly averse to treating the same disease (​CuGdCtD​  and ​CdGuCtD​  metapaths). In 
contrast, diseases with similar transcriptional profiles were not prone to treatment by the 
same compound (​CtDdGuD​  and ​CtDuGdD​ ). 

By comparably assessing the informativeness of different metaedges and metapaths, 
Project Rephetio aims to guide future research towards promising data types and 
analyses. Encouragingly, most data types were at least weakly informative and hence 
suitable for further study. Ideally, different data types would provide orthogonal 
information. However, our model for whether a compound treats a disease focused on 
11 metapaths — a small portion of the hundreds of metapaths available. While 
parsimony aids interpretation, our model did not draw on the weakly-predictive 
high-throughput data types — which are intriguing for their novelty, scalability, and 
cost-effectiveness — as much as we had hypothesized. 

Instead our model selected types of information traditionally considered in 
pharmacology. However unlike a pharmacologist whose area of expertise may be limited 
to a few drug classes, our model was able to predict probabilities of treatment for all 
209,168 compound–disease pairs. Furthermore, our model systematically learned the 
importance of each type of network connectivity. For any compound–disease pair, we 
now can immediately provide the top network paths supporting its therapeutic efficacy. A 
traditional pharmacologist may be able to produce a similar explanation, but likely not 
until spending substantial time researching the compound's pharmacology, the disease's 
pathophysiology, and the molecular relationships in between. Accordingly, we hope 
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certain predictions will spur further research, such as trials to investigate the off-label use 
of acamprosate for epilepsy. 

As demonstrated by the 15 ictogenic compounds in our top 100 epilepsy predictions, 
Project Rephetio’s predictions can include contraindications in addition to indications. 
Since many of Hetionet v1.0's relationship types are general (e.g. the 
Compound–binds–Gene​  relationship type conflates antagonist with agonist effects), we 
expect some high scoring predictions to exacerbate rather than treat the disease. 
However, the predictions made by Hetionet v1.0 represent such substantial relative 
enrichment over the null that uncovering the correct directionality is a logical next step 
and worth undertaking. Going forward, advances in automated mining of the scientific 
literature could enable extraction of precise relationship types at omics scale [​56​]. 

Future research should focus on gleaning orthogonal information from data types that 
are so expansive that computational methods are the only option. Our ​CuGuCtD​  feature 
— measuring whether a compound upregulates the same genes as compounds which 
treat the disease — is a good example. This metapath was informative by itself (Δ 
AUROC = 4.4%) but was not selected by the model, despite its orthogonal origin (gene 
expression) to selected metapaths. Using a more extensive catalog of treatments as the 
gold standard would be one possible approach to increase the power of feature 
selection. 

Integrating more types of information into Hetionet should also be a future priority. The 
"network effect" phenomenon suggests that the addition of each new piece of 
information will enhance the value of Hetionet's existing information. We envision a 
future where all biological knowledge is encoded into a single hetnet. Hetionet v1.0 was 
an early attempt, and we hope the strong performance of Project Rephetio in 
repurposing drugs foreshadows the many applications that will thrive from encoding 
biology in hetnets. 

Methods 

Hetionet was built entirely from publicly available resources with the goal of integrating a 
broad diversity of information types of medical relevance, ranging in scale from 
molecular to organismal. Practical considerations such as data availability, licensing, 
reusability, documentation, throughput, and standardization informed our choice of 
resources. We abided by a simple litmus test for determining how to encode information 
in a hetnet: nodes represent nouns, relationships represent verbs [​57​, ​58​]. 
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Our method for relationship prediction creates a strong incentive to avoid redundancy, 
which increases the computational burden without improving performance. In a previous 
study to predict disease–gene associations using a hetnet of pathophysiology [​22​], we 
found that different types of gene sets contributed highly redundant information. 
Therefore, in Hetionet v1.0 we reduced the number of gene set node types from 14 to 3 
by omitting several gene set collections and aggregating all pathway nodes. 

Nodes 

Nodes encode entities. We extracted nodes from standard terminologies, which provide 
curated vocabularies to enable data integration and prevent concept duplication. The 
ease of mapping external vocabularies, adoption, and comprehensiveness were primary 
selection criteria. Hetionet v1.0 includes nodes from 5 ontologies — which provide 
hierarchy of entities for a specific domain — selected for their conformity to current best 
practices [ ​59​]. 

We selected 137 terms from the ​Disease Ontology​ [​60​, ​61​] (which we refer to as DO Slim 
[ ​62​, ​63​]) as our disease set. Our goal was to identify complex diseases that are distinct 
and specific enough to be clinically relevant yet general enough to be well annotated. To 
this end, we included diseases that have been studied by GWAS and cancer types from 
TopNodes_DOcancerslim​ [​64​]. We ensured that no DO Slim disease was a subtype of 
another DO Slim disease. Symptoms were extracted from ​MeSH​ by taking the 438 
descendants of ​Signs and Symptoms​  [​65​, ​66​]. 

Approved small molecule compounds with documented chemical structures were 
extracted from ​DrugBank​ version 4.2 [ ​67​, ​68​, ​69​]. Unapproved compounds were 
excluded because our focus was repurposing. In addition, unapproved compounds tend 
to be less studied than approved compounds making them less attractive for our 
approach where robust network connectivity is critical. Finally, restricting to small 
molecules with known documented structures enabled us to map between compound 
vocabularies (see ​Mappings ​). 

Side effects were extracted from ​SIDER​ version 4.1 [ ​70​, ​71​, ​72​]. SIDER codes side effects 
using ​UMLS​ identifiers [ ​73​], which we also adopted. Pharmacologic Classes were 
extracted from the DrugCentral ​data repository ​ [​74​]. 

Protein-coding human genes were extracted from ​Entrez Gene​ [​75​, ​76​, ​77​]. Anatomical 
structures, which we refer to as anatomies, were extracted from ​Uberon​ [​78​]. We 
selected a subset of 402 Uberon terms by excluding terms known not to exist in humans 
and terms that were overly broad or arcane [​79​, ​80​]. 
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Pathways were extracted by combining human pathways from ​WikiPathways​ [​81​, ​82​], 
Reactome​ [​83​], and the ​Pathway Interaction Database​ [​84​]. The latter two resources were 
retrieved from ​Pathway Commons​ [​85​], which compiles pathways from several providers. 
Duplicate pathways and pathways without multiple participating genes were removed 
[ ​86​, ​87​]. Biological processes, cellular components, and molecular functions were 
extracted from the ​Gene Ontology ​ [​88​]. Only terms with 2–1000 annotated genes were 
included. 

Mappings 

Before adding relationships, all identifiers needed to be converted into the vocabularies 
matching that of our nodes. Oftentimes, our node vocabularies included external 
mappings. For example, the Disease Ontology includes mappings to MeSH, UMLS, and 
the ICD, several of which we submitted during the course of this study [​89​]. In a few 
cases, the only option was to map using gene symbols, a disfavored method given that it 
can lead to ambiguities. 

When mapping external disease concepts onto DO Slim, we used transitive closure. For 
example, the UMLS concept for primary progressive multiple sclerosis (​C0751964​) was 
mapped to the DO Slim term for multiple sclerosis (​DOID:2377​). 

Chemical vocabularies presented the greatest mapping challenge [​68​], since these are 
poorly standardized [​90​]. UniChem's [​91​] Connectivity Search [ ​92​] was used to map 
compounds, which maps by atomic connectivity (based on First InChIKey Hash Blocks 
[ ​93​]) and ignores small molecular differences. 

Edges 

Anatomy–downregulates–Gene​  and ​Anatomy–upregulates–Gene​  edges [​94​, ​95​, ​96​] were 
extracted from ​Bgee​ [​97​], which computes differentially expressed genes by anatomy in 
post-juvenile adult humans. ​Anatomy–expresses–Gene​  edges were extracted from Bgee 
and ​TISSUES​ [​98​, ​99​, ​100 ​]. 

Compound–binds–Gene​  edges were aggregated from ​BindingDB​ [​101 ​, ​102 ​], ​DrugBank 
[ ​103​, ​67​], and ​DrugCentral​. Only binding relationships to single proteins with affinities of 
at least 1 µM (as determined by Kd, Ki, or IC50) were selected from the October 2015 
release of BindingDB [​104​, ​105 ​]. Target, carrier, transporter, and enzyme interactions 
with single proteins (i.e. excluding protein groups) were extracted from DrugBank 4.2 
[ ​106​, ​69​]. In addition, all mapping DrugCentral target relationships were included [ ​74​]. 
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Compound–treats–Disease​  (disease-modifying indications) and 
Compound–palliates–Disease​ (symptomatic indications) edges are from 
PharmacotherapyDB as described in ​Intermediate resources ​. ​Compound–causes–Side 
Effect​  edges were obtained from ​SIDER​ 4.1 [ ​70​, ​71​, ​72​], which uses natural language 
processing to identify side effects in drug labels. ​Compound–resembles–Compound 
relationships [​107 ​, ​69​, ​108 ​] represent chemical similarity and correspond to a Dice 
coefficient ≥ 0.5 [ ​109​] between extended connectivity fingerprints [​110​, 
111​]. ​Compound–downregulates–Gene​  and ​Compound–upregulates–Gene​  relationships 
were computed from LINCS L1000 as described in ​Intermediate resources ​. 

Disease–associates–Gene​  edges were extracted from the GWAS Catalog [​112​], DISEASES 
[ ​113​, ​114 ​], DisGeNET [ ​115​, ​116 ​], and DOAF [​117​, ​118 ​]. The ​GWAS Catalog ​ compiles 
disease–SNP associations from published GWAS [​119​]. We aggregated overlapping loci 
associated with each disease and identified the mode reported gene for each high 
confidence locus [​120​, ​121 ​]. ​DISEASES ​ integrates evidence of association from text 
mining, curated catalogs, and experimental data [​122​]. Associations from DISEASES with 
integrated scores ≥ 2 were included after removing the contribution of DistiLD. ​DisGeNET 
integrates evidence from over 10 sources and reports a single score for each association 
[ ​123​]. Associations with scores ≥ 0.06 were included. DOAF mines Entrez Gene GeneRIFs 
(textual annotations of gene function) for disease mentions [​124​]. Associations with 3 or 
more supporting GeneRIFs were included. ​Disease–downregulates–Gene​  and 
Disease–upregulates–Gene​  relationships [​125​, ​126 ​] were computed using ​STARGEO ​ as 
described in ​Intermediate resources ​. 

Disease–localizes–Anatomy​ , ​Disease–presents–Symptom​ , and 
Disease–resembles–Disease​ edges were calculated from MEDLINE co-occurrence [​65​, 
127​]. MEDLINE is a subset of 21 million PubMed articles for which designated human 
curators have assigned topics. When retrieving articles for a given topic (MeSH term), we 
activated two non-default search options as specified below: ​majr​ for selecting only 
articles where the topic is major and ​noexp​ for suppressing explosion (returning articles 
linked to MeSH subterms). We identified 4,161,769 articles with two or more disease 
topics; 696,252 articles with both a disease topic (​majr​) and an anatomy topic (​noexp​) 
[ ​128​]; and 363,928 articles with both a disease topic (​majr​) and a symptom topic (​noexp​). 
We used a Fisher's exact test [​129​] to identify pairs of terms that occurred together more 
than would be expected by chance in their respective corpus. We included co-occuring 
terms with ​p​  < 0.005 in Hetionet v1.0. 

Gene–covaries–Gene​  edges represent evolutionary rate covariation ≥ 0.75 [ ​130​, ​131 ​, 
132​]. ​Gene–interacts–Gene​  edges [​133​, ​134 ​] represent when two genes produce 
physically-interacting proteins. We compiled these interactions from the Human 
Interactome Database [ ​135​, ​136 ​, ​137 ​, ​138 ​], the Incomplete Interactome [​139​], and our 
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previous study [​22​]. ​Gene–participates–Biological Process​ , ​Gene–participates–Cellular 
Component​ , and ​Gene–participates–Molecular Function​  edges are from Gene Ontology 
annotations [​140 ​]. As described in ​Intermediate resources ​, annotations were propagated 
[ ​141​, ​142 ​]. 

Intermediate resources 

In the process of creating Hetionet, we produced several datasets with broad applicability 
that extended beyond Project Rephetio. These resources are referred to as intermediate 
resources and described below. 

Transcriptional signatures of disease using STARGEO 

STARGEO ​ is a nascent platform for annotating and meta-analyzing differential gene 
expression experiments. The STAR acronym stands for Search-Tag-Analyze Resources, 
while GEO refers to the Gene Expression Omnibus [​143​, ​144 ​]. STARGEO is a layer on top 
of GEO that crowdsources sample annotation and automates meta-analysis. 

Using STARGEO, we computed differentially expressed genes between healthy and 
diseased samples for 49 diseases [​125​, ​126 ​]. First, we and others created case/control 
tags for 66 diseases. After combing through GEO series and tagging samples, 49 diseases 
had sufficient data for case-control meta-analysis: multiple series with at least 3 cases 
and 3 controls. For each disease, we performed a random effects meta-analysis on each 
gene to combine log2 fold-change across series. These analyses incorporated 27,019 
unique samples from 460 series on 107 platforms. 

Differentially expressed genes (false discovery rate ≤ 0.05) were identified for each 
disease. The median number of upregulated genes per disease was 351 and the median 
number of downregulated genes was 340. Endogenous depression was the only of the 
49 diseases without any significantly dysregulated genes. 

Transcriptional signatures of perturbation from LINCS L1000 

LINCS L1000​ profiled the transcriptional response to small molecule and genetic 
interference perturbations. To increase throughput, expression was only measured for 
978 genes, which were selected for their ability to impute expression of the remaining 
genes. A single perturbation was often assayed under a variety of conditions including 
cell types, dosages, timepoints, and concentrations. Each condition generates a single 

22 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087619doi: bioRxiv preprint 

https://thinklab.com/doi/10.1371/journal.pcbi.1004259
https://thinklab.com/doi/10.1093/nar/gku1113
https://thinklab.com/p/rephetio/report#intermediate-resources
https://thinklab.com/discussion/compiling-gene-ontology-annotations-into-an-easy-to-use-format/39
https://thinklab.com/doi/10.5281/zenodo.21711
http://stargeo.org/
https://thinklab.com/doi/10.1093/nar/30.1.207
https://thinklab.com/doi/10.1093/nar/gks1193
https://thinklab.com/discussion/stargeo-expression-signatures-for-disease-using-crowdsourced-geo-annotation/96
https://thinklab.com/doi/10.5281/zenodo.46866
http://www.lincscloud.org/l1000/
https://doi.org/10.1101/087619
http://creativecommons.org/licenses/by/4.0/


signature of dysregulation ​z​ -scores. We further processed these signatures to fit into our 
approach [​145 ​, ​146 ​]. 

First we computed consensus signatures — which meta-analyze multiple signatures to 
condense them into one — for DrugBank small molecules, Entrez genes, and all L1000 
perturbations [​147 ​, ​148 ​]. First, we discarded non-gold (non-replicating or indistinct) 
signatures. Then we meta-analyzed ​z​ -scores using Stouffer's method. Each signature was 
weighted by its average Spearman's correlation to other signatures, with a 0.05 
minimum, to de-emphasize discordant signatures. Our signatures include the 978 
measured genes and the 6,489 imputed genes from the "best inferred gene subset". To 
identify significantly dysregulated genes, we selected genes using a Bonferroni cutoff of ​p 
= 0.05 and limited the number of imputed genes to 1,000. 

The consensus signatures for genetic perturbations allowed us to assess various 
characteristics of the L1000 dataset. First, we looked at whether genetic interference 
dysregulated its target gene in the expected direction [​149​]. Looking at measured 
z-scores for target genes, we found that the knockdown perturbations were highly 
reliable, while the overexpression perturbations were only moderately reliable with 36% 
of overexpression perturbations downregulating their target. However, imputed z-scores 
for target genes barely exceeded chance at responding in the expected direction to 
interference. Hence, we concluded that the imputation quality of LINCS L1000 is poor. 
However, when restricting to significantly dyseregulated targets, 22 out of 29 imputed 
genes responded in the expected direction. This provides some evidence that the 
directional fidelity of imputation is higher for significantly dysregulated genes. Finally, we 
found that the transcriptional signatures of knocking down and overexpressing the same 
gene were positively correlated 65% of the time, suggesting the presence of a general 
stress response [​150 ​]. 

Based on these findings, we performed additional filtering of signifcantly dysregulated 
genes when building Hetionet v1.0. ​Compound–down/up-regulates–Gene​  relationships 
were restricted to the 125 most significant per compound-direction-status combination 
(status refers to measured versus imputed). For genetic interference perturbations, we 
restricted to the 50 most significant genes per gene-direction-status combination and 
merged the remaining edges into a single ​Gene→ regulates→ Gene​  relationship type 
containing both knockdown and overexpression perturbations. 

PharmacotherapyDB: physician curated indications 
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We created PharmacotherapyDB, an open catalog of drug therapies for disease [​151​, 
152​, ​153 ​]. Version 1.0 contains 755 disease-modifying therapies and 390 symptomatic 
therapies between 97 diseases and 601 compounds. 

This resource was motivated by the need for a gold standard of medical indications to 
train and evaluate our approach. Initially, we identified four existing indication catalogs 
[ ​154​]: MEDI-HPS which mined indications from RxNorm, SIDER 2, MedlinePlus, and 
Wikipedia [​155​]; LabeledIn which extracted indications from drug labels via human 
curation [​156 ​, ​157 ​, ​158 ​]; EHRLink which identified medication–problem pairs that 
clinicians linked together in electronic health records [​159​, ​160 ​]; and indications from 
PREDICT, which were compiled from UMLS relationships, drugs.com, and drug labels 
[ ​24​]. After mapping to DO Slim and DrugBank Slim, the four resources contained 1,388 
distinct indications. 

However, we noticed that many indications were palliative and hence problematic as a 
gold standard of pharmacotherapy for our ​in silico​  approach. Therefore, we recruited 
two practicing physicians to curate the 1,388 preliminary indications [​161​]. After a pilot 
on 50 indications, we defined three classifications: ​disease modifying​  meaning a drug 
that therapeutically changes the underlying or downstream biology of the disease; 
symptomatic​  meaning a drug that treats a significant symptom of the disease; and 
non-indication​  meaning a drug that neither therapeutically changes the underlying or 
downstream biology nor treats a significant symptom of the disease. Both curators 
independently classified all 1,388 indications. 

The two curators disagreed on 444 calls (Cohen's κ = 49.9%). We then recruited a third 
practicing physician, who reviewed all 1,388 calls and created a detailed explanation of 
his methodology [​161​]. We proceeded with the third curator's calls as the consensus 
curation. The first two curators did have reservations with classifying steroids as disease 
modifying for autoimmune diseases. We ultimately considered that these indications met 
our definition of disease modifying, which is based on a pathophysiological rather than 
clinical standard. Accordingly, therapies we consider disease modifying may not be used 
to alter long-term disease course in the modern clinic due to a poor risk–benefit ratio. 

User-friendly Gene Ontology annotations 

We created a browser (http://git.dhimmel.com/gene-ontology/) to provide 
straightforward access to Gene Ontology annotations [​142​, ​141 ​]. Our service provides 
annotations between Gene Ontology terms and Entrez Genes. The user chooses 
propagated/direct annotation and all/experimental evidence. Annotations are currently 
available for 37 species and downloadable as user-friendly TSV files. 
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Data copyright and licensing 

We committed to openly releasing our data and analyses from the origin of the project 
[ ​162​]. Our goals were to contribute to the advancement of science [​163​, ​164 ​], maximize 
our impact [​165 ​], and enable reproducibility [​166​, ​167 ​, ​168 ​]. These objectives required 
publicly distributing and openly licensing Hetionet and Project Rephetio data and 
analyses [​169 ​, ​170 ​]. 

Since we integrated only public resources, which were overwhelmingly funded by 
academic grants, we had assumed that our project and open sharing of our network 
would not be an issue. However, upon releasing a preliminary version of our hetnet 
[ ​171​], a community reviewer informed us of legal barriers to integrating public data. In 
essence, both copyright (rights of exclusivity automatically granted to original works) and 
terms of use (rules that users must agree to in order to use a resource) place 
legally-binding restrictions on data reuse. 

Of the 29 resources we integrated, only 12 had licenses that met the ​Open Definition 
with respect to knowledge. 9 did not have a license, which equates to all rights reserved 
and by default forbids reuse [​172​]. Several resources had incompatible licenses caused 
primarily by non-commercial and share-alike stipulations. One resource included terms 
which explicitly forbid redistribution. In addition, it was often unclear who owned the 
data [​173 ​]. Therefore, we sought input from legal experts and chronicled our progress 
[ ​174​, ​175 ​, ​176 ​, ​177 ​]. 

Ultimately, we did not find an ideal solution. We had to choose between absolute 
compliance and Hetionet: strictly adhering to copyright and licensing arrangements 
would have decimated the network. Hence we choose a path forward which balanced 
legal, normative, ethical, and scientific considerations. If a resource was in the public 
domain, for example works of the US Government, we licensed any derivatives as CC0 
1.0. For resources licensed to allow use, redistribution, and modification, we transmitted 
their licenses as properties on the specific nodes and relationships in our hetnet. For all 
other resources — for example, resources without licenses or with licenses that forbid 
redistribution — we sent permission requests to their creators. The median time till first 
response to our permission requests was 16 days, with only 2 resources affirmatively 
granting us permission. We did not receive any responses asking us to remove a 
resource. However, we did voluntarily remove MSigDB [​178​], since its license was highly 
problematic [​175 ​]. 

Permuted Hetnets 
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From Hetionet, we derived five permuted hetnets [​179​]. The permutations preserve node 
degree but eliminate edge specificity by employing an algorithm called XSwap to 
randomly swap edges [​180​]. Permuted networks are useful for computing the baseline 
performance of meaningless edges while preserving node degree [​181​]. 

Neo4j 

Graph database adoption in bioinformatics has thus far been limited [​182​]. We used the 
Neo4j graph database for storing and operating on Hetionet and noticed major benefits 
from tapping into this large open source ecosystem [​183​]. Persistent storage with 
immediate access and the Cypher query language — a sort of SQL for hetnets — were 
two of the biggest benefits. To facilitate our migration to Neo4j, we updated ​hetio​ — our 
existing Python package for hetnets [​184​] — to export networks into Neo4j and DWPC 
queries to Cypher. In addition, we created an ​interactive GraphGist​ for Project Rephetio, 
which introduces our approach and showcases its Cypher queries. Finally, we created a 
public Neo4j instance​ [​185 ​], which leverages several modern technologies such Neo4j 
Browser guides, cloud hosting with HTTPS, and Docker deployment [​186​, ​187 ​]. 

Machine learning approach 

We made several refinements to metapath-based hetnet edge prediction compared to 
previous studies [​22​, ​23​]. First, we transformed DWPCs by mean scaling and then taking 
the inverse hyperbolic sine [​188​] to make them more amenable to modeling [​189​]. 
Second, we bifurcated the workflow into an all-features stage and an all-observations 
stage [​190 ​]. The all-features stage assesses feature performance and does not require 
computing features for all negatives. Here we selected a random subset of 3,020 (4 × 
755) negatives. Little error was introduced by this optimization, since the predominant 
limitation to performance assessment was the small number of positives (755) rather 
than negatives. Based on the all-features performance assessment [​191​], we selected 
142 DWPCs to compute on all observations (all 209,168 compound–disease pairs). The 
feature selection was designed to remove uninformative features (according to 
permutation) and guard against edge-dropout contamination [​192​]. Third, we included 
14 degree features, which assess the degree of a specific metaedge for either the source 
compound or target disease. 

Prior probability of treatment 

The 755 treatments in Hetionet v1.0 are not evenly distributed between all compounds 
and diseases. For example, methotrexate treats 19 diseases and hypertension is treated 
by 68 compounds. We estimated a prior probability of treatment — based only on the 
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treatment degree of the source compound and target disease — on 744,975 
permutations of the bipartite treatment network [​193​]. Methotrexate received a 79.6% 
prior probability of treating hypertension, whereas a compound and disease that both 
had only one treatment received a prior of 0.12%. 

Across the 209,168 compound–disease pairs, the prior predicted the known treatments 
with AUROC = 97.9%. The strength of this association threatened to dominate our 
predictions. However, not modeling the prior can lead to omitted-variable bias and 
confounded proxy variables. To address the issue, we included the logit-transformed 
prior, without any regularization, as a term in the model. This restricted model fitting to 
the 29,799 observations with a nonzero prior — corresponding to the 387 compounds 
and 77 diseases with at least one treatment. To enable predictions for all 209,168 
observations, we set the prior for each compound–disease pair to the overall prevalence 
of positives (0.36%). 

This method succeeded at accommodating the treatment degrees. The prior probabilities 
performed poorly on the validation sets with AUROC = 54.1% on DrugCentral indications 
and AUROC = 62.5% on clinical trials. This performance dropoff compared to training 
shows the danger of encoding treatment degree into predictions. The benefits of our 
solution are highlighted by the superior validation performance of our predictions 
compared to the prior (​Figure 3​). 

Indication sets 

We evaluated our predictions on four sets of indications as shown in ​Figure 3​. 

● Disease Modifying — the 755 disease modifying treatments in 
PharmacotherapyDB v1.0. These indications are included in the hetnet as ​treats 
edges and used to train the logistic regression model. Due to edge dropout 
contamination and self-testing [​192​, ​194 ​], overfitting could potentially inflate 
performance on this set. Therefore, for the three remaining indication sets, we 
removed any observations that were positives in this set. 

● DrugCentral — We discovered the ​DrugCentral database​ after completing our 
physician curation for PharmacotherapyDB. This database contained 210 
additional indications [​74​]. While we didn't curate these indications, we observed a 
high proportion of disease modifying therapy. 

● Clinical Trial — We compiled indications that have been investigated by clinical 
trial from ​ClinicalTrials.gov ​ [​195 ​]. This set contains 5,594 indications. Since these 
indications were not manually curated and clinical trials often show a lack of 
efficacy, we expected lower performance on this set. 
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● Symptomatic — 390 symptomatic indications from PharacotherapyDB. These 
edges are included in the hetnet as ​palliates​  edges. 

Only the Clinical Trial and DrugCentral indication sets were used for external validation, 
since the Disease Modifying and Symptomatic indications were included in the hetnet. 

Realtime open science & Thinklab 

We conducted our study using Thinklab — a platform for realtime open collaborative 
science — on which this study was the first project. We began the study by publicly 
proposing the idea and inviting discussion [​196​]. We continued by chronicling our 
progress via discussions. We used Thinklab as the frontend to coordinate and report our 
analyses and GitHub as the backend to host our code, data, and notebooks. On top of 
our Thinklab team consisting of core contributors, we welcomed community contribution 
and review. In areas where our expertise was lacking or advice would be helpful, we 
sought input from domain experts and encouraged them to respond on Thinklab where 
their comments would be CC BY licensed and their contribution rated and rewarded. 

In total, 36 non-team members commented across 80 discussions, which generated 488 
comments and 161 notes (​Figure 6​). The Thinklab content for this project totaled 111,425 
words or 698,830 characters [​197​]. Using an estimated 7,000 words per academic 
publication as a benchmark, Project Rephetio generated written content comparable in 
volume to 15.9 publications prior to its completion. We noticed several other benefits 
from using Thinklab including forging a community of contributors [​198​]; receiving 
feedback during the early stages when feedback is the most actionable [​199​]; 
disseminating our research without delay [​200​, ​201 ​]; opening avenues for external input 
[ ​202​]; facilitating problem-oriented teaching [​203​, ​204 ​]; and improving our 
documentation by maintaining a publication-grade digital lab notebook [​205​]. 
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Figure 6. The growth the Project Rephetio corpus on Thinklab over time 

This figure shows Project Rephetio contributions by user over time. Each band represented the 
cumulative contribution of a Thinklab user to ​discussions​ in the Rephetio project [​197​]. Users are 
ordered by date of first contribution. Users who contributed over 4,000 characters are named. The 
square root transformation of characters written per user accentuates the activity of new contributors, 
thereby emphasizing collaboration and diverse input. 
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