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Abstract 8 

It is generally believed that during economic decisions, striatal neurons represent the values 9 

associated with different actions. This hypothesis is based on a large number of 10 

electrophysiological studies, in which the neural activity of striatal neurons was measured 11 

while the subject was learning to prefer the more rewarding action. Here we present an 12 

alternative interpretation of the electrophysiological findings. We show that the standard 13 

statistical methods that were used to identify action-value neurons in the striatum 14 

erroneously detect the same action-value representations in unrelated neuronal recordings. 15 

This is due to temporal correlations in the neuronal data. We propose an alternative 16 

statistical method for identifying action-value representations that is not subject to this 17 

caveat. We apply it to previously identified action-value neurons in the basal ganglia and fail 18 

to detect action-value representations. In conclusion, we argue that there is no conclusive 19 

evidence for the generally accepted hypothesis that striatal neurons encode action-values. 20 
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There is a long history of operant learning experiments, in which a subject, human or animal, 23 

repeatedly chooses between actions and is rewarded, often stochastically, according to its choices. 24 

A popular theory posits that the subject’s decisions in these tasks utilize estimates of the different 25 

action-values. These action-values correspond to the expected reward associated with each of the 26 

actions, and actions associated with a higher estimated action-value are more likely to be chosen1. 27 

In recent years, there is a lot of interest in the neural mechanisms underlying this computation2,3. 28 

In particular, based on electrophysiological experiments4–15, it is now widely accepted that a 29 

population of neurons in the striatum represents these action-values, adding sway to this action-30 

value theory.  31 

To identify neurons that represent the internal values of the different actions, researchers have 32 

searched for neurons whose firing rate is significantly correlated with the average reward 33 

associated with exactly one of the actions. There are several ways of defining the average reward 34 

associated with an action.  For example, the average reward can be defined by the reward schedule: 35 

in a multi-armed bandit task with binary rewards, the average reward associated with an action can 36 

be defined as the corresponding probability of reward. Alternatively, one can adopt the subject’s 37 

perspective, and use the subject-specific history of rewards and actions in order to estimate the 38 

average reward. In particular, the Rescorla–Wagner model (equivalent to the standard ones-state 39 

Q-learning model) has been used to estimate action-values4,6. In this model, the value associated 40 

with an action � in trial �, termed ��(�), is an exponentially-weighted average of the rewards 41 

associated with this action in past trials: 42 

��(� + 1) = ��(�) + ���(�) − ��(�)�    if �(�) = �                         (1) 43 

��(� + 1) = ��(�)     if �(�) ≠ �                    44 
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In the framework of a two-alternative task with binary rewards, � ∈ {1,2}, �(�) ∈ {1,2} and �(�) ∈45 

{1,0} are the possible actions, choice and reward in trial �, respectively, � is the learning rate and 46 

�� is the action-value associated with action �.  47 

It is typically assumed that the probability of choosing an action is a sigmoidal function, typically 48 

softmax, of the difference of the action-values (see also16):  49 

 Pr(�(�) = 1) =
�

����� �� �(�)�� �(�)�
   (2) 50 

where � is a parameter that determines the tradeoff between exploration and exploitation (the bias 51 

towards the action associated with the higher action-value). The parameters of the model, � and 52 

�, can be estimated from the behavior, allowing the researchers to compute �� and �� on a trial-53 

by-trial basis.  54 

 By measuring neural activity while the subject is performing the operant task, computing the 55 

regression of the trial-by-trial spike counts of the neurons on the latent variables ��(�) and 56 

identifying neurons for which this regression is statistically significant, one can identify the 57 

neurons that represent action-values.  58 

Using this framework, several electrophysiological studies in the past decade have found that the 59 

firing rate of a substantial fraction of striatal neurons (12%-40% for different significance 60 

thresholds) is significantly correlated with the average reward associated with one of the actions, 61 

regardless of whether the action was chosen. These and similar results were considered as evidence 62 

that neurons in the striatum represent action-values4–10,12.  63 

In this paper we point out that this literature has widely ignored a known caveat in regression 64 

analysis - it can result in erroneous identification of neurons as representing action-value if the 65 
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firing rates are temporally correlated. After a systematic literature search we conclude that this 66 

caveat has not yet been fully addressed. We maintain that the conclusion that there is representation 67 

of action-value in the striatum must await new evidence that is not prone to this caveat.  68 

Three clarifications are required. First, although this paper discusses a methodological problem 69 

that may also be of relevance in other fields of neuroscience, we focus on a single scientific claim, 70 

namely that a representation of action-values in the striatum is an established fact. Second, our 71 

criticism is restricted to the representation of action-values, and we do not make any claims 72 

regarding the possible representations of other decision variables, such as policy, chosen-value or 73 

reward-prediction-error. Third, we focus on the striatum and do not make claims about the possible 74 

representations of action-values elsewhere in the brain.  75 

The paper is organized in the following way. We commence by describing a standard method for 76 

identifying action-value neurons. Then, we demonstrate that this method erroneously identifies 77 

action-value neurons when they do not exist in a mathematical model, as well as in unrelated 78 

neuronal recordings from the motor cortex of a monkey, the auditory cortex of anaesthetized rats 79 

and the basal ganglia of behaving rats. Finally, we conduct a systematic literature search and show 80 

that all alternative approaches for identifying action-value neurons that were previously used can 81 

also lead to the erroneous identification of action-value neurons. We conclude by proposing a 82 

different method for identifying action-value neurons, that is not subject to this caveat and applying 83 

it to basal ganglia recordings, in which action-value neurons were previously identified. Using this 84 

new method, we fail to detect any action-value representations.  85 

Results 86 

Identifying action-value neurons 87 
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We commence by examining the standard methods for identifying action-value neurons using a 88 

simulation of an operant learning experiment. We simulated a task, in which the subject repeatedly 89 

chooses between two alternative actions, which yield a binary reward with a probability that 90 

depends on the action. Specifically, each session in the simulation was composed of four blocks 91 

such that the probabilities of rewards were fixed within a block and varied between the blocks. 92 

The probabilities of reward in the blocks were (0.1,0.5), (0.9,0.5), (0.5,0.9) and (0.5,0.1) for actions 93 

1 and 2, respectively (Fig. 1a). The order of blocks was random and a block terminated when the 94 

more rewarding action was chosen more than 14 times within 20 consecutive trials4,10.  95 

To simulate learning behavior, we used the Q-learning framework (Eqs. (1) and (2) with � = 0.1 96 

and � = 2.5 (taken from distributions reported in6) and initial conditions ��(1) = 0.5). As 97 

demonstrated in Fig. 1a, the model learned, such that the probability of choosing the more 98 

rewarding alternative increased over trials (black line). To model the action-value neurons, we 99 

simulated neurons whose firing rate is a linear function of one of the two Q-values and whose 100 

spike count in a 1 sec trial is randomly drawn from a corresponding Poisson distribution. The firing 101 

rates and spike counts of two such neurons, representing action-values 1 and 2, are depicted in Fig. 102 

1b in red and blue, respectively.  103 

One standard method for identifying action-value neurons is to compare the firing rates after 104 

learning by comparing the spike counts at the end of the blocks (horizontal bars in Fig. 1b). 105 

Considering the red-labeled Poisson neuron, the spike count in the last 20 trials of the second 106 

block, in which the probability of reward associated with action 1 was 0.9, was significantly higher 107 

than that count in the first block, in which the probability of reward associated with action 1 was 108 

0.1 (p < 0.01; rank sum test). By contrast, there was no significant difference in the spike counts 109 

between the third and fourth blocks, in which the probability of reward associated with action 1 110 
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was equal (p = 0.91; rank sum test; Fig. 1b, red). This is consistent with the fact that the red-labeled 111 

neuron was an action 1-value neuron: its firing rate was a linear function of the value of action 1. 112 

Similarly for the blue labeled neuron, the spike counts in the last 20 trials of the first two blocks 113 

were not significantly different (p = 0.92; rank sum test), but there was a significant difference in 114 

the counts between the third and fourth blocks (p < 0.001; rank sum test). These results are 115 

consistent with the probabilities of reward associated with action 2 and the fact that in our 116 

simulations, this neuron’s firing rate was modulated by the value of action 2 (Fig. 1b, blue). 117 

This approach for identifying action-value neurons is limited, however, for several reasons. First, 118 

it considers only a fraction of the data, the last 20 trials in a block. Second, action-value neurons 119 

are not expected to represent the block average probabilities of reward. Rather, they will represent 120 

a subjective estimate, which is based on the subject-specific history of actions and rewards. 121 

Therefore, it is more common to identify action-value neurons by regressing the spike count on Q-122 

values, estimated from the subject’s history of choices and rewards4–6,10–12. Note that when 123 

studying behavior in experiments, we have no direct access to these estimated action-values, in 124 

particular because the values of the parameters � and � are unknown. Therefore, following 125 

common practice, we estimated the values of � and � from the model’s sequence of choices and 126 

rewards using maximum likelihood, and used the estimated learning rate (�) and the choices and 127 

rewards to estimate the action-values (thin lines in Fig. 1c, see Materials and Methods). These 128 

estimates were similar to the true action-value, which underlay the model’s choice behavior (thick 129 

lines in Fig. 1c). 130 

Next, we regressed the spike count of each simulated neuron on the two estimated action-values. 131 

As expected, the t-values of the regression coefficients of the red-labeled action 1-value neuron 132 

was significant for the estimated �� (����(��) = 4.05) but not for the estimated �� 133 
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(����(��) = −0.27). Similarly, the t-values of the regression coefficients of the blue-labeled 134 

action 2-value neuron was significant for the estimated �� (����(��) = 3.05) but not for the 135 

estimated �� (����(��) = 0.78).  136 

A population analysis of the t-values of the two regression coefficients is depicted in Fig. 1d,e. As 137 

expected, a substantial fraction (42%) of the simulated neurons in the simulation were identified 138 

as action-value neurons. Only 2% of the simulated neurons had significant regression coefficients 139 

with both action-values. Such neurons are typically classified as state or policy (preference) 140 

neurons, if the two regression coefficients have the same or different signs, respectively10. Note 141 

that despite the fact that by construction, all neurons were action-value neurons, not all of them 142 

were detected as such by this method. This failure occurred for two reasons. First, the estimated 143 

Q-values are not identical to the true action-values, which determine the firing rates. This is 144 

because of the finite number of trials and the stochasticity of choice (note the difference, albeit 145 

small, between the thin and thick lines in Fig. 1c). Second and more importantly, the spike count 146 

in a trial is only a noisy estimate of the firing rate because of the Poisson generation of spikes. 147 

Identifying “action-value” neurons in the absence of value (model) 148 

The identification of the simulated neurons in Fig. 1d,e as action-value neurons relied on the 149 

interpretation that a large t-value is highly improbable under the null hypothesis that the firing rate 150 

of the neuron is not modulated by action-values. However, when computing the significance 151 

threshold for rejection of the null hypothesis it was implicitly assumed that the different trials are 152 

independent. To see why this assumption is essential, we consider a case in which it is violated. 153 

Fig. 2a depicts the firing rates and spike counts of two simulated Poisson neurons, whose firing 154 

rates follow a bounded Gaussian random-walk process:   155 
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�(� + 1) = [�(�) + �(�)]� (3) 156 

where �(�) is the firing rate in trial � (we consider epochs of 1 second as “trials”), �(�) is a diffusion 157 

variable, randomly and independently drawn from a normal distribution with mean 0 and variance 158 

�� = 0.01 and [�]� denotes a linear-threshold function, [�]� = � if � ≥ 0 and 0 otherwise.  159 

These random-walk neurons are clearly not action-value neurons. Nevertheless, we tested them 160 

using the analyses depicted in Fig. 1. To that goal, we randomly matched the “trials” in the 161 

simulation of the random-walk neurons to the trials in the simulation depicted in Fig. 1a, and 162 

considered the spike counts of the random-walk neurons in the last 20 trials of each of the four 163 

blocks in Fig. 1a. Considering the top neuron in Fig. 2a and utilizing the same analysis as in Fig. 164 

1b, we found that its spike count differed significantly between the first two blocks (p < 0.01, rank 165 

sum test) but not between the last two blocks  (p = 0.28, rank sum test), similar to the simulated 166 

action 1-value neuron of Fig. 1b (red). Similarly, the spike count of the bottom random-walk 167 

neuron matched that of a simulated action 2-value neuron (compare with the blue-labeled neuron 168 

in Fig. 1b; Fig. 2a).  169 

Moreover, we regressed each vector of spike counts for 20,000 random-walk neurons on randomly 170 

matched estimated Q-values from Fig. 1e and computed the t-values (Fig. 2b). This analysis 171 

classifies 42% of these random-walk neurons as action-value neurons (see Fig. 2c). In particular, 172 

the top and bottom random-walk neurons of Fig. 2a were identified as action-value neurons for 173 

action 1 and 2, respectively (squares in Fig. 2b).  174 

To further quantify this result, we computed the fraction of random-walk neurons erroneously 175 

classified as action-value neurons as a function of the diffusion parameter σ (Fig. 2d). When σ=0, 176 

the spike counts of the neurons in the different trials are independent and the number of random-177 
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walk neurons classified as action-value neurons is slightly less than 10%, as expected from a 178 

significance criterion of 5% and two statistical tests, corresponding to the two action-values. The 179 

larger the value of σ, the higher the probability that a random-walk neuron will pass the selection 180 

criterion for at least one action-value and thus be erroneously identified as an action-value, state 181 

or policy neuron.  182 

The excess action-value neurons in Fig. 2 emerged because the statistical analysis was based on 183 

the assumption that the different trials are independent from each other. In the case of a regression 184 

of a random-walk process on an action-value related variable, this assumption is violated. The 185 

reason is that in this case, both predictor (action-value) and the dependent variable (spike count) 186 

slowly change over trials, the former because of the learning and the latter because of the random 187 

drift. As a result the statistic, which relates these two signals, is correlated between temporally-188 

proximate trials, violating the independence-of-trials assumption of the test. Because of these 189 

dependencies, the expected variability in the statistic (be it average spike count in 20 trials or the 190 

regression coefficient), which is calculated under the independence-of-trials assumption, is an 191 

underestimate of the actual variability. Therefore, the fraction of random-walk neurons classified 192 

as action-value neurons increases with the magnitude of the drift, which is directly related to the 193 

magnitude of correlations between spike counts in proximate trials (Fig. 2d).  194 

Importantly, the Gaussian random-walk process is just one example in which the firing rate is non-195 

stationary. Other processes, in which the firing rate is non-stationary (e.g., oscillatory or trend 196 

following) and thus the independence-of-trials assumption is violated may also lead to an 197 

erroneous identification of neurons as action-value neurons. For example, it has been suggested 198 

that synaptic plasticity that stochastically implements or approximates direct policy gradient 199 

learning underlies some forms of operant learning17–22. In general, there will be no explicit or 200 
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implicit representation of action-values when these algorithms are implemented. However, 201 

because neural activity in these algorithms slowly varies over trials, the methods described above 202 

for identifying action-value neurons may erroneously identify action-value representations in 203 

implementations of these algorithms. To test this, we studied learning mediated by covariance-204 

based synaptic-plasticity21,23–25 in the learning task of Fig. 1a (Supplementary Information). 205 

Indeed, not only did this algorithm successfully learn to prefer the better alternative, when 206 

considering the spike counts of the simulated neurons in this algorithm, 43% of these neurons were 207 

erroneously identified as action-value neurons (Fig. S1). 208 

Identifying “action-value” neurons in the absence of value (experiments) 209 

In the previous section we demonstrated that the standard analysis depicted in Fig. 1 may lead to 210 

the erroneous identification of neurons as action-value neurons if the firing rate is sufficiently non-211 

stationary. To test whether this theoretical finding is relevant to electrophysiological experiments, 212 

we considered the spike count of 89 single neurons recorded extracellularly from the motor cortex 213 

of a monkey. This was a brain-machine-interface (BMI) experiment composed of 600 identical 214 

trials (Materials and Methods). For the purpose of our analysis, we considered as a “trial” the spike 215 

count of the neuron in the last 1 sec of each inter-trial-interval in the original experiment. 216 

As in the analyses in Fig. 2, every spike count sequence of a motor cortex neuron was randomly 217 

paired with a pair of estimated Q-values from one of the simulations of the operant task depicted 218 

in Fig. 1 (truncating the number of experimentally-measured trials in accordance with the number 219 

of trials in the simulation). Fig. 3a depicts two estimated Q-values from two sessions (lines), 220 

imposed on the spike counts (dots) of two motor cortex neurons. Similar to the random-walk 221 

neurons (Fig. 2a), we compared the spike count in the last 20 trials of each of the four blocks and 222 

found that the sequence of spike counts of the Top neuron in Fig. 3a matched that of an action 1-223 
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value neuron. The sequence of spike counts of the Bottom neuron in Fig.3a matched that of an 224 

action 2-value neuron. 225 

For the population analysis, we regressed all vectors of motor-cortex spike counts on the estimated 226 

Q-values of Fig. 1. Similarly to the results of the simulations of the random-walk neurons, 36% of 227 

the motor cortex neurons in this experiment were classified as action-value neurons (fig. 3b,c). 228 

These results demonstrate that the magnitude of non-stationarity in standard electrophysiological 229 

recordings is sufficient to result in an erroneous identification of neurons as representing action-230 

values. 231 

To test whether this limitation of the analysis is restricted to extracellular recordings, we 232 

considered intracellular recordings of 39 auditory cortex neurons in 125 sessions (of which 29 233 

sessions were excluded in all repetitions of the analysis due to low spike count, see Materials and 234 

Methods) in anaesthetized rats, responding to auditory stimuli26 (Materials and Methods). In short, 235 

the animals were exposed to a long sequence of pure tones, presented every 300-1000 msec. 236 

Depending on the session, trials in our analysis were taken to be 300 msec or 500 msec long (trial 237 

length remained the same throughout a session) and included a single pure tone. Repeating the 238 

same analysis on these auditory cortex neurons (Fig. 4), 23% of the neurons passed the selection 239 

criterion for action-value neurons (Fig. 4b,c; see individual examples in Fig. 4a). 240 

Identifying representations of unrelated “action-value” in the basal ganglia 241 

To test whether the erroneous identification of action-value neurons in the motor and auditory 242 

cortices is relevant to the statistics of firing in the striatum, we considered recordings from the 243 

nucleus accumbens (NAc) and ventral pallidum (VP) of rats in an operant learning experiment7. 244 

The experiment was a combination of a tone discrimination task and a reward-based free-choice 245 
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task. We considered only the free choice trials, in which the appropriate response of the animal 246 

was to perform a nose poke in either the left or right hole after exiting the center hole. The 247 

experimental session was composed of 4-11 blocks. The reward schedule in each block was pseudo 248 

randomly chosen from the ones presented in Fig. 1a. Blocks changed when the subject chose the 249 

higher-valued action at least 80% of the trials within 20 trials. As in7, we considered the spike 250 

count in three 1 sec phases of the trial - before nose poking in the central hole, 1 sec following 251 

initiation of choice-instruction tone and last 1 sec of nose poke in central hole. In what follows we 252 

aggregate the three phases. 253 

For each recording, we simulated the Q-learning model with a random sequence of blocks. This 254 

sequence of blocks was independent of the actual sequence of blocks used in that session both in 255 

the reward probabilities and in the timing of transition between blocks. To allow for regression of 256 

the entire spike sequence (mean and standard deviation of number of trials was 518 and 122, 257 

respectively) on the estimated Qs, longer sessions than those of Fig. 1 were simulated. These 258 

simulated sessions consisted of 3 random repetitions of the 4 blocks of used in Fig. 1 and were 259 

then truncated to fit the length of the spike sequence. As before, we used the results of this 260 

simulation to extract estimates of the two Q-values and we regressed the sequence of spike counts 261 

on these randomly assigned estimated Q-values. The t-values of 642 regressions (214 neurons in 262 

three sessions) are presented in Fig. 5a. The standard analysis identified 43% of the neurons as 263 

action-value neurons, despite the fact that these action-values were completely unrelated to the 264 

experimental session in which these neurons were recorded (Fig. 5b).     265 

Alternative approaches for identifying action-value neurons 266 

So far, our population analysis was based on fitting Eqs. (1) and (2) to the sequence of actions and 267 

rewards and using the resultant Q-values as estimates of the action-values (Thin lines in Fig. 1c). 268 
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Our analyses in Figs. 2-5 clearly demonstrate that this approach can lead to the erroneous 269 

identification of action-values neurons. However, other studies have concluded that action-value 270 

is represented in the striatum when utilizing alternative approaches. In order to challenge the 271 

finding of action-value neurons in the striatum, we conducted a literature search to find all the 272 

alternative approaches used to identify action-value representation in the striatum (see Materials 273 

and Methods). We identified 22 papers that directly related neural activity in the striatum to action-274 

values. These papers included reports of single-unit recordings, functional magnetic resonance 275 

imaging (fMRI) experiments and manipulation of striatal activity.  276 

Of these, 3 papers have used the term action-value to refer to the value of the chosen action (also 277 

known as chosen-value)27–29 and therefore we will not discuss them any further.  278 

A second group of 11 papers did not distinguish between action-value and policy 279 

representations5,6,9,12–14, or reported policy representation15,30–33. While action-value representation 280 

is often implied from policy representation, it is well-known that policy representation can emerge 281 

in the absence of action-value representation. For example, in computer science, direct policy-282 

gradient methods that do not entail values are routinely used34. In neuroscience, several studies 283 

have proposed neuronal mechanisms that approximate direct policy reinforcement learning and 284 

decision making by means of reward-modulated synaptic plasticity (e.g., 17–25). All these models 285 

will result in policy representation in the absence of action-value representation. For this reason, 286 

these findings do not necessarily imply action-value representation in the striatum. 287 

In 2 additional papers, it was shown that the activation of striatal neurons changes animals’ 288 

behavior, and the results were interpreted in the action-value framework35,36. However, a change 289 

in policy does not entail an action-value representation because, as noted above, a policy can be 290 

learned (or preference emerge) and be modulated by reinforcers without any action-value 291 
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computation. Therefore, these papers are not a strong support to the striatal action-value 292 

representation hypothesis. 293 

Finally, 6 papers correlated action-values, separately from other decision variables, with neuronal 294 

activity in the striatum4,7,8,10,11,37. Five used electrophysiological recordings of single units in the 295 

striatum and one was an fMRI study. All used block-design experiments where action-values are 296 

temporally correlated. In addition to the regression of the spike count on estimated Q-values 297 

described in Figs. 1-5 and S1, some of them considered alternative approaches. However, as 298 

described below, these alternatives are subject to the same caveat.  299 

A standard alternative approach to estimating action-values, which is model-free, is to use the 300 

average reward associated with the block as a measure of the action-value and regress the spike 301 

count at the end of the block on it4,7. This is similar to the analysis in the individual examples of 302 

Figs. 1b, 2a, 3a, 4a and S1b (in which two rank sum tests, and not regression, were used). However, 303 

because this analysis is also based on the assumption of independence-of-trials, applying it to the 304 

random-walk neurons, as well as to the experimentally measured neurons, we identify a 305 

comparable number of action-value neurons to the one reported in the striatum (Fig. S2).  306 

In principle, temporal dependencies in the firing rates could result from trends. Indeed, detrending 307 

has been applied to the spike count10. In detrending, trial number is added to the regression model 308 

as an additional variable. However, this does not remove many of the temporal correlations. 309 

Indeed, we find a comparable number of erroneously-identified action-value neurons to that found 310 

in the striatum10 when applying this analysis to the random-walk model, the motor cortex, the 311 

auditory cortex and the basal ganglia neurons (Fig. S3). 312 
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It has also been noted that the significance analyses depicted above are biased towards classifying 313 

neurons as action-value neurons, at the expense of state or policy neurons8. The reason is that the 314 

former class requires a single significant regression coefficient whereas the latter require two 315 

significant regression coefficients (Figs. 1d, 2b, 3b, 4b, 5a, S1b, S2 and S3). Therefore, an unbiased 316 

alternative has been proposed8. However, for the same reasons (neural activities in consecutive 317 

trials are correlated), this analysis yields a comparable number of erroneously-identified action-318 

value neurons in the random-walk, the motor cortex, the auditory cortex and the basal ganglia 319 

neurons to that reported in the striatum (Fig. S4). 320 

Taken together, we conclude that previous reports on action-value representation in the striatum 321 

could reflect the representation of other decision variables or temporal correlations in the spike 322 

count that are not related to action-value learning.  323 

Attempts to account for the non-stationarity   324 

The mean length of the sessions used in the analysis in Figures 1-4 was 174 trials (standard 325 

deviation 43 trials). It is tempting to believe that adding more trials in a block or adding more 326 

blocks to the experiment may solve the problem of erroneous identification of action-value 327 

neurons. The idea is that the larger the number of trials, the less likely it is that a neuron that is not 328 

modulated by an action-value (e.g., a random-walk neuron) will have a large regression coefficient 329 

on one of the action-values. However surprisingly, this intuition is wrong. Specifically, we 330 

increased the number of trials by simulating the random-walk neurons in an eight-block design (as 331 

opposed to 4 blocks in Fig. 1), where the four blocks from fig 1a were repeated twice (both times 332 

in random permutation). The resulting mean length of the sessions was 347 trials (standard 333 

deviation 65 trials). We found that 45%±1.6% of the random-walk neurons were classified as 334 

action-value neurons. Similarly, when the spike counts of neurons from the motor cortex were 335 
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regressed on estimated Q-values from the 8-blocks design, 37%±5% of these neurons were 336 

classified as action-value neurons. The same was done for spike counts of neurons from the 337 

auditory cortex (324 estimated Q-values with more than 370 trials did not participate in this 338 

analysis) and 24%±4.7% of these neurons were classified as action-value neurons. We did not 339 

perform this analysis on the basal ganglia neurons because we were limited by the length of these 340 

recordings.  341 

In fact, our results suggest that increasing the number of blocks can result in a larger fraction of 342 

erroneously-identified action-value neurons. This is because the estimated variance of regression 343 

coefficients is proportional to the inverse of the number of degrees of freedom, which increases 344 

with the number of trials. As a result, the significance threshold decreases with the number of 345 

trials.  346 

Adding blocks can be useful, however, if the reward schedules in the different blocks are 347 

independent, and the number of assumed degrees of freedom in the statistical analysis depends on 348 

the number of blocks and not on the number of trials. For example, the single-neuron statistical 349 

analysis in Figs. 2a, 3a and 4a is flawed because the variance in the mean spike count (in the last 350 

20 trials of the block) is estimated assuming that the spike counts in consecutive trials are 351 

independent of each other. A correct analysis would have considered this mean as a single data 352 

point, in which the variance cannot be estimated. However, this is experimentally difficult because 353 

it requires a substantially larger number of blocks and thus trials in an experiment, than is typically 354 

used.  355 

Trial design experiments are not prone to the caveat we discuss here because by construction, the 356 

different trials are independent from each other, so the predictors in consecutive trials are not 357 

correlated. However, learning the values of actions requires that reward probabilities (or 358 
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magnitudes) in consecutive trials will be strongly correlated, which is not possible in trial design. 359 

Several studies used tasks, in which cues mark the reward-probability14,15,33. This way it is possible 360 

to use a trial design, in which the expected rewards associated with an action in consecutive trials 361 

are independent. However, these studies did not distinguish between values and policy 362 

representations. It should be noted that in this design, the learning is the association of cue and 363 

reward (cue-values), and not the association of action and reward (action-values)38.  364 

Two studies noted that processes such as slow drift in firing rate may violate the independence-of-365 

trials assumption of the statistical tests and suggested unique methods to deal with this issue in a 366 

block-design6,9. Although in these studies action-value representation was not differentiated from 367 

policy representation, we repeated the methods described in them to see if they are subject to the 368 

same caveat described above. As shown below, we report erroneous detection of action-value 369 

neurons even when these methods are applied.   370 

In the first study6, a permutation test was proposed, in which the spike count, permuted within 371 

each block is also regressed on the estimated Q-values for a large number of different permutations. 372 

A neuron is considered as an action-value modulated neuron if the t-value of the regression 373 

coefficient of the original spike count is large (in absolute value) relative to the distribution of t-374 

values of the permuted spike counts. Using a slightly modified reward schedule6, it was identified 375 

that 10%-13% of striatal neurons were significantly modulated by at least one of the action-values.  376 

However, this method may erroneously identify action-value neurons because the permutation 377 

reduces the correlations between the firing rates in consecutive trials. As a result, if there are 378 

temporal correlations in the original sequence of spike counts, the regression coefficients for the 379 

permuted spike counts are expected to be smaller than that of the original spike count. Indeed, 380 

conducting this analysis on the random-walk, the motor cortex, the auditory cortex and the basal 381 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2017. ; https://doi.org/10.1101/087502doi: bioRxiv preprint 

https://doi.org/10.1101/087502
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

ganglia neurons, we found action-value neurons in a comparable number to that reported for the 382 

striatum (Fig. S5)  383 

In the second study9, the spike-counts in the last 3 trials were also used as predictors in the 384 

regression model. However, this method does not address longer term dependencies and 385 

conducting this analysis using the same reward schedule as in9 on the random-walk, the motor 386 

cortex, the auditory cortex and the basal ganglia neurons, we found action-value neurons in a 387 

comparable number to that reported for the striatum (Fig. S6). 388 

A possible solution to statistical significance in non-stationary time-series 389 

The concerns about the statistical tests described above result from the possibility that non-390 

stationarity of the spike count in striatal neurons is not the result of action-value learning. In 391 

principle, if the statistical structure of this non-stationarity is known, it may be possible to construct 392 

a statistical test, such as generalized least squares (GLS)39 that decorrelates the trials. Alternatively, 393 

it may be possible to compare the number of identified action-value neurons to the expected 394 

number of erroneously detected “action-value” neurons. However, both approaches require an 395 

accurate model of the learning-independent non-stationarity, which is absent, and cannot be 396 

extracted from global measures such as the autocorrelation. This is because the non-stationarity 397 

could be due to many different processes, including oscillations, trends, random-walks and their 398 

combinations.  399 

Therefore, we propose a non-parametric permutation test that does not make specific assumptions 400 

about the learning-independent non-stationarity. In contrast to the previously-described methods, 401 

this test allows us to estimate the probability of an erroneous detection of an action-value neuron 402 
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under the null hypothesis. Importantly, this method can also be used to reanalyze the activity of 403 

previously-recorded striatal neurons4–10.  404 

We propose a permutation test, in which we seek neurons that are more correlated with the action-405 

value that was estimated from the session in which the neuron was recorded than with surrogate 406 

action-values that were estimated from other sessions. This is illustrated in Fig. 6. First, we 407 

computed the t-values of the regression coefficients of the spike counts of the two simulated action-408 

value neurons in Fig. 1b on each of the estimated Q-values from all relevant sessions (see below). 409 

The two distributions of t-values, one for each simulated neuron, are depicted in Fig. 6a. Note that 410 

the 5% significance boundaries, which are exceeded by exactly 5% of t-values in each distribution, 411 

are substantially larger (in absolute value) than 2 (1.96 is 97.5th percentile in a t-distribution). There 412 

are two reasons for these wide distributions of t-values. First, there are trial-to-trial correlations 413 

both in the estimated Q-values and in the spike counts of the simulated action-value neurons. As a 414 

result, the effective number of degrees of freedom is substantially smaller than the number of trials, 415 

leading to larger t-values than expected when trials are independent. Second, some of the surrogate 416 

sessions corresponded to an identical or opposite sequence of reward probabilities, resulting in 417 

surrogate estimated Q-values that are highly correlated (or anti-correlated) with the Q-value that 418 

is estimated from the neuron’s session. We posit that a regression coefficient is significant if the t-419 

value of the regression on the Q-value that is estimated from the neuron’s session exceeds the 420 

significance boundaries derived from the permutations. Indeed, when considering the Top (red) 421 

simulated action 1-value neuron, we find that its spike count is significantly correlated with the 422 

estimated �� from its session (red arrow) but not with that of estimated �� (blue arrow). Because 423 

the significance boundary exceeds 2, this approach is less sensitive than the original one (Fig. 1) 424 

and indeed, the regression coefficients of the Bottom simulated neuron (blue) do not exceed the 425 
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significance level (red and blue arrows) and thus this analysis fails to identify it as an action-value 426 

neuron.  427 

Considering the population of simulated action-value neurons of Fig. 1, this analysis identified 428 

29% of the action-value neurons of Fig. 1 as such (Fig.6b, black), demonstrating that this analysis 429 

can identify action-value neurons. When considering the random-walk neurons (Fig. 2) or two of 430 

the experimentally measured neurons (Figs. 3 and 4), this method defines only approximately 10% 431 

of the neurons as action-value neurons, as predicted by chance (Fig. 6b). 432 

One technical point of caution is that the number of trials can affect the distribution of t-values. 433 

Therefore, we only considered in our analysis the first 170 trials of the 504 sessions longer or equal 434 

to 170 trials. 435 

We used this new method to consider action-value representation in the basal ganglia. To that goal, 436 

we considered the recordings reported in 7. That paper utilized the model-free method depicted in 437 

Fig. S2 to identify action-value neurons. They reported that 13% and 10% of the neurons  phases 438 

represent the left and right action-values, respectively (with p<0.01), suggesting that 439 

approximately 23% of the striatal neurons represent action-values at different phases of the 440 

experiment. As a first step in our analysis, we applied the standard model-based approach 441 

presented in Figs. 1d, 2b, 3b, 4b, 5a: we used the behavior of the animals to estimate the Q-values 442 

and regressed the spike counts in the three phases of the experiment on the estimated Q-values. 443 

This analysis yielded that approximately 32% of the neurons represent action values (16% 444 

(103 (214 × 3)⁄ ) and 16% (100 (214 × 3)⁄ ) of the neurons  phases represent the left and right 445 

action-values, respectively with p<0.01), a number that is slightly higher than the result of the 446 

model-free approach (Fig. 6c). Next, we applied the permutation analysis. Remarkably, this 447 
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anlalysis yielded that only 3.6% of the neurons (1.9% (12 (214 × 3)⁄ ) and 1.7% (11 (214 × 3)⁄ ) 448 

of the neurons  phases) have a significantly higher regression coefficient with their corresponding 449 

left or right action-values, respectively, than with surrogate action-values (Fig. 6c). These results 450 

further challenge the hypothesis of action-value representation in the striatum.   451 

It is worth pointing out that the fraction of action-value neurons reported in7 is low relative to other 452 

publications4,10, a difference that has been attributed to the location of the recording in the striatum 453 

(ventral as opposed to dorsal). It would be interesting to apply this method to other striatal 454 

recordings4,8,10.   455 

Two points are noteworthy regarding this alternative analysis. First, Fig. 6a demonstrates that the 456 

distribution of the t-values of the regression of the spike count of a neuron on all action-values 457 

depends on the neuron. Similarly, the distribution of the t-values of the regression of the spike 458 

counts of all neurons on an action-value depends on the action-value (not shown). Therefore, the 459 

analysis could be biased in favor (or against) finding action-value neurons if the number of neurons 460 

per session is different between sessions. Second, this analysis is still biased towards classifying 461 

neurons as action-value neurons at the expense of state or policy neurons, as noted above8. 462 

Therefore, it may erroneously identify neurons whose activity is correlated with other decision 463 

variables, such as state or policy, as action-value neurons (Fig. S7). To prevent this, it is useful to 464 

apply the correction suggested in8. 465 

Discussion 466 

In this paper, we performed a systematic literature search to discern the methods that have 467 

previously been used to infer the representation of action-values in the striatum. We show that 468 

none of the methods that have been proposed to distinguish between action-value representation 469 
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and other decision variables are able to overcome a serious statistical caveat: temporal 470 

dependencies in the firing rates of neurons may result in their erroneous identification as 471 

representing action-values. Specifically, we considered a particular example of a violation of the 472 

independence-of-trials assumption by simulating neurons whose firing rates follow a bounded 473 

random-walk process. We erroneously identified apparent action-value representations in these 474 

simulated neurons. Moreover, these methods also erroneously identified neurons recorded in 475 

unrelated experiments in different cortical regions, as well as in the basal ganglia, as representing 476 

action-values. We propose an alternative method of analysis that is not subject to this limitation, 477 

which can be utilized to reanalyze data from previous experiments. When applying this novel 478 

method to basal ganglia recordings in which apparent action-value neurons were previously 479 

identified, we failed to detect action-value representations.  480 

It is important to note that we do not take these results to imply that erroneous detection of action-481 

value representation may occur in every brain region and in any epoch of the trial. On the contrary, 482 

neurons in different brain areas, and even within the same brain area, differ according to their 483 

degree of non-stationarity and the time-constants of the modulations that cause this non-484 

stationarity; features that both affect the probability of erroneous detection of action-value 485 

representation. Indeed, the fraction of erroneously identified action-value neurons differed 486 

between the auditory and motor cortices (compare Figs. 3 and 4). Considering the ventral striatum, 487 

our analysis indicates that the identification of action-value representations there may have been 488 

erroneous, resulting from non-stationary firing rates (Figs. 5, 6c). We were unable to directly 489 

analyze recordings from the dorsal striatum because relevant raw data is not publically available. 490 

However, previous studies have shown that the firing rates of dorsal-striatal neurons change slowly 491 

over time40,41. As a result, spike counts are temporally correlated, and violate the independence-492 
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of-trials assumption which underlies all previous attempts to identify action-value neurons 493 

there4,8,10,11.  494 

The potential statistical pitfalls associated with non-stationarity of neural activity are relevant to 495 

attempts to identify any neural correlate of a slowly changing variable, be it the spike count of a 496 

neuron, EEG signal from a sensor, or BOLD signal in a voxel. Our focus here was neural 497 

representations of action-value, but other variables associated with gradual learning are also likely 498 

to vary slowly and hence identifying them using any measure of neural activity will pose a similar 499 

challenge.  500 

Another situation in which such a problem may arise is in the estimation of noise correlations. For 501 

example, a population of neurons whose firing rates follow independent random-walk processes 502 

(or any other temporally correlated process), may appear to be endowed with significant noise 503 

correlations – again due to the violation of the independence-of-trials assumption, which leads to 504 

an underestimation of the variance of the correlation statistic under the null-hypothesis. Similar 505 

issues may arise when studying correlations in BOLD fluctuations between voxels when assessing 506 

resting state functional connectivity (see42,43 for discussions of autocorrelation in fMRI analyses). 507 

Any statistical test performed in these cases should consider the possibility of irrelevant non-508 

stationarity. 509 

Returning to the question of action-value representations in the striatum, it has been previously 510 

noted that identifying a specific neuronal correlate of value is difficult, because it is hard to 511 

disentangle value from other variables, such as salience, the outcome’s sensory properties or 512 

information about the properties of the task44. It is also difficult to disentangle action-value 513 

representation from choice representation, as shown in Fig. S7.  514 
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To our knowledge, all studies that have claimed to provide direct evidence that neuronal activity 515 

in the striatum is specifically modulated by action-value were either susceptible to the statistical 516 

caveat demonstrated in this paper4,7,8,10,11,37, or reported results in a manner indistinguishable from 517 

policy, which does not necessarily imply value representation (as shown in Fig. S1)14,15,33. Indeed, 518 

many studies were susceptible to both of these confounds5,6,9,12,13. Furthermore, it should be noted 519 

that not all studies investigating the relation between striatal activity and action-value 520 

representation have reported positive results. Several studies have reported that striatal activity is 521 

more consistent with direct policy learning than with action-value learning45,46 and one noted that 522 

lesions to the dorsal striatum do not impair action-value learning47.  523 

The fact that the basal ganglia in general and the striatum in particular play an important role in 524 

operant learning, planning and decision-making is not in question3,35,48–52. However, our results 525 

show that special caution should be applied when relating activity in neurons there with specific 526 

variables, derived from reinforcement learning algorithms, which vary slowly over time. The 527 

prevailing belief that neurons in the striatum represent action-values must await further tests that 528 

can account for the potential caveats discussed here.      529 

Materials and Methods 530 

Literature search 531 

Key words “action-value” and “striatum” were searched for in Web-of-Knowledge, Pubmed and 532 

Google Scholar, returning 43, 21 and 980 results, respectively. In the first screening stage, we 533 

excluded all publications that did not report new experimental results (e.g., reviews and theoretical 534 

papers), focused on other brain regions, or did not address value-representation or learning. In the 535 

remaining publications, the abstract of the publication was read and the body of the article was 536 
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searched for “action-value” and “striatum”. After this step, articles in which it was possible to find 537 

description of action-value representation in the striatum were read thoroughly. The search 538 

included PhD theses, but none were found to report new relevant data, not found in articles. 539 

Overall, we identified 22 papers that reported new evidence in support of action-value 540 

representation in striatal neurons 4–15,27–33,35–37 and these were considered in this manuscript. 541 

The action-value neurons model 542 

To model neurons whose firing rate is modulated by an action-value, we considered neurons whose 543 

firing rate changes according to: 544 

�(�) = � + � ∙ � ∙ (��(�) − 0.5)  (4) 545 

Where �(�) is the firing rate in trial �, � = 2.5Hz is the baseline firing rate, ��(�) is the action-546 

value associated with one of the targets � ∈ {1,2}, � = 2.35Hz is the maximal modulation and � 547 

denotes the neuron-specific level of modulation, drawn from a uniform distribution, �~�[−1,1]. 548 

The spike count in a trial was drawn from a Poisson distribution, assuming a 1 sec-long trial.  549 

Estimation of Q-values from model choices and rewards  550 

To imitate experimental procedures, we regressed the spike count on estimates of the Q-values, 551 

rather than the Q-values that underlied behavior (to which the experimentalist has no direct access). 552 

For that goal, for each session, we assumed that ��(1) = 0.5 and found the set of parameters �� 553 

and ��  that yielded the estimated Q-values that best fit the sequences of actions in each experiment 554 

by maximizing the likelihood of the sequence. Q-values were estimated from Eq. (1), using these 555 

estimated parameters and the sequence of actions and rewards. Overall, the estimated values of the 556 

parameters � and � were comparable to the actual values used: on average, �� = 0.12 ± 0.09 557 

(standard deviation) and �� = 2.6 ± 0.7 (compare with �=0.1 and �=2.5). 558 
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Exclusion of neurons  559 

Following standard procedures, a sequence of spike-counts, either simulated or experimentally 560 

measured was excluded due to low firing rate if the mean spike count in all blocks was smaller 561 

than 1. This procedure excluded 0.02% (4/20,000) of the random-walk neurons. 34% (42/125) of 562 

the auditory cortex neurons were excluded on average and 23% (29/125) were excluded in all 40 563 

repetitions. 20% (126/(2143)) of basal ganglia neurons were excluded on average and 11% were 564 

excluded in all 40 repetitions (74/(2143)). None of the simulated action-value neurons (0/20,000) 565 

or the motor cortex neurons (0/89) was excluded.  566 

Statistical analyses 567 

The computation of the t-values of the regression of the spike counts on the estimated Q-values 568 

was done using regstats in MATLAB. The following regression model was used: 569 

�(�) = �� + ����(�) + ����(�) + �(�) 570 

Where s(t) is the spike count in trial �, ��(�) and ��(�) are the estimated action-values in trial �, 571 

�(�) is the residual error in trial � and ���� are the regression parameters. 572 

To find neurons whose spike count in the last 20 trials is modulated by reward probability (Figs. 573 

1b, 2a, 3a, 4a), we executed the Wilcoxon rank sum test, using ranksum in MATLAB. All tests 574 

were two-tailed. 575 

The motor cortex recordings 576 

The data was recorded from one female monkey (Macaca fascicularis) at 3 years of age, using a 577 

10x10 microelectrode array (Blackrock Microsystems) with 0.4mm inter-electrode distance. The 578 

array was implanted in the arm area of M1, under anesthesia and aseptic conditions.  579 
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Behavioral Task:  The Monkey sat in a behavioral setup, awake and performing a BMI and 580 

sensorimotor combined task. Spikes and LFP were extracted from the raw signals of 96 electrodes. 581 

The BMI was provided through real time communication between the data acquisition system and 582 

a custom-made software, which obtained the neural data, analyzed it and provided the monkey 583 

with the desired visual and auditory feedback, as well as the food reward. Each trial began with a 584 

visual cue, instructing the monkey to make a small hand move to express alertness. The monkey 585 

was conditioned to enhance the power of beta band frequencies (20-30Hz) extracted from the LFP 586 

signal of 2 electrodes, receiving a visual feedback from the BMI algorithm. When a required 587 

threshold was reached, the monkey received one of 2 visual cues and following a delay period, 588 

had to report which of the cues it saw by pressing one of two buttons. Food reward and auditory 589 

feedback were delivered based on correctness of report. The duration of a trial was on average 590 

14.2s. The inter-trial-interval was 3s following a correct trial and 5s after error trials. The data used 591 

in this paper, consists of spiking activity of 89 neurons recorded during the last second of inter-592 

trial-intervals, taken from 600 consecutive trials in one recording session. Pairwise correlations 593 

were comparable to previously reported53, ��� = 0.047 ± 0.17 (SD), (��� = 0.037 ± 0.21 for 594 

pairs of neurons recorded from the same electrode).  595 

Animal care and surgical procedures complied with the National Institutes of Health Guide for the 596 

Care and Use of Laboratory Animals and with guidelines defined by the Institutional Committee 597 

for Animal Care and Use at the Hebrew University. 598 

The auditory cortex recordings 599 

The auditory cortex recordings are described in detail in26. In short, membrane potential was 600 

recorded intracellularly from 39 neurons in the auditory cortex of anesthetized rats. 125 601 

experimental session were considered. Each session consisted of 370 50 msec tone bursts, 602 
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presented every 300-1000 msec. For each session, all trials were either 300 msec or 500 msec long. 603 

Trial length remained identical throughout a session and depended on smallest interval between 604 

two tones in each session. Trials began 50 msec prior to tone burst. For spike detection, data was 605 

high pass filtered with a corner frequency of 30Hz. Maximum points that were higher than 60 606 

times the median of the absolute deviation from the median were classified as spikes.  607 

The Basal ganglia recordings 608 

The basal ganglia recordings are described in detail in7. In short, rats performed a combination of 609 

a tone discrimination task and a reward-based free-choice task. Extracellular voltage was recorded 610 

in the behaving rats from the NAc and VP using an electrode bundle. Spike sorting was done using 611 

principal component analysis. In total, 148 NAc and 66 VP neurons across 52 sessions were used 612 

for analyses (In 18 of the 70 sessions there were no neural recordings). 613 

Data Availability 614 

The data of the basal ganglia recordings is available online at https://groups.oist.jp/ncu/data and 615 

was analyzed with permission from the authors. Other data are available upon request.  616 

Code Availability 617 

Custom MATLAB scripts used to create simulated neurons and to analyze data are also available 618 

upon request. 619 
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Figures 

Figure 1 Model of action-value neurons (a) 

Behavior of model in example session, composed 

of four blocks (separated by a dashed vertical 

line). The probabilities of reward for choosing 

actions 1 and 2 are denoted by the pair of 

numbers above the block. Black line denotes the 

probability of choosing action 1; vertical lines 

denote choices in individual trials, where red and 

blue denote actions 1 and 2, respectively, and 

long and short lines denote rewarded and 

unrewarded trials, respectively.  (b) Neural 

activity. Firing rate (line) and spike-count (dots) 

of two example simulated action-value neurons 

in the session depicted in (a). The red and blue-

labeled neurons represent �� and ��, 

respectively. Black horizontal lines denote the 

mean spike count in the last 20 trials of the 

block. Error bars denote the standard error of the 

mean. The two asterisks denote p<0.01 (rank 

sum test). (c) Values. Thick red and blue lines 

denote �� and ��, respectively. Note that the 

firing rates of the two neurons in (b) are a linear 

function of these values. Thin red and blue lines 

denote the estimations of �� and ��, 

respectively, based on the choices and rewards in 

A. The similarity between the thick and thin lines 

indicates that the parameters of the model can be 

accurately estimated from the behavior (see also 

Materials and Methods). (d) and (e) Population 

analysis. (d) Example of 500 simulated action-value neurons from randomly chosen sessions. Each dot 

corresponds to a single neuron and the coordinates correspond to the t-values of regression of the spike 

counts on the estimated values of the two actions. Color of dots denote significance: dark red and blue 

denote significant regression coefficient only on one estimated action-value, action 1 and action 2, 

respectively; light blue – significant regression coefficients on both estimated action-values with similar 

signs (��), orange - significant regression coefficients on both estimated action-values with opposite 

signs (��). Black – no significant regression coefficients. The two simulated neurons in (b) are denoted 

by squares. (e) Fraction of neurons in each category, estimated from 20,000 simulated neurons in 1,000 

sessions. Error bars denote the standard error of the mean.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2017. ; https://doi.org/10.1101/087502doi: bioRxiv preprint 

https://doi.org/10.1101/087502
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Figure 2 Erroneous detection of action-

value representation in random-walk neurons 

(a) Two example random-walk neurons 

presented as if the sequence of spike counts 

of these neurons corresponds to the sequence 

of trials in figure 1. Gray lines and gray dots 

denote the neurons’ firing rates and the spike 

counts, respectively. Black horizontal lines 

denote the mean spike count in the last 20 

trials of the block. Error bars denote the 

standard error of the mean. The two asterisks 

denote p<0.01 (rank sum test). The red and 

blue lines denote the estimated action-values 

1 and 2, respectively (same as in Fig. 1c). 

These are presented here because the t-value 

of the regression of the spike counts on the 

corresponding estimated action-values was 

larger than 2. (b) and (c) Population 

analysis, same as in Figs.1d and 1e for the 

random-walk neurons. The two random-

walk neurons in (a) are denoted by squares 

in (b). (d) Fraction of random-walk neurons 

classified as action-value neurons (red), and 

classified as state neurons (��) or policy 

neurons (��) (green) as a function of the 

magnitude of the diffusion parameter of 

random-walk (�). Light red and light green 

are standard error of the mean. Dashed lines mark the results for �=0.1, which is the value of the 

diffusion parameter used in Fig. 2a-c. Initial firing rate for all neurons in the simulations is �(1) = 2.5Hz. 
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Figure 3 Erroneous detection of action-value 

representation in motor cortex (a) Two 

example motor cortex neurons recorded in a 

BMI task, presented as if the sequence of 

spike counts of these neurons corresponds to 

the sequence of trials in two sessions (one 

for each neuron) of operant learning used for 

the population analysis in Fig. 1e. Gray dots 

denote the spike-counts. Black horizontal 

lines denote the mean spike counts in the last 

20 trials of the assigned blocks. Error bars 

denote the standard error of the mean. The 

two asterisks denote p<0.01 (rank sum test). 

Each session was associated with two 

estimated action-values and for each neuron, 

we computed the t-values of the regression 

of the spike counts on the two corresponding 

estimated action-values. The red and blue 

lines denote those action-values whose t-

value exceeded 2 (in absolute value). (b) and 

(c) Population analysis. (b) The t-values of 

89 neurons regressed on the estimated 

action-values of randomly selected 89 sessions (same as Fig. 1d). The neurons in (a) are denoted by 

squares. (c) Fraction of neurons classified in each category, estimated by regressing each of the 89 motor 

cortex neurons on 80 different estimated action-values from 40 randomly selected sessions. Error bars 

denote the standard error of the mean.  

. 
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Figure 4 Erroneous detection of action-value 

representation in auditory cortex (a) Same as 

in Fig. 3a for two auditory cortex neurons in 

an anesthetized rat responding to the 

presentation of pure tones. (b) and (c) 

Population analysis. (b). The t-values of 82 

neurons regressed on the estimated action-

values of randomly selected 82 sessions 

(same as Fig. 3b). The neurons in (a) are 

denoted by squares. (c) Fraction of neurons 

classified in each category, estimated by 

regressing 125 auditory cortex neurons on 80 

different estimated action-values from 40 

randomly selected sessions (in each session, 

34% of neurons were excluded on average, 

see Materials and Methods). Error bars 

denote the standard error of the mean.  
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Figure 5 Erroneous detection of irrelevant action-

value representation in basal ganglia (a) and (b) 

Population analysis. (a) The t-values of 214 

neurons in three different phases regressed on the 

estimated action-values from randomly selected 

642 simulated sessions (same as Fig. 4b). (b) 

Fraction of neurons classified in each category, 

estimated by regressing 214 neurons in three 

different phases on 80 different estimated action-

values from 40 randomly selected sessions (in each 

session, 20% of neurons were excluded on average, 

see Materials and Methods). Error bars denote the standard error of the mean.  
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Figure 6 Permutation analysis (a) Red and 

blue figures correspond to red and blue - 

labeled neurons in fig. 1b, respectively. For 

each neuron, we computed the t-values of the 

regressions of its spike-count on both 

estimated Q-values from all sessions in Fig. 1e 

(excluding sessions shorter than 170 trials) and 

used these t-values to compute probability 

distribution functions of the t-values. Dashed 

black lines denote the 5% significance 

boundary. Red and blue arrows denote the t-

values from regressions on the estimated �� 

and ��, respectively, from the session in which 

the neuron was simulated (depicted in Fig. 1a). 

(b) Fraction of neurons classified in each 

category using the permutation analysis for the 

action-value neurons (black, Fig. 1), random-

walk neurons (maroon, Fig. 2), motor cortex 

neurons (green, Fig. 3) and auditory cortex 

neurons (dark yellow, Fig. 4). Dashed line 

denotes chance level for action-value 1 or 2 

classification. Error bars denote the standard 

error of the mean. (c) Light gray, fraction of basal ganglia neurons classified in each category when 

regressing the spike count of basal ganglia neurons on the estimated Q-values associated with their 

experimental session. Dark gray, fraction of basal ganglia neurons classified in each category when 

applying the permutation analysis. Dashed line denotes significance level of p<0.01. 
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