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Summary	
	
Many	small	molecule	chemotherapeutics	induce	stresses	that	globally	inhibit	mRNA	

translation,	remodeling	the	cancer	proteome	and	governing	response	to	treatment.					

Here	we	measured	protein	synthesis	in	multiple	myeloma	cells	treated	with	low-

dose	bortezomib	by	coupling	pulsed-SILAC	(pSILAC)	with	high-accuracy	targeted	

quantitative	proteomics.		We	found	that	direct	measurement	of	protein	synthesis	by	

pSILAC	correlated	well	with	the	indirect	measurement	of	protein	synthesis	by	

ribosome	profiling	under	conditions	of	robust	translation.		By	developing	a	

statistical	model	integrating	longitudinal	proteomic	and	mRNA-seq	measurements,	

we	found	that	proteomics	could	directly	detect	global	alterations	in	translational	

rate	as	a	function	of	therapy-induced	stress	after	prolonged	bortezomib	exposure.			

Finally,	the	model	we	develop	here,	in	combination	with	our	experimental	data	

including	both	protein	synthesis	and	degradation,	predicts	changes	in	proteome	

remodeling	under	a	variety	of	cellular	perturbations.		pSILAC	therefore	provides	an	

important	complement	to	ribosome	profiling	in	directly	measuring	proteome	

dynamics	under	conditions	of	cellular	stress.	
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Introduction	
	 Dynamic	changes	in	the	cancer	proteome	control	tumor	growth,	

proliferation,	metastasis,	and	response	to	the	therapy.			Targeting	aberrant	mRNA	

translation	in	cancer	has	recently	garnered	significant	interest	as	a	therapeutic	

strategy	(Boussemart	et	al.,	2014;	Hsieh	et	al.,	2012;	Wolfe	et	al.,	2014).		

Furthermore,	a	myriad	of	cellular	stresses,	including	exposure	to	various	

chemotherapeutics,	leads	to	global	inhibition	of	protein	synthesis	and	remodeling	of	

the	cancer	proteome	(de	Haro	et	al.,	1996;	Walter	and	Ron,	2011).		

	 A	powerful	new	tool	to	measure	gene-specific	regulation	of	translation	is	

ribosome	profiling,	the	deep	sequencing	of	mRNA	fragments	protected	by	actively	

translating	ribosomes	(Ingolia	et	al.,	2009;	Ingolia	et	al.,	2011;	Michel	and	Baranov,	

2013).			A	central	assumption	of	ribosome	profiling	is	that	indirect	measurement	of	

ribosome	footprint	occupancy	on	transcripts	is	directly	reflective	of	true	protein	

synthesis.		While	this	assumption	has	been	shown	to	be	largely	true	in	bacteria	(Li	et	

al.,	2014a),	the	relationship	between	footprint	occupancy	and	protein	synthesis	

remains	less	clear	in	the	more	complex	translational	system	of	eukaryotes	(Liu	et	al.,	

2016).		Furthermore,	using	standard	ribosome	profiling	approaches	it	can	be	

difficult	to	capture	global	cellular	changes	in	translational	capacity	(Ingolia,	2016),	

such	as	those	which	occur	in	response	to	drug	therapy	in	cancer.	

	 Here,	we	monitor	the	effects	of	low-dose	bortezomib	therapy	on	translation	

in	multiple	myeloma	cells,	a	system	of	first-line	therapy	and	hematologic	cancer	we	

have	studied	previously	in	the	context	of	rapid	apoptosis	(Wiita	et	al.,	2013).			

Proteasomal	blockade	by	bortezomib	is	known	to	lead	to	endoplasmic	reticulum	
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stress	due	to	accumulation	of	unfolded	and	misfolded	proteins	(Obeng	et	al.,	2006;	

Vincenz	et	al.,	2013).			This	stress	triggers	downstream	signaling	pathways	that	

inhibit	the	translation	of	the	large	majority	of	mRNAs	(Walter	and	Ron,	2011).		

Similar	signaling	to	inhibit	translation	occurs	in	response	to	heat	shock,	DNA	

damage,	and	oxidative	stress	(Duncan	and	Hershey,	1984;	Powley	et	al.,	2009;	

Shenton	et	al.,	2006).		

Importantly,	here	we	used	pulsed-stable	isotope	labeling	(pSILAC)	

approaches	in	combination	with	high-accuracy	targeted	quantitative	proteomics	to	

directly	monitor	the	synthesis	of	new	proteins	in	this	system	(Jovanovic	et	al.,	2015;	

Schwanhausser	et	al.,	2011).		This	design	allowed	us	to	compare	ribosome	footprint	

occupancy	of	transcripts	to	the	directly	measured	synthesis	of	new	protein	

molecules	in	a	cancer	therapy	model.		We	found	that	during	robust	translation,	

before	the	onset	of	bortezomib-mediated	translational	repression,	these	two	

orthogonal	measurements	were	well-correlated,	providing	important	support	for	

the	assumption	that	ribosome	footprint	density	is	quantitatively	reflective	of	

protein	synthesis	in	eukaryotes.		We	further	developed	a	quantitative	statistical	

model	to	describe	protein	synthetic	rates,	as	derived	from	our	proteomic	data,	

against	a	background	of	general	translational	inhibition	induced	by	prolonged	

bortezomib	treatment.		Under	conditions	of	translational	inhibition,	we	found	that	

pSILAC	methods	were	able	to	directly	detect	global	alterations	of	translation	not	

identified	by	standard	ribosome	profiling	approaches.	We	further	demonstrated	

that	our	model,	incorporating	experimental	protein	synthetic	and	degradation	rates,	

could	predict	protein-level	dynamics	in	response	to	different	levels	of	stress-
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induced	translational	inhibition.		These	findings	underscore	the	utility	of	pSILAC	

proteomics	as	a	complementary	method	in	studies	of	translational	regulation	to	

ribosome	profiling,	particularly	under	conditions	of	cellular	stress.			

	

Results	

	 We	treated	MM1.S	multiple	myeloma	cells	with	the	proteasome	inhibitor	

bortezomib	at	a	dose	of	0.5	nM,	well	below	the	EC50	(~8	nM)	for	inhibition	of	

proteasomal	catalytic	activity	(Chauhan	et	al.,	2005).		We	compared	untreated	cells	

(0h)	to	cells	harvested	at	6h,	12h,	24h,	36h,	and	48h	after	treatment	(Fig.	1A).		At	

each	time	point	we	performed	mRNA-seq	and	ribosome	profiling	as	previously	

described	(Wiita	et	al.,	2013).		We	also	harvested	these	unlabeled	cells	for	

quantitative	proteomics	using	selected	reaction	monitoring	(SRM).		This	method,	

employing	a	triple-quadrupole	instrument,	is	used	for	high-accuracy	quantitative	

measurements	on	cross-sample	comparisons	(Picotti	and	Aebersold,	2012).			

Under	these	conditions	we	found	that	MM1.S	underwent	only	minor	changes	

in	viability	and	caspase	activation	(Fig.	1B),	unlike	in	our	prior	study	at	20	nM	

bortezomib	(Wiita	et	al.,	2013).		Total	protein	as	well	as	total	RNA	and	mRNA	

concentration	per	cell	did	not	show	any	significant	decrease	over	the	time	course	

(Fig.	S1A),	unlike	under	high-dose	bortezomib	(Wiita	et	al.,	2013).		We	compared	

total	protein	abundance	by	SRM	for	a	set	of	proteins	that	demonstrated	increased	

transcript	abundance	after	bortezomib	exposure	in	our	prior	study	(Wiita	et	al.,	

2013).		We	found	that	while	these	proteins	were	not	detectably	increased	in	the	
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high-dose	bortezomib	setting,	consistent	with	our	prior	results	(Wiita	et	al.,	2013),	

many	of	these	proteins	were	indeed	increased	in	the	low-dose	setting	(Fig.	1C).			

	

Quantification	of	newly	synthesized	proteins.		The	above	results	cannot	directly	

distinguish	the	contribution	of	new	protein	synthesis	vs.	existing	protein	

degradation	to	the	total	protein	abundance.		Therefore,	we	next	moved	to	a	pSILAC	

approach.		MM1.S	cells	were	grown	in	“light”	SILAC	media	supplemented	with	

unlabeled	L-lysine	and	L-arginine.		At	time	0h,	cells	were	pelleted	and	resuspended	

twice	in	“heavy”	SILAC	media	containing	13C6-15N4	arginine	and	13C6-15N2	lysine	and	

0.5	nM	bortezomib.		Cells	were	grown	for	48h	under	these	conditions	and	harvested	

as	above.		Cell	viability	showed	similar	changes	after	treatment	(Fig.	S1B	and	1B).		

We	designed	quantitative	SRM	assays	measuring	synthesis	(“heavy”	channel)	

and	degradation	(“light”	channel)	of	272	proteins	in	this	cellular	system.		This	

analysis	included	monitoring	at	least	two	unique	sequence	peptides	per	protein,	in	

technical	duplicate,	in	both	the	light	and	heavy	channels	by	SRM	(Fig.	2A).			SRM	

data	were	normalized	across	time	points	using	the	total	intensity	(light	+	heavy	

channel	intensity)	of	a	panel	of	“housekeeping”	proteins	that	remain	unchanged	at	

the	transcript	level	(see	methods).		While	SRM	has	the	advantage	of	consistent	

quantification	of	targeted	peptides	across	all	time	points,	a	main	drawback	is	the	

lower	throughput	compared	to	“shotgun”	proteomic	methods.		Therefore,	our	

analysis	is	necessarily	limited	to	a	subset	of	expressed	proteins.	
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Overall	changes	over	the	time	course.		We	first	compared	the	relative	read	

density	of	transcripts	identified	by	mRNA-seq	and	ribosome	profiling	across	the	

time	course	to	those	found	at	baseline	(untreated	cells	at	0h).		We	found	that	

relative	ribosome	footprint	density	generally	moves	in	concert	with	relative	

transcript	abundance	(Fig.	S1H-I).		The	biological	effects	of	low-dose	proteasome	

inhibition	were	similar	to	those	seen	previously	at	high-dose	(Wiita	et	al.,	2013),	

with	prominent	upregulation	of	proteasomal	subunits	and	downregulation	of	

ribosomal	subunits	(Table	S1).	

In	Fig.	2B,	we	compared	the	fold-change	relative	to	0hr	of	total	abundance	of	

the	272	proteins	monitored	by	SRM	across	the	time	course	to	that	of	mRNA-seq	and	

ribosome	footprint	read	density	on	the	corresponding	transcript.		While	relative	

increases	in	mRNA	drove	increases	in	protein	abundance,	most	protein-level	

increases	were	less	prominent	than	transcript-level	increases.		Furthermore,	

downregulated	transcripts	did	not	lead	to	detectable	decreases	in	protein	

abundance	over	48h.		This	finding	is	consistent	with	those	of	others	(Jovanovic	et	al.,	

2015;	Schwanhausser	et	al.,	2011)	suggesting	that	high-abundance	proteins,	as	we	

primarily	monitored	here,	typically	have	long	half-lives.		These	half-lives	may	be	

further	extended	by	partial	blockade	of	proteasomal	degradation	by	bortezomib	

treatment	(Fig.	S3E).	

	

Correlation	between	protein	copies	and	ribosome	footprint	densities.	 We	

next	compared	the	amount	of	protein	synthesis	inferred	from	ribosome	profiling	to	

that	measured	by	SRM.		We	first	used	the	iBAQ	approach	(Schwanhausser	et	al.,	
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2011)	in	biological	duplicate	on	untreated	MM1.S	cells	to	estimate	baseline	protein	

copy	number	per	cell	(Fig.	S2A-B).		To	ensure	that	these	baseline	copy	numbers	

were	of	the	correct	order	of	magnitude,	using	quantitative	Western	blotting	we	

verified	protein	copy	number	per	cell	for	three	representative	proteins,	spanning	

the	range	of	estimated	copy	numbers	per	cell	(~105	to	~107)	for	the	majority	of	

proteins	included	in	the	SRM	assay	(Fig.	S2C-D).		Using	the	heavy-channel	SRM	

intensity,	representing	newly	synthesized	proteins,	and	extrapolating	from	baseline	

protein	copies	per	cell,	we	estimated	the	number	of	protein	copies	per	cell	

synthesized	between	the	0h	and	12h	time	points,	when	cellular	protein	synthesis	

appears	largely	unaffected	by	drug	treatment	(Fig.	S2E-G).		We	compared	these	data	

to	the	average	ribosome	footprint	density	(in	RPKM)	across	the	0h,	6h,	and	12h	time	

points	(Fig.	3A).		Importantly,	we	found	a	good	correlation	between	ribosome	

footprint	density	and	protein	synthesis	(Pearson	R	on	log-transformed	data	=	0.80).			

A	linear	best	fit	to	this	data	on	a	log	scale	resulted	in	a	slope	of	0.97	(95%	confidence	

interval:	0.86	to	1.06).		This	strong	correlation	and	linear	fit	with	slope	near	unity	in	

this	eukaryotic	system	suggests	that	indirect	measurement	of	synthesis	via	

ribosome	footprint	occupancy	for	any	gene	indeed	appears	to	quantitatively	reflect	

absolute	protein	synthesis.		However,	the	observed	correlation	is	not	perfect,	

requiring	further	exploration	of	potential	causes	of	divergence	between	these	two	

orthogonal	measurements.	

	

Mathematical	modeling	of	protein	synthesis	and	degradation.		We	therefore	

further	explored	the	dynamics	of	protein	degradation	and	production	by	using	a	
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system	of	differential	equations.	For	each	protein,	we	fitted	the	estimated	number	of	

“heavy”	and	“light”	protein	copies	per	cell,	as	well	as	the	total	protein	abundance	

based	on	the	addition	of	these	two	SRM	intensities	(Fig.	3B),	using	orthogonal	

natural	cubic	splines	with	linearity	constraints	to	obtain	functional	forms,	denoted	

by	𝑃"# 𝑡 ,	𝑃"% 𝑡 ,	and	𝑃"# 𝑡 + 𝑃"% 𝑡 ,	respectively	(see	methods).	This	enabled	us	to	

describe	changes	of	protein	abundance	(𝑑𝑃"# 𝑡 /𝑑𝑡	and	𝑑𝑃"% 𝑡 /𝑑𝑡)	in	terms	of	

protein	synthesis	and	degradation	(Fig.	3C).	For	each	corresponding	transcript	we	

also	monitored	the	mRNA-seq	read	density	(Mortazavi	et	al.,	2008)	and	ribosome	

footprint	density	in	RPKM.	

To	estimate	the	degradation	rate	constant	𝑘"% 	for	each	gene	𝑔,	we	found	that	

a	single-exponential	fit	well-described	protein	degradation	for	the	included	

proteins.		Other	proteomic	and	deep	sequencing	data	were	fitted	using	the	same	

approach	described	above	(see	Methods).		The	primary	gene-specific	free	parameter	

in	this	analysis	is	𝑘"# 𝑡 ,	the	translation	rate	parameter	for	gene	𝑔	describing	the	

number	of	protein	molecules	produced	per	transcript	per	unit	time,	thereby	

providing	a	proteomic-based	measure	of	translational	efficiency	for	each	gene.		

Importantly,	our	model	allows	us	to	determine	changes	in	𝑘"# 𝑡 	as	a	function	of	

time,	unlike	in	prior	approaches	describing	a	static	𝑘"# 	term	(Schwanhausser	et	al.,	

2011).	

	 	

Comparison	of	inferred	translational	rate	parameter	from	proteomics	with	

translational	efficiency	from	ribosome	profiling.		We	can	now	directly	compare	

𝑘"# 𝑡 	with	a	measure	of	translational	efficiency	(TE)	used	in	the	ribosome	profiling	
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literature,	where	TE	is	defined	as	the	ratio	of	the	relative	ribosome	footprint	read	

density		to	the	relative	mRNA-seq	read	density	(Ingolia	et	al.,	2009;	Ingolia	et	al.,	

2011).		Using	standard	ribosome	profiling	analysis	methods	(see	Methods),	we	

observed	little	change	in	TE	(Fig.	3E).		This	finding	is	in	surprising	contrast	to	

changes	found	in	𝑘"# 𝑡 	as	measured	by	proteomics,	where	comparisons	to	0h	

indicate	a	reduction	in	proteins	synthesized	per	transcript	across	the	time	course	

(Fig.	3F).	

	 We	reasoned	that	our	proteomic	methods	may	be	directly	detecting	global	

decreases	in	translational	capacity	induced	by	bortezomib	treatment	not	captured	

by	standard	ribosome	profiling	approaches.		To	support	this	notion,	polysome	

analysis	by	sucrose	gradient	centrifugation	(Fig.	S2E),	incorporation	of	puromycin	

into	nascent	proteins	(Fig.	S2G),	and	dephosphorylation	of	the	translation	initiation	

factor	eIF4E-binding	protein	1	(4EBP1)	(Fig.	S2F)	all	supported	a	diminishment	of	

translational	capacity	at	time	points	after	12h,	despite	little	decrease	in	global	

mRNA	levels	compared	to	baseline	(Fig.	S1A).			

	 The	inability	of	standard	ribosome	profiling	approaches	to	detect	global	

changes	in	translational	capacity	has	been	recognized	previously	(Ingolia,	2016).		To	

address	this	issue,	we	used	a	recently	described	method	of	normalization	

incorporating	ribosome	footprints	mapping	to	mitochondrially-encoded	genes	

(ChrM),	which	are	proposed	to	remain	constant	despite	inhibition	of	cytosolic	

translation	(Iwasaki	et	al.,	2016).		The	normalized	translational	efficiency,	denoted	

by	𝑇𝐸	(see	Methods),	demonstrates	qualitative	agreement	between	changes	in	

global	translational	capacity	as	measured	by	both	ribosome	profiling	and	
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proteomics	across	the	time	course	(Fig.	3F-G).		At	48h	we	measure	a	median	~40%	

decrease	in	translational	efficiency	of	measured	transcripts	by	both	methods,	albeit	

with	greater	variance	in	the	proteomic	measurement.		This	decrease	in	translational	

efficiency	also	appears	consistent	with	biochemical	measurements	(Fig.	S2E-G).		

This	finding	highlights	that	monitoring	protein	synthesis	by	mass	spectrometry	can	

directly	confirm	global	changes	in	translational	capacity.	

	

Modeling	changes	in	global	protein	synthetic	capacity.			We	note	that	the	

normalization	method	above	may	be	limited	by	the	low	number	of	ribosome	

footprint	reads	mapping	to	chrM	(Fig.	S1J)	or	the	long	duration	of	low-dose	

bortezomib	treatment.		We	therefore	developed	an	algorithm	to	computationally	

estimate	the	changes	in	global	protein	synthetic	capacity.	A	scaling	function	Gr(t)	

(common	to	all	genes)	was	incorporated	into	the	system	of	differential	equations.	

This	function	Gr(t)	was	used	to	correct	TE	to	reflect	changes	in	the	global	synthetic	

capacity	in	the	cell	(blue	curve	in	Fig.	4B).	We	inferred	Gr(t)	that	optimizes	a	

squared	loss	function	based	on	proteomic	data	(see	Methods).		When	our	inferred	

Gr(t)	was	included	in	simulations	of	low-dose	bortezomib	treatment,	the	resulting	

simulated	protein	synthesis	dynamics	were	similar	to	those	noted	by	puromycin	

incorporation	(Fig.	S2G-H).	

	

iBAQ	replicate	error	partially	explains	noise	in	correlation	between	

proteomic	and	ribosome	profiling.			We	also	investigated	the	correlation	at	

baseline	between	translational	efficiency	and	𝑘"#(𝑡)	across	proteins	(Fig.	3D).	We	
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first	estimated	a	multiplicative	constant,	𝛽,	that,	when	applied	to	all	genes,	largely	

reconciles	the	𝑇𝐸	measured	from	ribosome	profiling	with	𝑘"#(𝑡)	estimated	from	

proteomic	experiments	(see	Methods).			A	major	question	is	whether	the	

discrepancy	of	the	fit	between	𝑇𝐸	and	𝑘"#(𝑡)	for	different	genes	represents	real	

biology	(i.e.	gene-specific	translational	regulation	at	the	post-translational	level,	

only	detectable	by	proteomics)	or	systematic	biases	in	one	or	both	methods.	Of	note,	

our	quantitative	model	relies	on	absolute	protein	copy	number	estimates	from	the	

iBAQ	method	(Schwanhausser	et	al.,	2011).		While	the	proteins	included	in	our	

targeted	SRM	assay	on	MM1.S	showed	high	reproducibility	by	iBAQ	(Fig.	S2B),	

simulations	suggest	that	even	this	limited	iBAQ	replicate	error	could	account	for	

over	a	third	of	the	residual	variance	of	the	correlation	presented	in	Fig.	3A	(Fig.	

S4B).		To	evaluate	further	potential	sources	of	error,	we	examined	whether	

accounting	for	annotated	transcript	isoforms	could	improve	the	correlation	

between	footprint	and	proteomic	data,	but	found	only	minor	improvements	(Fig.	

S4D).		

	

Predicting	changes	in	protein	synthesis.		To	further	investigate	applications	of	

our	model,	we	obtained	a	similar	dataset	of	pSILAC	proteomics	paired	with	baseline	

mRNA-seq	and	ribosome	profiling	in	untreated	Epstein	Barr	Virus	(EBV)-

immortalized	B-cells	(Fig.	4A	and	Fig.	S3).		Importantly,	the	relationship	between	

absolute	protein	synthesis	and	footprint	RPKM	(Fig.	4A)	is	also	strong	in	this	setting	

(Pearson	R	on	log-transformed	data	=	0.84).		A	linear	fit	to	this	data	on	a	log	scale	

results	in	a	slope	of	0.93	(95%	confidence	interval	0.84	to	1.02).		Again	this	strong	
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correlation	and	linear	relationship	indicates	that	ribosome	footprint	occupancy	is	

quantitatively	reflective	of	absolute	protein	synthesis	in	a	different	cell	type	and	

without	any	drug	perturbation.		

Another	direct	application	of	our	model	is	predicting	absolute	protein	

synthesis	and	abundance	under	different	global	levels	of	translational	inhibition.		

Using	our	estimated	values	of	𝑘"#(𝑡)	in	combination	with	baseline	mRNA-seq	and	

ribosome	profiling	data,	we	predicted	proteome	remodeling	under	three	different	

functions	of	Gr(t)	in	MM1.S	cells	(Fig.	4B).			Our	model	predicted	significantly	

reduced	absolute	protein	synthesis	under	conditions	of	strong	translation	inhibition	

(Fig.	4C	and	Fig.	4D),	consistent	with	that	found	in	our	prior	study	of	high-dose	

bortezomib	(Wiita	et	al.,	2013).		We	also	predicted	the	“heavy”	(newly	synthesized)	

protein	copy	number	in	B-cells,	using	inputs	of	iBAQ	protein	copy	number,	ribosome	

footprint	density,	and	mRNA-seq	measured	in	untreated	B-cells,	and	𝛽	and	𝑘"% 	

estimated	from	MM1.S	data	(Fig.	4E-right),	and	found	similarity	to	the	experimental	

pSILAC	measurements	of	heavy	protein	copy	number	(Fig.	4E-left).	Our	results	from	

Fig.	3A	and	4A	further	support	the	notion	that	ribosome	profiling	data,	in	

combination	with	biochemical	knowledge	of	global	translational	inhibition,	may	be	

sufficient	to	predict	changes	in	the	proteome	using	our	quantitative	model.		

	

Discussion	

Here,	we	directly	measured	protein	synthesis	and	ribosome	footprint	density	

in	the	setting	of	cancer	therapy.		Ribosome	profiling	has	become	a	widespread	

technique	to	assess	translational	regulation	and	protein	synthesis.		One	important	
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question	about	this	technique,	however,	is	whether	the	resulting	data	truly	reflect	

protein	synthesis	and	translational	rate.		A	recent	study	in	E.	coli	demonstrated	that	

when	compared	with	previously	published	absolute	copy	numbers	per	cell,	

extrapolated	synthesis	rates	based	on	ribosome	footprint	density	correlated	very	

well	(R	=	0.98)	(Li	et	al.,	2014a).			In	our	work,	we	also	find	a	strong	positive	

correlation	between	ribosome	footprint	density	and	absolute	protein	synthesis	as	

measured	by	targeted	time-resolved	pSILAC	(Fig.	3A	(R	=	0.80)	and	4A	(R	=	0.84)),	

supportive	of	the	notion	that	ribosome	footprint	density,	as	measured	by	ribosome	

profiling,	is	directly	reflective	of	absolute	protein	synthesis,	even	in	the	more	

complex	translational	system	of	eukaryotes	(Jackson	et	al.,	2010;	Kozak,	1999).		

Others	have	compared	the	capture	and	analysis	of	nascently-translated	

proteins	by	mass	spectrometry	to	ribosome	profiling	data	and	found	weaker	

correlations	(R	=	0.66)	(Zur	et	al.,	2016).			However,	this	“Punch-P”	approach	has	

significant	disadvantages	as	an	orthogonal	quantitative	validation	of	ribosome	

profiling	data	as	it	relies	on	incorporation	of	a	chain	terminating	puromycin	analog	

for	enrichment.		Such	truncated	polypeptides	will	likely	be	rapidly	degraded,	

skewing	abundances	in	the	captured	cohort.		Furthermore,	enrichment-based	

methods	suffer	from	biases	in	differential	protein	capture	on	streptavidin	beads	and	

artifacts	from	non-specific	binding.		These	limitations	make	it	difficult	to	

quantitatively	compare	ribosome	profiling	to	Punch-P.		In	contrast,	the	pSILAC	

approach	we	take	here,	combined	with	high-accuracy	targeted	quantification,	allows	

us	to	directly	measure	protein	synthesis	in	a	complex	system	in	an	unbiased	fashion.			
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With	these	data,	we	find	that	noise	in	baseline	absolute	protein	abundance	

using	the	iBAQ	methodology	(Li	et	al.,	2014b;	Wilhelm	et	al.,	2014)	strongly	affects	

the	correlation	between	proteomic	and	ribosome	profiling	data.		Other	sources	of	

error	in	our	comparison	that	remain	to	be	investigated	may	relate	to	ribosome	

footprint	sample	preparation	methods	(Weinberg	et	al.,	2016)	or	splice	isoform-

specific	translational	control	(Floor	and	Doudna,	2016).		Due	to	these	limitations	we	

cannot	exclude	the	possibility	that	for	some	genes	there	is	a	divergence	between	

ribosome	footprint	occupancy	and	true	protein	synthesis,	despite	the	overall	strong	

correlation	between	these	measurements	across	the	monitored	genes.		

The	quantitative	model	we	develop	also	allows	us	to	determine	a	measure	of	

translational	efficiency	(𝑘"#(𝑡))	using	proteomic	data	and	compare	this	to	

translational	efficiency	as	measured	by	ribosome	profiling.		Our	results,	with	a	

Pearson	R	=	0.58	at	baseline	(Fig.	3D),	are	in	line	with	that	of	a	recent	extensive	

time-course	study	of	protein	synthesis	in	murine	dendritic	cells	(Jovanovic	et	al.,	

2015).		They	performed	ribosome	profiling	at	the	baseline	timepoint	alone	and	also	

found	a	similar	correlation	(R	=	0.5)	between	TE	from	ribosome	profiling	and	𝑘"# 	

measured	from	shotgun	proteomic	data	(Jovanovic	et	al.,	2015).		Given	our	findings	

(Figs.	3E-G),	it	appears	that	while	proteomics	may	be	able	to	broadly	detect	global	

changes	in	translational	capacity,	ribosome	profiling	may	be	more	sensitive	in	

determining	translational	efficiency	changes	for	individual	genes.	

In	the	context	of	cancer	therapy,	our	results	here	underscore	that	standard	

measurements	of	ribosome	footprint	density	may	not	reflect	absolute	protein	

synthesis	when	global	changes	in	translational	capacity	(i.e.	the	number	of	actively	
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translating	ribosomes)	are	present,	whereas	proteomics	can	more	directly	detect	

these	changes	(Fig.	3E	and	Fig.	3F).			pSILAC	combined	with	targeted	mass	

spectrometry	may	therefore	be	an	important	method	to	orthogonally	validate	

quantitative	changes	in	translational	rate	found	by	normalization	of	ribosome	

profiling	data	under	conditions	of	cellular	stress	(Andreev	et	al.,	2015;	Ingolia,	

2016).	

Furthermore,	we	develop	a	new	quantitative	model	that	can	capture	and	

predict	dynamic	changes	in	protein	synthesis	during	cancer	therapy.		As	we	find	a	

linear	relationship	between	ribosome	footprint	density	and	absolute	protein	

synthesis	across	genes,	we	suggest	that	with	inputs	of	mRNA-seq,	ribosome	

profiling,	and	absolute	protein	abundance	estimates,	in	conjunction	with	

biochemical	data	to	describe	the	degree	of	translational	inhibition,	our	model	will	

provide	a	new	window	to	predict	the	remodeling	of	the	cancer	proteome	in	

response	to	therapeutic	perturbation,	even	in	the	absence	of	a	full	pSILAC	dataset.		

In	addition,	this	quantitative	framework	can	readily	be	applied	to	any	human	

cellular	system	exposed	to	cellular	stress	impinging	on	the	translational	machinery.		
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Figure	1.		Monitoring	protein	synthesis	under	low-dose	bortezomib	treatment.			
A.		Experimental	design	in	MM1.S	myeloma	cells.	B.		Under	0.5	nM	bortezomib	there	
is	little	change	in	cell	viability	nor	significant	evidence	of	caspase	activation.		Values	
measured	in	duplicate	+/-	S.D.		Normalized	to	0h	=	1	for	cell	viability	(measured	
with	Promega	CellTiter-Glo	assay),	0h	=	0.1	for	caspase	3/7	activity	(measured	by	
Promega	Caspase	3/7-Glo	assay).		C.		Selected	Reaction	Monitoring	(SRM)	proteomic	
assays	on	total	protein	demonstrate	measurable	increases	in	many	proteins	under	
low-dose	(0.5	nM)	bortezomib	treatment	that	cannot	be	detected	under	rapid	
translational	shutdown	after	high-dose	(20	nM)	bortezomib.		Values	+/-	S.D.	
measured	in	technical	duplicate.	
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Figure	2.		Dynamics	of	transcript	abundance	and	protein	synthesis	in	response	
to	low-dose	bortezomib.		A.		Example	time-course	SRM	data	for	peptides	from	
PROF1	and	DDX5.		Red	traces	=	“light”	channel	intensity	(degraded	from	baseline);	
blue	traces	=	“heavy”	channel	intensity	(newly	synthesized	post-SILAC	pulse).		Each	
trace	represents	added	intensity	of	all	monitored	SRM	transitions	(four	per	peptide	
per	channel).		B.		Relative	mRNA	abundance	and	ribosome	footprint	read	density	
(ratio	vs.	0h,	in	RPKM)	move	together	over	the	timecourse	whereas	transcript-level	
changes	are	not	seen	as	prominently	as	changes	in	protein	abundance.		SRM	data	
here	represents	addition	of	all	peptide	intensities	in	light	and	heavy	channels	to	
measure	total	protein.	
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Figure	3.		Measuring	and	modeling	protein	synthesis	and	translational	rate	by	
pulse-chase	proteomics	and	ribosome	profiling.		A.		Early	in	the	time	course,	
before	any	biochemical	evidence	of	translational	inhibition	(Fig.	S2),	comparison	of	
average	ribosome	footprint	density	on	transcript	coding	sequence	and	newly	
synthesized	proteins	per	cell,	measured	by	SRM	intensity	and	extrapolated	based	on	
iBAQ	estimate	of	total	protein	copies	per	cell,	show	a	strong	correlation	(Pearson	
R=0.80	on	log-transformed	data).		Red	line	is	line	of	best	fit,	with	slope	=	0.97	(95%	
confidence	interval	0.86	to	1.06).		Molecules	synthesized	per	cell	by	SRM	represent	
“heavy”	protein	copies	at	12h	minus	“heavy”	copies	at	0h	(see	Methods);	footprint	
data	is	average	RPKM	from	the	6h,	12h,	and	24h	time	points.		B.	Example	plots	from	
proteins	EIF6	and	YWHAE	show	proteomic	data.		Lines	represent	fits	from	model-
fitting	based	on	orthogonal	splines	with	linearity	constraints	(see	Methods).	Solid	
lines	=	total	protein;	short	dashed	lines	=	degradation;	long	dashed	lines	=	synthesis.		
C.		Differential	rate	equation	model	describes	protein	abundance	as	a	function	of	
protein	synthesis	and	degradation	as	measured	from	proteomic	experiments	and	
mRNA-seq.		The	primary	free	fitting	parameter	𝑘"# 𝑡 	describes	the	number	of	
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proteins	synthesized	per	transcript	per	unit	time,	𝑃"% 𝑡 	is	abundance	of	“light”	
proteins,	𝑘"% 	is	protein	degradation	rate	constant	derived	from	single-exponential	fit	
to	light	channel	data,	𝑀" 	is	absolute	transcript	abundance	as	derived	from	mRNA-
seq	data,	and		𝑃"# 𝑡 	is	abundance	of	newly	synthesized	“heavy”	protein.		The	
definition	of	translational	efficiency	from	ribosome	profiling	literature	is	denoted	by	
TE	per	gene:	ribosome	footprint	read	density	rg(t)	divided	by	mRNA-seq	read	
density	mg(t)	(both	in	RPKM).	The	normalized	translational	efficiency	is	denoted	by	
𝑇𝐸:	ribosome	footprint	read	density	normalized	to	mitochondrial	footprints	Rg(t)	
divided	by	absolute	transcript	abundance	𝑀"(𝑡).		D.	Baseline	comparison	of	𝑇𝐸	and	
𝑘"#(𝑡)	show	that	they	are	correlated,	but	imperfectly	(Pearson	R=0.58	on	log-
transformed	data).		TE	(E),	𝑘"# 	(F)	and	𝑇𝐸	(G)	plotted	across	all	272	proteins	across	
the	time	course,	as	a	ratio	to	the	value	at	0h,	shows	no	change	in	TE	by	standard	
analysis	but	similar	changes	in	translational	rate	as	measured	by	proteomics	(F)	and	
mitochondrial-corrected	ribosome	footprints	(G).	
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Figure	4.		A	dynamic	model	predicts	absolute	protein	synthesis	under	
conditions	of	cellular	stress.	A.	Untreated	Epstein	Barr	Virus	(EBV)-immortalized	
B-cells	also	show	a	strong	correlation	(Pearson	R	on	log-transformed	data	=	0.84)	
between	absolute	protein	synthesis	and	footprint	RPKM	as	in	Fig	3A.		Red	line	is	line	
of	best	fit,	with	slope	=	0.93	(95%	confidence	interval	0.84	to	1.02)	B.		Simulation	of	
absolute	protein	copies	synthesized	as	a	function	of	different	levels	of	translational	
capacity	(denoted	by	𝐺4(𝑡))	in	MM1.S,	with	inputs	of	iBAQ	protein	copy	number,	
ribosome	footprint	density,	mRNA-seq,	𝛽	and	𝑘"% 	from	MM1.S	data.	Three	conditions	
are	considered:	𝐺4(𝑡)	being	constant,	as	in	untreated	cells;	𝐺4(𝑡)	varying	as	found	in	
low-dose	bortezomib	(btz)-treated	MM1.S;	and	𝐺4(𝑡)	decreasing	towards	zero,	as	in	
high-dose	bortezomib-treated	MM1.S	(Wiita	et	al.,	2013)	C.		The	simulated	heavy	
channel	protein	abundance	𝑃"# 𝑡 	normalized	by	the	heavy	channel	protein	
abundance	at	48	hr	under	constant	𝐺4 𝑡 ,	denoted	by	𝑃"#∗ 48 	in	MM1.S.	Under	high-
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dose	btz,	protein	synthesis	is	strongly	curtailed,	consistent	with	Wiita	et	al.	(2013).	
D.		The	simulated	total	protein	abundance	𝑃"# 𝑡 + 𝑃"% 𝑡 	normalized	by	the	total	
protein	abundance	at	48	hr	under	constant	𝐺4 𝑡 ,	denoted	by	𝑃"#∗ 48 + 𝑃"%∗ 48 .		
High-dose	btz	again	shows	a	significant	decrease	in	total	protein	abundance.		E.		
SRM	pSILAC-measured	absolute	protein	copy	number	synthesis	per	B-cell	(left)	
compared	to	simulated	estimates	of	total	absolute	proteins	synthesized	in	untreated	
B-cells	over	48	h	using	quantitative	model	(right),	with	inputs	of	iBAQ	protein	copy	
number,	ribosome	footprint	density,	and	mRNA-seq	measured	in	B-cells	and	𝛽	and	
𝑘"% 	from	MM1.S	data,	show	good	agreement.	
	
	
METHODS	

	

Experimental	model	and	subject	details		

MM1.S	cells	were	acquired	from	ATCC	with	cell	line	identity	confirmed	by	

karyotyping	and	DNA	microarray.		EBV-immortalized	human	B-cells	derived	from	

normal	donor	cord	blood	were	a	kind	gift	of	Dr.	Markus	Müschen	(UCSF	Dept.	of	

Laboratory	Medicine)	with	normal	diploid	genome	confirmed	by	karyotyping.			

	
	
Cell	culture	and	drug	treatment	

MM1.S	cells	were	grown	in	suspension	to	1	×	106	cells/ml	in	RPMI-1640	media	with	

10%	FBS.		EBV-immortalized	B-cells	were	grown	in	suspension	to	1	x	106	cells/mL	

in	RPMI-1640	media	with	20%	FBS.		For	initial	MM1.S	experiments	(Fig.	1),	

bortezomib	(LC	Laboratories,	Woburn,	MA,	USA)	20	µM	stock	solution	in	sterile-

filtered	phosphate	buffered	saline	(PBS)	was	simultaneously	added	to	a	final	

concentration	of	0.5	nM	to	flasks	each	containing	90	×	106	cells	(PBS	only	added	to	

control	sample).	At	the	indicated	time	point	cells	were	separated	into	aliquots	for	

each	experimental	approach	(15	×	106	cells	in	duplicate	for	each	of	mRNAseq,	
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proteomics,	and	ribosome	profiling).	Cells	for	ribosome	profiling	alone	were	

incubated	at	37°C	for	1	min	with	100	µg/mL	cycloheximide	(Sigma-Aldrich,	St.	

Louis,	MO,	USA).	All	cells	were	pelleted	by	centrifugation,	washed	in	PBS	(PBS	+	100	

µg/ml	cycloheximide	for	ribosome	footprint	samples),	pelleted	by	centrifugation	

again,	and	flash	frozen	in	liquid	N2,	then	stored	at	−80°C.	Cell	viability	and	caspase	

activity	were	assessed	by	Cell-Titer	Glo	and	Caspase-Glo	(Promega,	Madison,	WI,	

USA)	assays	per	manufacturer	protocol,	respectively.		For	pulsed-SILAC	

experiments,	MM1.S	cells	were	grown	for	6	cell	doublings	in	SILAC	RPMI	media	

depleted	of	arginine	and	lysine	(Thermo	Fisher	Scientific,	Waltham,	MA,	USA),	

dialyzed	FBS	(Life	Technologies,	Carlsbad,	CA,	USA)	supplemented	with	unlabeled	L-

lysine	(70	mg/L)	and	L-arginine	(40	mg/L)	(Sigma-Aldrich).		EBV-immortalized	B-

cells	were	similarly	grown	for	6	cell	doublings	in	SILAC	RPMI	media	supplemented	

with	“medium”	(4,4,5,5-D4)	lysine	and	13C6	arginine.			For	both	cell	lines,	at	time	0h,	

100	x	106	cells	at	a	density	of	1	×	106	cells/ml	were	pelleted	by	centrifugation	and	

resuspended	in	SILAC	RPMI	media	supplemented	with	“heavy”	13C6-15N2	lysine	(70	

mg/L)	and	13C6-15N4	arginine	(40	mg/L)	(Cambridge	Isotope	Laboratories,	Andover,	

MA,	USA).		Cells	were	harvested	at	the	indicated	time	points,	washed	once	in	PBS,	

and	stored	at	-80°C	until	sample	analysis.		For	MM1.S	cells,	ribosome	profiling,	

mRNA-seq,	and	proteomics	were	performed	at	each	time	point.		For	B-cell	analysis,	

proteomics	were	performed	at	each	time	point,	while	ribosome	profiling	and	mRNA-

seq	analysis	were	performed	in	biological	duplicate	on	the	baseline	sample	alone	as	

the	cells	are	not	perturbed	during	the	time	course.	
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Measurement	of	total	RNA,	mRNA,	and	protein	

Total	RNA	was	extracted	either	by	Trizol	(Life	Technologies)	per	manufacturer	

protocol	or	using	QIAgen	RNeasy	kit	(QIAgen,	Germantown,	MD,	USA).		mRNA	was	

further	purified	from	isolated	total	RNA	by	poly(A)	separation	using	Oligo	

(dT)25	Magnetic	Beads	kit	(New	England	BioLabs,	Ipswich,	MA,	USA)	per	

manufacturer	protocol.	Total	RNA	and	mRNA	concentration	was	measured	either	by	

NanoDrop	ND-1000	UV-Vis	spectrophotometer	(Thermo	Fisher)	or	QuantiFluor	

RNA	assay	(Promega,	Santa	Clara,	CA,	USA).		Total	protein	was	isolated	by	lysis	in	

either	8M	Urea	buffer	for	proteomics	(see	below)	or	RIPA	buffer	(EMD	Millipore,	

Billerica,	MA,	USA)	for	immunoblotting	and	concentration	measured	using	BCA	

assay	(Thermo	Fisher	Scientific).	

	

Ribosome	profiling	and	mRNA-seq	

Ribosome	profiling	and	mRNA-seq	samples	were	prepared	and	analyzed	as	in	our	

prior	study	(Wiita	et	al.,	2013).		Briefly,	harvested	cell	pellets	for	ribosome	profiling	

were	suspended	and	lysed	in	500	µl	ice-cold	polysome	lysis	buffer	(20	mM	Tris,	pH	

7.4,	250	mM	NaCl,	15	mM	MgCl2,	1	mM	dithiothreitol,	0.5%	Triton	X-100,	24	U/ml	

Turbo	DNase	(Ambion,	Austin,	TX,	USA),	and	100	µg/ml	cycloheximide).	Lysate	was	

clarified	by	centrifugation	and	RNase	I	100	U/μl	(Ambion)	was	added	to	digest	

polysomes	to	monosomes.	Digested	samples	were	then	loaded	onto	a	1	M	sucrose	

cushion	and	pelleted	by	centrifugation	for	4	hr	at	70,000	rpm.		The	pellet	was	

resuspended	in	Trizol	and	RNA	isolated	per	manufacturer	protocol.		RNA	was	

separated	by	gel	electrophoresis	on	a	15%	TBE-Urea	gel	(Life	Technologies)	and	gel	
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fragments	extracted	corresponding	to	∼25–35	nt	in	size.	RNA	was	extracted	from	

gel	as	in	(Ingolia	et	al.,	2011),	by	disrupting	gel	slices	with	centrifugation	through	a	

needle	hole	between	0.5	mL	microfuge	tube	nested	in	a	1.5	mL	microfuge	tube.		The	

gel	was	extracted	in	RNase-free	water	for	10	min	at	70°C.		The	eluate	was	recovered	

by	loading	slurry	onto	a	Spin-X	column	(Corning	8160)	and	centrifuging	to	recover	

eluate	in	collection	tube.		RNA	was	then	precipitated	from	the	filtered	eluate	by	

adding	sodium	acetate	to	a	final	concentration	of	300	mM	as	a	coprecipitant,	

followed	by	at	least	one	volume	of	isopropanol.		Precipitation	occurred	at	-20°C	

overnight,	RNA	was	pelleted	and	centrifuged	for	45	min	at	20,000	x	g,	4°	C.		The	

supernatant	was	discarded	and	the	RNA	pellet	was	air	dried,	then	resuspended	in	

10	μl	10	mM	Tris	(pH	7.0).	

Harvested	cell	pellets	for	mRNAseq	were	isolated	by	Trizol	and	total	RNA	isolated	

per	manufacturer	protocol.	Poly(A)	mRNA	was	purified	from	the	total	RNA	sample	

using	poly-dT	magnetic	beads	(as	above)	per	manufacturer	protocol.	mRNA	was	

fragmented	in	high	pH	buffer	(50	mM	NaCO3,	pH	9.2)	for	20	min	at	95°C,	then	

precipitated	and	separated	by	gel	electrophoresis	as	above.		mRNA	fragments	of	50–

90	nt	were	extracted.	

Both	poly(A)-selected	and	ribosome	footprint	size-selected	RNA	samples	were	

dephosphorylated,	ligated	to	linker,	and	separated	by	gel	electrophoresis	as	

described	previously	(Ingolia	et	al.,	2011).		RNA	was	dephosphorylated	with	T4	DNA	

polynucleotide	kinase	(NEB	M0201S),	by	resuspending	RNA	in	25ul	10mM	Tris	(pH	

8.0),	denaturing	the	fragments	for	2	min	at	75°C	then	equilibrating	at	37°C	and	
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brought	to	a	volume	of	50	μl	in	1X	T4	polynucleotide	kinase	reaction	buffer	with	25	

U	T4	polynucleotide	kinase	(NEB	M0201S)	and	12.5	U	Superasein	(Thermo	Fisher	

AM2694).		This	dephosyporylation	reaction	was	incubated	for	1	hr	at	37°C	and	

enzyme	heat	inactivated	at	70°C	for	10	min,	then	purified	by	precipitation	as	

described	above.		Linker	was	ligated	in	a	20	μl	reaction	with	dephosphorylated	RNA,	

12.5%	w/v	PEG	8000,	10%	DMSO,	1X	T4	RNA	Ligase	2,	truncated	(NEB	M0242L)	

reaction	buffer,	20	U	Superasein,	500	ng	preadenylated	miRNA	cloning	linker	1	

(IDT)	,	200	U		T4	RNA	Ligase	2	(tr).		This	ligation	was	incubated	at	37°C	for	2.5	hr	

and	the	products	were	separated	by	gel	electrophoresis	and	extraction	as	described	

above.		Reverse	transcription	and	cDNA	library	preparation	were	completed	as	

in	(Ingolia	et	al.,	2011).		Reverse	transcription	was	carried	out	by	preparing	a	

reaction	with	RNA	in	18	μl	SuperScriptIII	(Thermo	Fisher	18080044)	and	50	pmol	

oNTI-225	link1	primer	(see	key	resource	table).		Reactions	were	denatured	for	5	

min	at	65°C,	equilibrated	at	48°C	with	2.0μl	1N	NaOH	and	incubating	20	min	at	98°C.		

Products	were	purified	by	gel	electrophoresis	and	extracted	as	described	above.			

Reverse	transcription	products	were	circularized	with	20	μl	CircLigase	(Epicentre	

CL4111K)	reaction.		After	circularization,	subtraction	of	rRNA	sequences	was	

performed	by	subtractive	hybridization	using	biotinylated	oligos	that	reverse	

complement	overabundant	rRNA	contaminants	(see	key	resource	table:	oNTI309,	

301r,	305r,	397hr,	298r,	303hr),	by	being	suspended	in	30	μl	2X	SSC	with	250	pmol	

total	biotinylated		subtraction	oligos.		The	sample	was	denatured	for	2	min	at	70°C	

and	transferred	to	37°C.		Hybridization	was	incubated	for	30	min	at	37°C.		

Biotinylated	oligos	were	removed	by	MyOne	streptavidin	C1	dynabeads	(see	key	
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resource	table),	using	1mg	magnetic	beads.	The	rRNA-subtracted,	circularized	cDNA	

was	used	as	a	template	for	PCR	amplication	(see	key	resource	table	for	amplification	

primers)	using	Phusion	polymerase	(NEB	M0530S).		Reaction	products	were	then	

separated	by	gel	electrophoresis	as	described	above	and	DNA	extracted	using	same	

procedure	as	above,	with	NaCl	substituted	as	a	co-precipitant.		Extracted	DNA	was	

resuspended	in	10	μl		10	mM	Tris	(pH	8.0)	and	expected	library	size	verified	using	

an	Agilent	Bioanalyzer	2100.	

Sequencing	was	performed	on	an	Illumina	HiSeq	2500	using	single	end,	50-bp	reads	

at	the	UCSF	Center	for	Advanced	Technology.	Before	alignment,	linker	sequences	

were	computationally	removed	from	the	3′	ends	of	raw	sequencing	reads.	

STAR_2.4.0j	was	used	to	perform	the	alignments	with	up	to	one	mismatch	allowed.	

For	footprint	data	only	reads	of	length	25–36	nt	(footprint	length	with	

cycloheximide	(Ingolia	et	al.,	2011))	were	used	for	alignment.		Reads	were	first	

aligned	vs	mitochondrially-translated	genes;	aligned	reads	were	filtered.	Next,	all	

remaining	reads	were	aligned	vs	human	non-coding	RNA	and	tRNA	sequences;	

aligned	reads	were	discarded.	Finally	remaining	reads	were	aligned	to	human	

transcriptome	reference	(downloaded	from	

http://www.gencodegenes.org/18.html	Sep	2016)	on	reference	genome	GRCh37.	

	

Software	Ribomap	(Wang	et	al.,	2016)	was	used	with	default	settings	to	assign	

multi-mapped	reads	to	isoforms	according	to	the	mRNA	abundance	of	each	isoform.	
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mRNA	and	footprint	read	density	were	calculated	in	units	of	reads	per	kilobase	

million	(RPKM)	to	normalize	for	gene	length	and	total	reads	per	sequencing	run.		

Unsupervised	hierarchical	clustering	was	performed	using	complete	linkage	across	

mRNA,	footprint,	and	translational	efficiency	data	with	uncentered	correlation	in	

Cluster	3.0	and	visualized	in	TreeView.		Where	indicated,	gene	lists	were	analyzed	

by	NIH	DAVID	resource	(Huang	et	al.,	2009)	using	default	settings	for	included	

genes	and	interaction	networks	and	human	selected	as	species.	

	

Selected	Reaction	Monitoring	proteomics	

Frozen	cell	pellets	were	lysed	by	probe-tip	sonication	in	buffer	containing	8M	Urea,	

50	mM	NaCl,	and	100	mM	Tris	pH	8.0	supplemented	with	1x	HALT	protease	and	

phosphatase	inhibitor	cocktail	(Thermo	Fisher).			Lysates	were	cleared	by	

centrifugation	at	16,500	x	g	for	10	min	and	protein	concentration	measured	using	

the	BCA	assay.		Lysate	containing	~500	ug	protein	was	diluted	to	200	uL	with	lysis	

buffer.		Disulfide	bonds	were	reduced	with	5	mM	dithiothreitol	and	cysteines	

alkylated	with	10	mM	iodoacetimide.		Lysate	was	diluted	1:6	with	trypsin	dilution	

buffer	(100	mM	Tris	pH	8.0,	1	mM	CaCl2,	75	mM	NaCl).		Sequencing	grade	modified	

trypsin	(see	key	resource	table)	was	added	at	an	enzyme:substrate	ratio	of	1:25.		

Proteins	were	trypsin	digested	overnight	with	agitation	at	room	temperature.		

Samples	were	adjusted	to	pH	<3	with	trifluoracetic	acid	and	precipitate	removed	by	

centrifugation	at	16,500	x	g	for	10	min.		Tryptic	peptides	were	desalted	on	SepPak	

C18	columns	(Waters,	Milford,	MA,	USA),	evaporated	to	dryness	on	a	vacuum	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087486doi: bioRxiv preprint 

https://doi.org/10.1101/087486


	

	 37	

concentrator,	and	stored	at	-80°C.		For	mass	spectrometry	analysis	peptides	were	

resuspended	in	0.1%	formic	acid	to	a	final	concentration	of	~0.2	μg/μL.	

We	previously	developed	targeted,	label-free	Selected	Reaction	Monitoring	

(SRM)	assays	for	152	proteins	in	our	prior	work	in	MM1.s	myeloma	cells	treated	

with	20	nM	bortezomib	(Wiita	et	al.,	2013).		We	applied	this	same	assay	to	our	

samples	as	shown	in	Figure	1.		Here	we	further	developed	new	SRM	assays	to	

measure	relative	protein	quantification	in	both	the	light	and	heavy	SILAC	channels	

(as	in	Fig.	2).		For	method	development,	data-dependent	(or	“shotgun”)	proteomic	

data	acquired	on	an	LTQ	Orbitrap	Velos	(Thermo	Fisher)	in	HCD	mode	in	our	prior	

study	was	imported	into	the	open-source	software	Skyline	(v.	2.5)	(MacLean	et	al.,	

2010)	to	build	targeted	assays	consisting	of	parent	ion	and	fragment	ion	

“transitions”	based	on	MS2	sequencing	data.		For	heavy	channel	analysis,	we	used	

calculated	increases	in	m/z	of	y-ion	fragments	to	develop	targeted	methods.			Two	to	

four	peptides	per	protein	were	targeted	in	initial	method	development.		Proteins	for	

analysis	were	primarily	chosen	based	on	high	MS2	fragment	intensity	in	shotgun	

data.		Peptides	were	chosen	having	unique	sequence	identity	for	the	targeted	

protein	based	on	canonical	sequence	in	Uniprot	database.	

All	SRM	analysis	was	carried	out	on	an	QTRAP	5500	(SCIEX,	Framingham,	

MA)	triple	quadrupole	mass	spectrometer	interfaced	in-line	with	a	nanoAcquity	

UPLC	system	(Waters)	identical	to	that	on	the	LTQ	Orbitrap	Velos	(Thermo	Fisher)	

on	which	the	spectral	library	was	acquired	(Analytical	column:	BEH130	(0.075	×	

200	mm	column,	1.7	μm;	Waters)).			LC	buffer	A	=	0.1%	formic	acid	in	water;	buffer	

B	=	0.1%	formic	acid	in	acetonitrile.		We	injected	∼1	μg	of	tryptic	peptides	from	
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MM1.S	cells	onto	the	mass	spectrometer	with	the	following	conditions:	Direct	

sample	loading	at	3%	B	for	10	min	after	injection,	a	linear	gradient	from	3%–35%	B	

over	80	min,	an	increase	to	90%	B	over	5	min,	then	held	for	5	min,	then	a	decrease	

to	3%	B	for	10	min	(total	run	time	110	min).	Unit	resolution	was	used	at	Q1	and	Q3.	

A	three	second	duty	cycle	time	was	used	for	all	runs.	For	unscheduled	runs	a	10	ms	

acquisition	time	was	used	per	transition.	Multiple	injections	were	used	to	test	for	all	

targeted	peptides.	Using	data	analysis	in	Skyline	software,	peptides	were	selected	

for	further	method	development	based	on	1)	the	signal	detection	(above	baseline)	

of	at	least	5	of	7	co-eluting	transitions	in	both	the	light	(0h	sample	used	for	method	

development)	and	heavy	(48h	sample	used	for	method	development)	channels;	2)	a	

retention	time	within	7	min	of	that	acquired	in	the	initial	spectral	library	(acquired	

under	the	same	chromatographic	conditions);	3)	fragment	ion	intensity	of	similar	

rank	to	that	found	in	the	initial	spectral	library.	

Peptides	chosen	for	further	development	were	then	limited	to	the	four	most	

intense	transitions	in	both	the	light	and	heavy	channels	as	found	in	unscheduled	

runs.	A	scheduled	SRM	method	was	developed	with	a	retention	time	window	of	±5	

min.		We	then	applied	this	scheduled	method	across	multiple	injections,	with	a	

minimum	scan	time	per	transition	of	10	ms,	at	each	time	point,	in	technical	

duplicate.		We	ultimately	chose	to	include	in	our	pulsed	SILAC	analysis	only	those	

peptides	which	demonstrated	detectable	SRM	intensity	above	background	and	at	a	

consistent	LC	retention	time	at	all	time	points	in	both	the	light	and	heavy	channels	

(with	the	exception	of	heavy	channel	at	0h,	where	we	expect	to	detect	only	

background	signal).		Therefore,	we	ultimately	included	733	peptides	from	272	
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proteins	in	the	analysis	here	for	analysis	of	MM1.S	cells.		We	applied	this	same	

method	to	EBV-immortalized	B-cells	and	found	that	165	of	these	proteins	

demonstrated	sufficient	signal-to-noise	for	analysis,	likely	based	on	differential	

protein	expression	between	the	two	cell	lines;	these	165	proteins	were	used	for	all	

B-cell	analysis.	

Peptide	intensity	in	each	sample	was	measured	as	the	sum	of	all	transition	

peak	areas	for	that	peptide	in	each	of	the	light	and	heavy	channels	(as	measured	by	

analysis	in	Skyline).		Total	peptide	intensity	was	measured	as	the	sum	of	the	light	

and	heavy	channel	intensities,	and	total	protein	intensity	was	measured	as	the	sum	

of	total	intensities	for	all	peptides	from	that	protein.		To	normalize	peptide	

concentration	across	samples,	we	used	peptides	derived	from	a	set	of	high	

abundance	proteins	not	expected	to	significantly	change	during	the	time	course	

based	on	transcript-level	data.		We	derived	an	index	based	on	the	geometric	mean	

total	intensity	of	peptides	from	these	‘housekeeping’	proteins	(ENO1,	KPYM,	PPIA,	

FLNA,	ACTB,	TUBA1B)	and	scaled	SRM	intensity	of	all	peptides	in	each	channel	

based	on	the	median	value	of	this	index.	Corrected	peptide	intensity	was	averaged	

across	injections	for	each	sample.			

	

Western	blots	

For	quantitative	Western	blots,	10	x	106	untreated	MM1.S	cells	were	counted	by	

taking	the	average	of	measurements	from	both	manual	hemocytmeter	and	

automated	cell	counting	using	a	Sceptre	instrument	(EMD	Millipore).		Cells	were	

pelleted,	washed	1x	in	cold	PBS,	and	lysed	in	RIPA	buffer	(EMD	Millipore)	
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supplemented	with	1x	HALT	protease	and	phosphatase	inhibitors	(Thermo	Fisher)	

by	probe-tip	sonification.		Protein	concentration	in	lysate	was	measured	by	BCA	

assay.		Recombinant	proteins	(GAPDH,	Abcam;	Vimentin,	PeproTech;	Bid,	Sino	

Biological,	see	key	resource	table)	at	the	manufacturer’s	indicated	concentration	

were	used	to	generate	a	standard	curve.	Lysate	and	recombinant	protein	were	

separated	on	Mini-PROTEAN	anyKd	TGX	gels	(Bio-Rad,	Hercules,	CA,	USA)	and	

transferred	to	0.45	μm	PVDF	membrane	(EMD	Millipore).		Membranes	were	blocked	

using	Odyssey	blocking	buffer	(LI-COR,	Lincoln,	NE,	USA)	and	probed	with	anti-

GAPDH	rabbit	monoclonal	antibody,	anti-vimentin	rabbit	monoclonal,	and	anti-Bid	

rabbit	polyclonal	(Cell	Signaling	Technology,	see	key	resource	table)	diluted	at	

1:1000	in	Odyssey	blocking	buffer.		Membranes	were	washed	and	blotted	with	

infrared	reporter-conjugated	secondary	antibodies	and	imaged	on	a	LI-COR	Odyssey	

system.		LI-COR	Image	Studio	software	was	used	to	quantify	standard	curve	and	

lysate	band	intensity.		Western	blots	for	phospho-	and	total	4EBP-1	were	performed	

as	previously	described	with	identical	reagents	(Wiita	et	al.,	2013,	see	key	resource	

table).		All	blots	were	completed	in	biological	duplicate.	

	

Puromycin	incorporation	

The	bortezomib	treatment	time	course	was	performed	in	biological	duplicate.			One	

hour	prior	to	each	time	point,	1	μM	puromycin	(Sigma-Aldrich)	was	added	to	4.5	x	

106	cells	at	1.0	x	106	cells/mL.		Cells	from	were	allowed	to	incorporate	puromycin	

for	one	hour,	pelleted,	washed	in	PBS,	and	lysed	in	RIPA	buffer	as	above.	25	μg	of	

lysate	was	separated	by	gel	electrophoresis	and	transferred	to	PVDF	membrane	as	
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above.		Membranes	were	probed	with	a	mouse	anti-puromycin	monoclonal	

antibody	(KeraFast,	see	key	resource	table)	and	imaged	on	LI-COR	Odyssey	system.	

	

Sucrose	density	gradient	

10x106	MM1.S	cells	at	each	time	point	were	lysed	in	500	μL	buffer	containing	20	

mM	Tris	pH	7.5,	50	mM	NaCl,	5	mM	MgCl2,	30%	glycerol,	1%	Triton-X,	20	U/mL	

SuperASEin	(Ambion),	1	mM	DTT,	and	0.1	mg/mL	cycloheximide.		Lysate	was	

loaded	over	a	10%-50%	sucrose	gradient,	centrifuged	at	35,000	x	g	for	3	hrs,	and	

polysomes	analyzed	using	a	Gradient	Station	(BioComp,	Fredericton,	NB,	Canada)	

with	absorbance	measured	at	254	nm.	

	

Estimation	of	absolute	protein	copy	number	at	baseline	

We	previously	used	the	iBAQ	method	(first	described	in	(Schwanhausser	et	al.,	

2011))	implemented	in	MaxQuant	(Cox	and	Mann,	2008)	to	estimate	protein	copy	

number	per	cell	at	baseline	in	MM1.S	cells.		Here	we	identically	analyzed	unlabeled	

trypic	peptides	from	a	biological	replicate	of	untreated	MM1.S	cells	on	an	LTQ	

Orbitrap	Velos	mass	spectrometer	(Wiita	et	al.,	2013).	We	estimated	protein	copy	

number	per	cell	𝜌"	based	on	the	ion	current	assigned	to	each	protein	group	𝑖𝐵𝐴𝑄"	

and	scaled	by	a	constant	𝜎,	such	that	𝜌" = 𝜎[𝑖𝐵𝐴𝑄"].		By	incorporating	the	

molecular	mass	𝜇"	of	each	protein,	the	total	mass	of	protein	per	cell	𝜇CDCEF ,	and		

𝜌"𝜇"" = 𝜇CDCEF ,	we	derived	the	scaling	constant	𝜎,	and	thereby	estimated	the	

protein	copy	number	per	cell	𝜌".	For	incorporation	into	the	quantitative	model,	we	
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used	the	mean	of	the	absolute	protein	copy	number	per	cell	from	two	iBAQ	replicate	

analysis,	denoted	as	𝜌",	as	the	“0h”	value	for	copies	per	cell.		

This	baseline	quantity	is	related	to	the	background	corrected	SRM	intensity	

by	𝜌" = 𝑎"(𝐼"% 0 + 𝐼"#(0)),	in	which	𝐼"% 𝑡 	is	the	background	corrected	intensity	of	

the	light	SRM	channel,	𝐼"# 𝑡 	is	the	background	corrected	intensity	of	the	heavy	

channel,	and	𝑎"	is	a	gene	specific	constant.	The	background	correction	was	

conducted	by	subtracting	the	signal	intensity	in	the	heavy	channel	at	0h	𝐼"#(0)	from	

all	measurements,	since	no	labeling	had	occurred,	represented	as	𝐼"% 𝑡 = 𝐼"% 𝑡 −

𝐼"#(0)	and	𝐼"# 𝑡 = 𝐼"# 𝑡 − 𝐼"#(0).	We	extracted	𝑎"	using	the	background	corrected	

SRM	intensity	and	baseline	absolute	protein	copy	number	per	cell,	and	estimated	

protein	copy	number	per	cell	at	later	time	points	in	the	heavy	channel	and	light	

channel	by	𝑃"# 𝑡 = 𝑎"𝐼"# 𝑡 	and	𝑃"% 𝑡 = 𝑎"𝐼"% 𝑡 .	

	

Estimation	of	absolute	mRNA	copy	number		

We	estimated	mRNA	copy	number	per	cell	𝑀",K 𝑡 	from	mRNA-seq	data	using	a	

method	proposed	previously	(Schwanhausser	et	al.,	2011;	Wiita	et	al.,	2013).	Let	

𝛾",K 𝑡 	represent	the	number	of	sequencing	reads	mapped	to	the	transcript	of	gene	

𝑔,	isoform	𝑖,	where	𝑖 ∈ {1, … , 𝐼"}	indexes	the	𝐼"	isoforms	of	gene	𝑔.	𝑙",K 	represent	the	

transcript	length,	and	𝑇	(6.40×10UVW	𝑚𝑜𝑙/𝑐𝑒𝑙𝑙)	represent	the	total	number	of	mRNA	

nucleotides	per	cell	at	baseline.	These	quantities	can	be	related	to	the	absolute	

mRNA	copy	number,		

𝑀",K 𝑡
𝑇𝐺\ 𝑡 =

𝛾",K 𝑡
𝑙",K 𝛾"],K] 𝑡"],K]

,	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087486doi: bioRxiv preprint 

https://doi.org/10.1101/087486


	

	 43	

where	𝐺\ 𝑡 	is	the	total	mRNA	nucleotide	abundance	at	time	t,	normalized	so	that	

𝐺\ 0 = 1.	Note	that,	up	to	a	scale	factor,	the	right	hand	side	is	the	definition	of	

relative	mRNA	abundance	of	gene	𝑔,	isoform	𝑖	(in	RPKM),	denoted	by	𝑚",K 𝑡 .	

Therefore,	𝑀",K 𝑡 = 𝑐	𝑚",K 𝑡 𝐺\ 𝑡 ,	where	𝑐	is	a	constant.	In	what	follows,	we	

define	𝑚" 𝑡 ≜ 𝑚",K 𝑡
_`
KaV ,	and	𝑀" 𝑡 ≜ 𝑀",K 𝑡

_`
KaV .	

	
	
QUANTIFICATION	AND	STATISTICAL	ANALYSIS	
	
Here	we	describe	our	quantitative	model	of	protein	synthesis	dynamics	and	our	

inference	procedure	for	parameter	estimation.		

	

System	of	differential	equations	

We	propose	a	system	of	differential	equations	to	model	the	integrated	longitudinal	

data	of	ribosome	profiling,	mRNA-seq,	and	pSILAC	mass	spectrometry.		In	what	

follows,	we	use	the	index	𝑔 ∈ {1,2, … , 𝑁}	to	denote	the	gene	or	transcript	ID,	and	use	

𝑃"# 𝑡 	and	𝑃"% 𝑡 	to	denote,	respectively,	the	newly	synthesized	protein	abundance	of	

gene	𝑔		in	the	heavy	channel	and	the	degrading	protein	abundance	of	gene	𝑔	in	the	

light	channel.		The	gene-specific	degradation	rate	constant	is	denoted	by	𝑘"% ,	while	

the	translational	rate	parameter	for	gene	𝑔	is	denoted	by	𝑘"#(𝑡),	which	is	allowed	to	

vary	over	time.			Let	𝑟" 𝑡 𝐺4 𝑡 	denote	the	number	of	active	ribosomes	bound	to	

each	transcript	of	type	𝑔	at	time	𝑡,	where	𝑟" 𝑡 ≜ 𝑟",K 𝑡
_`
KaV 	denotes	the	relative	

ribosome	footprint	abundance	for	transcript	𝑔	(in	RPKM),	𝑟",K 𝑡 	denotes	the	

relative	ribosome	footprint	abundance	for	transcript	𝑔	isoform	𝑖	(in	RPKM),	𝑖 ∈
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{1, … , 𝐼"}	indexes	the	𝐼"	isoforms	of	gene	𝑔,	and		𝐺4 𝑡 	denotes	the	total	number	of	

active	ribosomes.	𝐺4 𝑡 	is	normalized	so	that		𝐺4 0 = 1.	Ingolia	et	al.	(Ingolia	et	al.,	

2009)	defined	“translational	efficiency”	as	𝑇𝐸" 𝑡 ≜ 4̀ C
\` C

,	and	we	employ	this	

definition.		

In	addition,	we	propose	a	new	definition	of	translational	efficiency	that	

incorporates	the	ribosome	footprints	mapping	to	mitochondrially-translated	genes.	

Let	𝑅",K 𝑡 ≜ [fg\hi4	Dj	4iE%#]/[klm	Fif"Cn]
[CDCEF	fg\hi4	Dj	\KCDonDf%4KE	4iE%#]

×10p	denote	the	normalized	ribosome	

footprint	abundance	of	gene	𝑔	and	isoform	𝑖,	where	𝑖 ∈ {1, … , 𝐼"}	indexes	the	

𝐼"	isoforms	of	gene	𝑔.	It	is	normalized	by	the	total	number	of	reads	that	mapped	to	

mitochondrially-translated	genes,	representing	reads	per	kilo	base	per	

mitochondria	read.	And	let	𝑅" 𝑡 ≜ 𝑅",K 𝑡
_`
KaV 	denote	the	summation	across	the	

isoforms	of	gene	𝑔.	The	new	definition	of	translational	efficiency	becomes	𝑇𝐸" ≜
q`
r`
.	

This	definition	incorporates	the	total	cellular	protein	synthesis	capacity	𝐺4 𝑡 	and	

total	mRNA	nucleotide	abundance	𝐺\ 𝑡 	into	the	calculation,	which	both	can	be	

time	varying	functions.		

The	proposed	dynamical	model	of	protein	synthesis	is	a	modification	of	the	

mass-action	models	for	translation	introduced	earlier	(Hargrove	and	Schmidt,	1989;	

Jovanovic	et	al.,	2015;	Schwanhausser	et	al.,	2011;	Wiita	et	al.,	2013):		
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𝑑𝑃"% 𝑡
𝑑𝑡 = −𝑘"%𝑃"% 𝑡 Eq. 1

𝑑𝑃"# 𝑡
𝑑𝑡 = 𝑘"# 𝑡 𝑀" 𝑡 − 𝑘"%𝑃"# 𝑡 Eq. 2

𝑘"# 𝑡 = 𝛽𝑇𝐸" 𝑡 = 𝛽
𝑅" 𝑡
𝑀" 𝑡

Eq. 3 − 1

= 𝛽𝑇𝐸" 𝑡
𝐺4 𝑡
𝑐	𝐺\ 𝑡 = 	𝛽

𝑟" 𝑡 𝐺4 𝑡
𝑀" 𝑡

Eq. 3 − 2

	

This	model	is	a	significant	extension	of	our	prior	work	(Wiita	et	al.,	2013)	in	the	

following	aspects:	i)	The	pSILAC	mass	spectrometry	technique	enables	us	to	extract	

the	degradation	rate	constant	𝑘"% 	and	thereby	disentangle	the	degradation	process	

from	the	synthesis	process.		ii)	The	relative	ribosome	profiling	footprints	measured	

in	RPKM	units	are	not	sufficient	to	quantify	how	the	absolute	amount	of	footprints	

for	each	transcript	varies	over	time.		To	address	this	problem,	we	incorporate	a	

global	function	𝐺4 𝑡 	(which	we	infer)	that	reflects	the	total	cellular	protein	

synthetic	capacity	(Eq.	3-2).	An	alternative	solution	is	to	use	the	mitochondrial	

footprints	normalized	translational	efficiency	𝑇𝐸"	(Eq.	3-1).	iii)	Our	modified	model	

treats	the	translational	rate	parameter	𝑘"# 𝑡 	as	a	time	varying	function	that	depends	

on	the	density	of	ribosomes	on	the	transcript.	The	major	difference	between	the	

above	model	and	that	of	Jovanovic	et	al.	(Jovanovic	et	al.,	2015)	is	that	whereas	their	

model	utilizes	only	pulsed	SILAC	mass	spectrometry	data,	we	also	incorporate	the	

ribosome	profiling	footprint	information	into	our	model	via	Eq.	3-1	or	Eq.	3-2.				

	

Dilution	effect	resulted	from	cell	growth	

The	number	of	cells	in	the	low-dose	bortezomib-treated	MM1S	data	remains	

constant	over	time.	Hence,	𝑃"# 𝑡 	and	𝑃"% 𝑡 	represent	respectively	the	heavy	
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channel	and	light	channel	protein	copies	per	cell.		However,	the	untreated	EBV-

immortalized	B-cells	are	growing,	and	the	amount	of	light	channel	proteins	per	cell	

will	be	diluted	due	to	cell	division.	We	therefore	scale	the	SRM	intensities	𝐼"# 𝑡 	and	

𝐼"% 𝑡 	by	the	growth	function	𝑔 𝑡 ,	and	obtain	the	heavy	channel	and	light	channel	

protein	abundance	as	𝑃"# 𝑡 = 𝑎"𝑔 𝑡 𝐼"# 𝑡 	and	𝑃"% 𝑡 = 𝑎"𝑔 𝑡 𝐼"% 𝑡 	respectively.	

This	allows	us	to	model	the	light	channel	protein	abundance	as	an	exponential	

function,	discussed	in	the	next	section.		

	

Exponential	and	orthogonal	natural	cubic	spline	fitting	

The	solution	to	Eq.	1	is	given	by	𝑃"% 𝑡 = 𝑃"% 0 𝑒Uv`
w	C ,	so	fitting	the	observed	

degrading	protein	abundance	with	an	exponential	function	yields	an	estimate	of	the	

degradation	rate	constant	𝑘"% .		We	employ	the	framework	of	functional	data	analysis	

in	our	study.		In	particular,	measurements	of	𝑃"# 𝑡 ,	𝑀" 𝑡 ,	𝑅" 𝑡 	sampled	at	discrete	

time	points	are	fitted	with	orthogonal	natural	cubic	splines.	Further	details	are	

provided	below.	

Spline	is	one	of	the	widely	used	bases	when	approximating	non-periodic	

functions	(Ramsay	and	Silverman,	2005).		We	apply	matrix	factorization	to	the	B-

spline	basis	{𝐵x 𝑡 }xaV
y 	with	degree	3	and	three	knots	to	construct	an	orthonormal	

basis	{𝐵x 𝑡 }xaV
y ,	where	𝑡 ∈ [𝑇V, 𝑇z].		Let	Σ	be	the	Gram	matrix	of	{𝐵x 𝑡 }xaV

y 	with	the	

(𝑖, 𝑗)-entry	ΣK,x = 𝐵K 𝑡 𝐵x 𝑡 𝑑𝑡
}~
}�

.		By	matrix	factorization,	one	can	find	an	

invertible	transformation	Λ	such	that	Λ}Λ = ΣUV	and		𝐵 𝑡 = 	Λ𝐵 𝑡 	forms	an	

orthonormal	basis	(Redd,	2012).		Let	{𝑥K, 𝑡K}KaVf 	be	a	set	of	longitudinal	data,	where	
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𝑥K 	is	the	measurement,	𝑡K 	is	the	time	when	the	measurement	is	observed,	and	𝑛	is	

the	number	of	measurements.	The	data	are	approximated	by	a	linear	combination	of	

the	orthonormal	basis	functions	𝑓 𝑡; 𝜶 = 𝛼x𝐵x(𝑡)
y
xaV ,	where	𝜶 = (𝛼V, … , α�).			We	

adopt	the	penalized	least-squares	estimator	to	fit	the	function	𝑓 𝑡; 𝛼 	and	utilize	

generalized	cross-validation	to	decide	the	penalty	parameter	(Ruppert,	2002).		Since	

the	behavior	of	polynomials	fit	beyond	the	boundaries	can	vary	erratically,	we	

impose	additional	constraints	such	that		𝑓 𝑡; 𝛼 	is	linear	at	𝑇V	and	𝑇z,	as	in	natural	

cubic	spline	(Hastie	et	al.,	2009).			The	problem	can	be	formulated	as	

min
�

{𝑥K − 𝑓(𝑡K; 𝜶)}z + 𝜆 𝛼xz
x

f

Ka�

(Eq. 4)

subject	to	𝑓�� 𝑡; 𝜶 = 0	and	𝑓��� 𝑡; 𝜶 = 0		at	𝑡 = 𝑇V	or	𝑇z,

	

	

where	𝜆	is	the	penalty	parameter,	and	𝑓��	and	𝑓′′′	denote	the	second	and	the	third	

derivatives	of	𝑓,	respectively.		This	constrained	optimization	problem	can	be	solved	

by	the	method	of	Lagrange	multipliers.	The	Lagrangian	of	Eq.	4	can	be	written	as		

𝐿 𝜶, 𝜆V, 𝜆z, 𝜆p, 𝜆� = 𝑥K − 𝑓 𝑡K; 𝜶 z + 𝜆 𝛼xz
x

f

Ka�

+ 𝜆V𝑓�� 𝑇V, 𝜶 + 𝜆z𝑓�� 𝑇z, 𝜶

+𝜆p𝑓′′′ 𝑇V, 𝜶 + 𝜆�𝑓′′′ 𝑇z, 𝜶 ,

	

where	𝜆V, 𝜆z, 𝜆p, 𝜆�	are	the	Lagrange	multipliers.	The	solution	should	satisfy	

∇�,��,�~,� ,�¡𝐿 𝜶, 𝜆V, 𝜆z, 𝜆p, 𝜆� = 0.		For	convenience,	define	𝑋 ≜ 𝑥V 𝑥z … 𝑥f } ,	

𝑊V ≜ 𝐵V��(𝑇V) 𝐵z��(𝑇V) … 𝐵y��(𝑇V) } ,	𝑊z ≜ 𝐵V��(𝑇z) 𝐵z��(𝑇z) … 𝐵y��(𝑇z) } ,	

𝑊p ≜ 𝐵V���(𝑇V) 𝐵z���(𝑇V) … 𝐵y���(𝑇V) } ,	𝑊� ≜ 𝐵V���(𝑇z) 𝐵z���(𝑇z) … 𝐵y���(𝑇z) } ,	

and	
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𝑍 ≜

𝐵V(𝑡V) 𝐵z(𝑡V) … 𝐵y(𝑡V)
𝐵V(𝑡z) 𝐵z(𝑡z) … 𝐵y(𝑡z)
⋮

𝐵V(𝑡f)
⋮

𝐵z(𝑡f)
⋱
…

⋮
𝐵y(𝑡f)

.	

This	then	leads	to	a	system	of	linear	equations	

2𝑍}𝑍 + 2𝜆𝐼 𝑊V 𝑊z 𝑊p 𝑊�
𝑊V

} 0 0 0 0
𝑊z

} 0 0 0 0
𝑊p

} 0 0 0 0
𝑊�

} 0 0 0 0

𝜶
𝜆V
𝜆z
𝜆p
𝜆�

=

2𝑍}𝑋
0
0
0
0

,	

	

which	can	be	solved	by	blockwise	matrix	inversion.	Examples	of	the	fitted	functional	

form	of	𝑃"# 𝑡 	and	𝑃"% 𝑡 	can	be	found	in	Figure	3B.		Since	the	replicates	of	SRM	

measurements	had	high	reproducibility,	we	use	the	average	of	them	in	the	following	

analysis.		

	

Solving	for	parameters	in	the	system	of	differential	equations	

We	estimated	the	derivative	of	𝑃"# 𝑡 	using	its	functional	representation	

obtained	from	the	mass	spectrometry	data,	and	fit	%§̀
¨(C)
%C

+ 𝑘"%𝑃"# 𝑡 	using	degree-3	

orthogonal	natural	cubic	splines	with	4	knots.	Let	𝐹 𝑡 = 𝑎x𝐵x(𝑡)
y
xaV 	denote	the	

resulting	fit.	Then,	using	Eq.	2	and	Eq.	3-1,	we	solved	for	𝛽	that	minimizes	the	

objective	function		

𝐹(𝑡) − 𝛽𝑅" 𝑡
z
𝑑𝑡}~

}�" .	

Fit	𝑅" 𝑡 	using	degree-3	orthogonal	natural	cubic	splines	with	4	knots.	Let		

𝑏",x𝐵x(𝑡)
y
xaV 	denote	the	fit.	Then	the	objective	function	becomes	
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𝑎x − 𝛽𝑏",x
z 𝐵xz(𝑡)𝑑𝑡

}~
}�

y
xaV + 2 𝑎K − 𝛽𝑏",K 𝑎x − 𝛽𝑏",x 𝐵K(𝑡)𝐵x(𝑡)𝑑𝑡

}~
}�K«x" .	

Since	the	basis	is	orthonormal,	the	objective	function	is	simplified	as	a	least-squares	

regression	problem:		min
¬

𝑎x − 𝛽𝑏",x
zy

xaV" .	

Similarly,	using	Eq.	2	and	Eq.	3-2,	we	solved	for	𝛽	and	the	total	cellular	

protein	synthetic	capacity	𝐺4 𝑡 	that	minimizes	the	objective	function		

𝐹(𝑡) − 𝛽𝑟" 𝑡 𝐺4 𝑡
z
𝑑𝑡}~

}�" .	

We	achieved	this	by	the	following	two	steps:	

1. Initialize	𝛽 = 1.	

2. Optimize	with	respect	to	𝐺4 𝑡 :		

𝐺4 𝑡 ←

𝑑𝑃"#(𝑡)
𝑑𝑡 + 𝑘"%𝑃"#(𝑡) 𝛽𝑟" 𝑡"

𝛽z𝑟"z(𝑡)"
	

𝛽 ← 𝐺4 0 	

𝐺4 𝑡 ← 𝐺4 𝑡 /𝐺4 0 	

	

	

Prediction	of	translational	rate	parameters	and	protein	synthesis	rates	using	

ribosome	profiling	and	RNA-seq	measurements	

To	test	whether	𝛽	is	a	universal	factor	that	applies	both	in	the	absence	of	and	

during	exposure	to	bortezomib,	we	carried	out	leave-one-out	prediction	tests	as	

follows.	In	testing	gene	𝑔,	we	estimated	𝐺4 𝑡 	using	the	remaining	𝑁 − 1	genes	and	

estimated	𝛽	using	the	protein	measurement	for	𝑔	at	time	0	(i.e.,	prior	to	the	

application	of	bortezomib).		These	parameters	were	then	used	together	with	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087486doi: bioRxiv preprint 

https://doi.org/10.1101/087486


	

	 50	

ribosome	profiling	and	RNA-seq	measurements	to	predict	the	translational	rate	

parameter	𝑘"# 𝑡 = 𝛽𝑇𝐸" 𝑡
®¯ C
o	®° C

.		Then,	the	protein	synthesis	rate	%§̀
¨ C
%C

+ 𝑘"%𝑃"# 𝑡 	

was	predicted	as	𝑘"# 𝑡 𝑀" 𝑡 .			We	assessed	the	performance	of	our	predictions	

using	the	data	for	6-48	hours,	i.e.,	during	exposure	to	bortezomib.		The	average	

performance	in	terms	of	the	Pearson	correlation	coefficient	and	the	relative	mean	

absolute	error	are	reported	in	Table	S2,	which	illustrates	that	the	error	of	our	

estimation	and	prediction	procedures	is	comparable	to	the	variation	observed	in	

experimental	replicates.	

Of	note,	Jovanovic	et	al.	(Jovanovic	et	al.,	2015)	introduced	the	concept	of	the	

“recycling	rate”	in	SILAC	mass	spectrometry	experiments.		This	rate	describes	the	

incorporation	of	unlabeled	amino	acids	into	newly	synthesized	proteins	after	SILAC	

pulse.		However,	in	our	targeted	SRM	measurements,	we	can	only	measure	fully	

“light”	and	fully	“heavy”	peptides.		We	cannot	readily	measure	the	infrequent	mixed	

peptides,	with	both	light	and	heavy	residues	in	the	same	peptide,	necessary	for	

measuring	the	recycling	constant	γ.		Therefore,	we	made	a	“shotgun”	measurement	

at	the	12h	time	point	sample	with	an	LTQ	Orbitrap	mass	spectrometer	using	

previous	instrument	and	LC	parameters	(Wiita	et	al.,	2013).		We	analyzed	the	

results	with	Protein	Prospector	(prospector.ucsf.edu)	using	13C6-15N4	arginine	and	

13C6-15N2	lysine	as	variable	modifications.		Of	372	peptides	with	at	least	one	missed	

tryptic	site	(i.e.	multiple	lysines	and/or	arginines),	and	at	least	one	labeled	residue,	

only	8	showed	evidence	of	mixed	labeling.		This	result	leads	to	a	γ(12h)	of	0.012,	

which	has	a	negligible	impact	on	measurement	of	protein	synthesis	using	the	model	

of	Jovanovic	et	al.	(Jovanovic	et	al.,	2015).		This	result	is	also	in	line	with	their	
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results,	finding	the	recycling	constant	to	have	minimal	effects	after	12h	of	SILAC	

pulse	(Jovanovic	et	al.,	2015).		Therefore,	our	measurements	of	protein	synthesis,	

going	up	to	48h,	are	likely	unaffected	by	not	explicitly	including	the	recycling	

constant	in	our	model.	

	

Simulation	of	the	biochemical	experiment	with	puromycin	incorporation	

The	biochemical	experiment	(Figure	S2G)	was	conducted	with	1	hour	pulse	

of	puromycin	added	at	each	time	point	prior	to	cell	harvest.		To	test	the	accuracy	of	

our	proposed	dynamical	model,	we	performed	a	protein	synthesis	simulation	using	

the	parameters		𝑘"# 𝑡 ,	𝑚" 𝑡 ,	𝐺\ 𝑡 ,	𝑘"% 	estimated	from	RNA-seq	and	mass	

spectrometry	experiments.	The	initial	condition	was	set	such	that	𝑃"# 𝜏 = 0,	and	the	

simulation	was	conducted	to	acquire	the	abundance	after	1	hour,	𝑃"# 𝜏 + 1 ,	where	

𝜏 ∈ 0, 6, 12, 24, 36, 48 .	The	simulation	results	qualitatively	showed	a	similar	

pattern	as	the	biochemical	experiment	(Figure	S2H).		

	

Simulations	of	under-	or	over-estimation	in	iBAQ	

We	examined	how	much	variation	in	𝑃"#	(Figure	3A	and	Figure	4A)	can	be	

explained	by	noise	in	iBAQ	by	performing	simulations	to	model	under-	or	over-

estimation	in	iBAQ	values.	Assume	that	the	newly	synthesized	protein	copies	

correlated	perfectly	with	ribosome	density,	i.e.	the	red	lines	in	Figure	3A	and	Figure	

4A.	We	randomly	generated	scaling	factors	𝑠"	according	to	the	fitted	normal	

distribution	of	the	differences	between	the	log-transformed	iBAQ	replicates	(Figure	

S4A).	Multiplying	the	ideal	newly	synthesized	protein	copies	by	these	independent	
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scaling	factors,	and	repeating	the	process	for	500	trials,	we	built	a	confidence	

interval	for	the	abundance	of	newly	synthesized	protein	copies	(Figure	S4B	and	

Figure	S4C).	Then,	we	compared	the	average	vertical	offsets	from	the	red	line	

(Figure	S4B	and	Figure	S4C)	in	terms	of	MSE	to	the	measured	vertical	offsets	(Figure	

3A	and	Figure	4A).	Results	showed	that	the	iBAQ	noise	explained	36%	and	23%	of	

the	deviation	from	the	linear	regression	fits	for	MM1.S	and	B-cells	respectively.			

We	further	examined	how	the	presence	of	transcript	isoforms	affected	our	

estimation	of	these	iBAQ	noise	statistics.	We	partitioned	all	272	protein-transcript	

pairs	monitored	in	MM1.S	cells	into	two	groups	(Figure	S4D),	using	the	criterion:		

one	dominant	transcript	isoform	(>80%	of	RNA-seq	read	density	on	a	single	

isoform,	per	paired-end	RNA-seq	analysis	at	www.keatslab.org/data-repository:	

HMCL66_Transcript_Expression_FPKM).		The	group	that	has	one	dominant	

transcript	isoform	has	almost	half	(47%)	of	the	deviation	from	the	linear	regression	

fits	explained	by	iBAQ	noise,	whereas	the	other	group	has	35%	of	the	deviation	

explained	by	iBAQ	noise.	This	suggests	that	some	other	sources	of	error	may	exist,	

e.g.,	the	difficulty	of	footprint	alignment	in	the	presence	of	transcript	isoforms,	

which	remains	an	open	question.	

	
	
	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087486doi: bioRxiv preprint 

https://doi.org/10.1101/087486

