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ABSTRACT 

Treatment of AIDS still faces multiple challenges such as drug resistance and HIV 

eradication. Development of new, effective and affordable drugs against HIV is 

urgently needed. In this study, we developed a world's first web server called 

Anti-HIV-Predictor (http://bsb.kiz.ac.cn:70/hivpre) for predicting anti-HIV activity of 

given compounds. The web server is rapid and accurate (accuracy >93% and AUC > 

0.958), which enables us to screen tens of millions of compounds and discover new 

anti-HIV agents. We firstly applied the server to screen 1835 approved drugs for 

anti-HIV therapy. Then the predicted new anti-HIV compounds were experimentally 

evaluated. Finally, we repurposed 7 approved drugs (cetrorelix, dalbavancin, 

daunorubicin, doxorubicin, epirubicin, idarubicin and valrubicin) as new anti-HIV 

agents. Anti-HIV-Predictor and the 7 repurposed anti-HIV agents provided here 

demonstrate the efficacy of this strategy for discovery of new anti-HIV agents. This 

strategy and the server should significantly advance current anti-HIV research. 
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INTRODUCTION 

Even 30 years after its discovery, human immunodeficiency virus (HIV) remains a 

great threat to humans1,2. Acquired immune deficiency syndrome(AIDS), the disease 

elicited by HIV infection, is considered to be pandemic and represents the greatest 

global public health crisis3. There are an estimated 39 million deaths caused by AIDS 

since its first recognition4. According to the report of the World Health 

Organization(WHO), there were approximately 37 million people living with HIV at 

the end of 2014 with 2 million people becoming newly infected with HIV in 2014 

globally (http://www.who.int/mediacentre/factsheets/fs360/en/). And 1.2 million 

people died from HIV-related causes globally in 2014. 

Many scientists around the world are committed to finding scientifically proven 

strategies for HIV prevention and treatment. Recent decades, significant progress has 

been achieved in the development of vaccines and drugs against HIV infection. 

Several clinical trials of anti-HIV vaccines, including RV144, are ongoing5,6. The 

RV144 trial demonstrated 31% vaccine efficacy at preventing human 

immunodeficiency virus (HIV)-1 (referred to as HIV for the rest of this study) 

infection7. The most notable achievement is the transformation of HIV/AIDS from an 

inevitable death sentence to a chronic illness by the introduction of combination 

antiretroviral therapy8,9. More than thirty anti-HIV drugs have been approved by the 

US Food and Drug Administration (FDA)10. These drugs act mainly on reverse 

transcriptase, protease, integrase, CCR5 and so on11. Behind the progress, many 

studies were carried out to discover anti-HIV drug candidates by screening a large 

number of natural or synthetic compounds. A representative study was the AIDS 

anti-viral screen program of the National Cancer Institute (NCI), which screened more 

than 30,000 compounds (https://dtp.cancer.gov/)12,13. After this program, many 

anti-HIV compounds were reported and deposited in ChEMBL database 

(ChEMBLdb)14. These data are helpful for data mining and developing new tool 

toward HIV treatment. 

Despite considerable progress, treatment of AIDS still faces multiple 

challenges15,16. To date, no truly effective drug able to eliminate HIV has been 
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developed17. Furthermore, HIV is highly variable and can quickly acquire resistance 

against any drug with which it is confronted11,18. Therefore, there is a constant 

demand to develop new, effective and affordable anti-HIV drugs. In the past decades, 

tens of millions of chemical compounds have been deposited in public databases19. 

Screening these huge databases for new anti-HIV drugs through experimental 

methods is a tedious, expensive and time-consuming process. The time and 

money-saving way is that all compounds in the database are firstly filtered by the 

computational analysis of the anti-HIV potential, then evaluated by experiment. 

Therefore, a rapid and accurate computational method is urgently required for 

predicting anti-HIV activity of chemical compounds. 

In this study, we aim to establish a web server to predict anti-HIV activity of 

given compound and apply the web server to discover new anti-HIV agents through 

drug repositioning of FDA approved drugs (Fig. 1). Drug repositioning is the process 

of finding new uses outside the scope of the original medical indication for existing 

drugs20,21. An advantage of drug repositioning lies in the fact that the safety, dosage, 

and toxicity of existing drugs have already been vetted22. Therefore, repurposed 

candidate drugs can often enter clinical trials much more rapidly than newly 

developed drugs23. Recently, many anti-infectious agents have been discovered to 

combat pathogens using drug repositioning24-28. 

Therefore, in this study, we firstly developed three rapid and accurate 

computational methods to predict anti-HIV activity of a given compound. Then a web 

server called Anti-HIV-Predictor (http://bsb.kiz.ac.cn:70/hivpre) is established by 

integrating the three methods. This web server is free and open to all users. All FDA 

approved drugs were screened using the web server. Finally, the predicted new 

anti-HIV compounds were selected for in vitro testing of anti-HIV activity. Using this 

strategy, we identified cetrorelix, dalbavancin and five anthracycline drugs as new 

potent anti-HIV agents. 

RESULITS 

Development of Anti-HIV-Predictor 
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Workflow for establishing Anti-HIV-Predictor is outlined in Figure 1. 

Anti-HIV-Predictor firstly integrated all the data of anti-HIV activity from ChEMBL 

and NCI database to construct benchmark dataset. Then, using the benchmark dataset, 

three prediction models were generated by training, parameter selection and 

validation. The first model is relative frequency-weighted fingerprint (RFW_FP) 

based model. RFW_FP is a novel molecular description method which considers the 

frequency of bit in active and inactive datasets and integrates it to each compound 

fingerprint. RFW_FP was first used in our previous study and powerful to distinguish 

the active and inactive compounds for anti-cancer29,30. The other two models are 

Support Vector Machine (SVM) and Random Forest (RF) models. Last, three models 

(RFW_FP model, SVM model and RF model) were incorporated to predict anti-HIV 

activity of chemical compounds. The details for development of Anti-HIV-Predictor 

are given in the Materials and methods section 

Performance of Anti-HIV-Predictor 

The overall performance of the RFW_FP, SVM and RF models was quantified by 

receiver operating characteristic curve (ROC). For each model, the ROC was plotted 

and the area under the curve (AUC) was calculated (Fig. 2a). The ROC curve shows 

the relation between true positive rate and false positive rate for each threshold of the 

real-value outputs. The AUC value of the RFW_FP, SVM and RF models are 0.958, 

0.974 and 0.977, respectively. All three models achieve AUC value greater than 0.958, 

which reveals the excellent effectiveness of the models. From the three curves, we can 

also observe that the three models can effectively identify active anti-HIV compounds 

with high true-positive rates against low false positive rates. 

The classification performance of the models was also assessed in terms of 

accuracy, precision, recall and F1 score (Fig. 2b). As 10 runs of 5-fold 

cross-validation (CV) method were used, these scores were averaged. Over the ten 

runs, their standard deviations were also reported. As shown in Figure 2b, the 

RFW_FP model obtains the statistical average of 93.3%, 86.9%, 90.1%, and 88.5% 

for accuracy, precision, recall, and F1 score, respectively. The accuracy, precision, 
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recall, and F1 score of SVM model are 96%, 95%, 90.8%, and 92.9%, respectively. 

RF model performs best with the accuracy of 96% and precision of 99.4%. 

Input and output of Anti-HIV-Predictor 

Anti-HIV-Predictor is user-friendly and free and open to all users. The only 

requirement of Anti-HIV-Predictor is the SMILES of the query compound. One or 

multiple query compounds can be submitted in one request (Fig. 2c). The total 

number of input compounds is limited to 100 for each submission. 

Anti-HIV-Predictor needs about 60 seconds to load the background data and trained 

models required for prediction. Therefore, 1-10 compounds requires about 90 seconds, 

but 100 compounds only requires about 150 seconds. A query with 1–10 compounds 

requires about 90 seconds, whereas a query with 100 compounds only requires about 

150 seconds. After calculated, the output of Anti-HIV-Predictor was shown in Figure 

2d. Firstly, the output gives the most similar compound of the query compound. The 

structures, database links and anti-HIV activities (logEC50) of the matched similar 

compound were also displayed. Secondly, the output contains some important 

predicting information, for example, Tanimoto Coefficient score (TC), the Relative 

Frequency-Weighted Tanimoto Coefficient (RFW_TC), P-value of RFW_TC model, 

probability estimation by SVM model and RF model. Finally, the output shows the 

predicting conclusion whether the query compound has anti-HIV activity. One tick 

represents the query compound is predicted as anti-HIV compound by one of the three 

models. One cross means that all the three models show no anti-HIV activity for the 

query compound. 

Rapid and accurate computational screen of FDA approved drugs using 

Anti-HIV-Predictor 

To discover new anti-HIV agents through drug repositioning of FDA approved drugs, 

1835 approved drugs with SMILES string were downloaded from DrugBank 

(http://www.drugbank.ca). Using Anti-HIV-Predictor, all the drugs were screened 

rapidly by the three models. The results of computational screen are shown in Figure 
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3. Most drugs have no anti-HIV activity based on the prediction. These drugs were 

shown as blue dots with RFW_TC P-value ≧0.05, SVM probability and RF 

probability ≦0.5 (Fig. 3a). The green dots represent the drugs with anti-HIV activity 

supported by one or two models (RFW_TC P-value ＜0.05 or SVM probability ＞

0.5 or RF probability ＞0.5). The red dots represent the drugs with anti-HIV activity 

supported by all three models (RFW_TC P-value ＜0.05 and SVM probability ＞0.5 

and RF probability ＞0.5). As shown in Figure 3b, totally 67 drugs were predicted to 

have anti-HIV activity by all three models. The RFW_FP, SVM and RF models 

predicted 240, 178, 110 drugs with anti-HIV activity, respectively. Therefore, the 67 

drugs represent the intersection of the results of the three different models (Fig. 3b). 

Among the 67 drugs, there are 25 approved anti-HIV drugs and 7 drugs with anti-HIV 

activity. For other 35 drugs, there is no experimental test for anti-HIV activity 

(Supplementary Table S1). 

Experimental confirmation of 15 approved drugs with anti-HIV activity 

As the 35 drugs have not been experimental test for anti-HIV activity, it is interesting 

and worth evaluating their anti-HIV activity by experiment. 28 of these drugs were 

purchased from CASMART (http://www.casmart.com.cn). Other 7 drugs are not 

purchased and tested because they are not available or very expensive. Therefore, a 

total of 28 drugs were evaluated for their anti-HIV activity in vitro with 

azidothymidine (AZT) as a positive control. The cytotoxicity of these compounds on 

T cell line C8166 was assessed by MTT colorimetric assay, and 50% cytotoxicity 

concentration (CC50) was calculated. The inhibitory effect of compounds on HIV 

replication was measured by the syncytia formation assay and 50% effective 

concentration (EC50) was calculated as described previously. The assay results of the 

28 compounds are presented in Table 1. For comparison, AZT, the first anti-HIV drug 

approved by FDA, was utilized as the reference compound. As shown in Table 1, 15 

compounds show anti-HIV activity with the EC50 values ranging from 0.004 to 93.794 

μM. More than half of the tested compounds (15/28) exhibit activity against HIV. It 

indicates that Anti-HIV-Predictor is a powerful tool for discovering anti-HIV 
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compounds. 

Identification of 7 approved drugs as new anti-HIV agents 

Among the 15 compounds above, some compounds show serious cytotoxicity and 

then result in a very low therapeutic index (TI). The drugs with TI value more than 10 

were further evaluated their anti-HIV activity by quantification of HIV p24 expression 

using ELISA method31. The best 7 drugs based on the results of cytotoxicity, syncytia 

formation and p24 quantification assays were displayed in Table 2 and Figure 4. 

Among the best 7 drugs, cetrorelix and dalbavancin are polypeptides, while other five 

drugs daunorubicin, doxorubicin, epirubicin, idarubicin and valrubicin belong to the 

class of anthracyclines. Cetrorelix, a synthetic decapeptide, is used for the inhibition 

of premature luteinizing hormone (LH) surges in women undergoing controlled 

ovarian stimulation32. Dalbavancin, a second-generation lipoglycopeptide antibiotic, 

is approved for the treatment of acute bacterial skin and skin structure infections 

caused by the gram-positive pathogens33. Cetrorelix and dalbavancin exhibit anti-HIV 

activity with EC50 of 1.788±0.115 and 1.296 ± 0.186 μM, respectively. No 

cytotoxicity was detected for cetrorelix and dalbavancin. The cytotoxicity CC50 of 

cetrorelix and dalbavancin are both more than 200 μM. The percent viability at the 

concentration EC50 is almost 100% for cetrorelix and dalbavancin (Fig. 4). Therefore, 

cetrorelix and dalbavancin show a very high therapeutic index (TI>105 and TI >135, 

respectively). The five anthracycline drugs are approved for the treatment of acute 

myeloid leukemia, bladder and breast cancer and so on 34. These anthracycline drugs 

show strong anti-HIV activity with EC50 varying from 0.003~0.076 μM. The anti-HIV 

activity of Idarubicin is close to or better than that of AZT (0.003 μM for Idarubicin 

vs 0.005 μM for AZT). However, these anthracycline drugs exhibit a certain degree of 

cytotoxicity (Fig. 4). The percent viability at the concentration EC50 is ranging from 

80% to 95% for the five drugs. It indicates that, the anti-HIV activity mainly results 

from the selective inhibition of HIV replication and less due to toxicity. Their 

therapeutic index is ranging from 5.9 to 64.8 and far below that of AZT. 
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DISCUSSION 

The failure of 30 years of HIV vaccine development 5,35, as well as the prevalence of 

drug-resistant HIV36-38 , emphasizes the need for new, effective and affordable 

anti-HIV drugs. To decrease the cost and time required for the development of new 

drugs to treat HIV infection, a world's first web server Anti-HIV-Predictor was 

developed for predicting anti-HIV activity of compounds. The accuracy of the web 

server is more than 93% and AUC is greater than 0.958, which indicates that 

Anti-HIV-Predictor is powerful enough to discover new anti-HIV agents. Using 

Anti-HIV-Predictor, 1835 approved drugs were computational screened rapidly. A 

total of 67 drugs were predicted as anti-HIV compounds. Almost half of the 67 drugs 

are approved for anti-HIV therapy or with anti-HIV activity. Among the 67 drugs, the 

drugs with no experimental data for anti-HIV activity were experimentally evaluated 

in this study. Based on the results of cytotoxicity, syncytia formation and p24 

quantification assays, 7 approved drugs (cetrorelix, dalbavancin, daunorubicin, 

doxorubicin, epirubicin, idarubicin and valrubicin) were identified as new potential 

anti-HIV agents. 

Screening 1835 approved drugs for new anti-HIV drugs through experimental 

methods is a tedious, expensive and time-consuming process. In this study, the 7 new 

compounds were rapidly repurposed for anti-HIV therapy from the huge approved 

drugs library. This process of drug repositioning, which is time and money saved, has 

benefited from the web server Anti-HIV-Predictor. In silico screen of the approved 

drugs library using Anti-HIV-Predictor only needs less than one hour. After screening, 

the predicted anti-HIV compounds can be experimentally evaluated immediately. The 

rapidity and accuracy of Anti-HIV-Predictor make it powerful for discovery of new 

anti-HIV agents. In future, we will use Anti-HIV-Predictor to screen other compound 

database such as TCM Database@Taiwan39 and Human Metabolome Database40,41 for 

discovery of new natural product against HIV. 

Cetrorelix, a synthetic decapeptide, is used in assisted reproduction to inhibit 

premature LH surges. The drug works by blocking the action of 

gonadotropin-releasing hormone (GnRH) upon the pituitary, thus rapidly suppressing 
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the production and action of LH and follicle-stimulating hormone (FSH)32. It is 

administered as 0.25 mg or 3 mg for one subcutaneous injection. The administered 

dosage is equal to 0.034 - 0.402 μM (0.25 - 3 mg/5L blood) in human blood which is 

close to the concentration EC50 (1.788 μM) for anti-HIV activity. Therefore, 

administration of cetrorelix as the same for original indication of assisted 

reproduction may have clinical benefit to HIV-infected patients. Dalbavancin is a 

novel second-generation lipoglycopeptide antibiotic. It possesses in vitro activity 

against a variety of gram-positive pathogens. Dalbavancin exerts its bactericidal effect 

by disrupting cell wall biosynthesis33. It is administered as 500 mg for one 

subcutaneous injection. The administered dosage is equal to 55.03 μM (500 mg/5L 

blood) in human blood which is far higher than the concentration EC50 (1.296 μM) for 

anti-HIV activity. Therefore, administration of dalbavancin as the same for treatment 

of bacterial infection is very promising to have clinical benefit to HIV-infected 

patients. 

The five anthracycline drugs daunorubicin, doxorubicin, epirubicin, idarubicin 

and valrubicin identified in this study have potent anti-HIV activity at the nanomolar 

level. Although they are more toxic than cetrorelix and dalbavancin, their therapeutic 

index is all more than 10. The therapeutic index of valrubicin is 18.3-64.8, which is 

the highest among the five drugs. The EC50 of idarubicin is 0.003 μM (TI=18.3-40.0), 

which is best among the five drugs. Idarubicin inhibits HIV-1 replication at the lowest 

concentration among the five drugs and close to or better than the positive control 

drug AZT. The five anthracycline drugs are approved for the treatment of lymphomas, 

leukemias, Hodgkin’s disease, bladder cancer and so on34. The HIV-infected patients 

were more likely to suffer from anal cancer and Hodgkin's lymphoma42,43. 

HIV-infected patients with cancer are less likely to receive treatment for some cancers 

than uninfected people, which may affect survival rate 43,44. HIV-infected cancer 

patients are more likely to die from cancer than uninfected cancer patients. Therefore, 

the five drugs may be applied to treatment of the HIV-infected patients with cancer. 

These patients may benefit from the five drugs 

Anti-HIV-Predictor predicts anti-HIV activity of compounds based on the 
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benchmark dataset containing active and inactive compounds. The compound with 

potent anti-HIV activity but less cytotoxicity is expected in the development of 

anti-HIV drug. Since the cytotoxicity is not taken into account in the current study, 

some of predicted compounds exhibit high cytotoxicity as shown in Table 1. 

Therefore, Anti-HIV-Predictor is open to improvement. In future, we will consider the 

cytotoxicity as important factor in the prediction of anti-HIV activity by integrating 

the NCI-60 growth inhibition data from NCI Development Therapeutics Program 

(DTP) (https://dtp.cancer.gov/)45. The predicted anti-HIV compounds in the first step 

will be filtered by cytotoxicity feature. Anti-HIV-Predictor with cytotoxicity filter 

may results in a compound with high anti-HIV activity but less cytotoxicity. 

Treatment of AIDS still faces multiple challenges such as drug resistance and 

HIV eradication. Development of new, effective and affordable drugs against HIV is 

urgently needed. Here we firstly developed a world's first web server 

Anti-HIV-Predictor for predicting anti-HIV activity of compounds and then applied 

the server to drug repositioning for anti-HIV therapy. Finally, we repurposed 7 

compounds as new anti-HIV agents. The web server and the 7 repurposed anti-HIV 

agents provided here have an immediate effect on the development of new anti-HIV 

therapeutics, and should significantly advance current anti-HIV research. 

METHODS 

Construction of benchmark dataset 

Anti-HIV activity data were downloaded from ChEMBLdb and NCI. In ChEMBLdb, 

the compound whose target is "human immunodeficiency virus type 1" and with the 

activity better than 10 μmol/L was considered as active compounds. In NCI, the 

compound with more than 2 replication experiments and with EC50 less than 10 μ

mol/L was considered as active compounds. And the other compounds with EC50 

more than 100μmol/L were consider as inactive compounds. Finally, all compounds 

in the two databases were integrated by removed the conflict and replicated 

compounds. This procedure yielded 9584 active and 23998 inactive compounds, 

respectively. The active and inactive datasets were used as benchmark datasets to 
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generate models to predict anti-HIV activity of chemical compounds. The detailed 

method of constructing benchmark dataset can be found in Part 1 of Supplementary 

Material. 

RFW_FP model 

Firstly, Relative Frequency-Weighted Fingerprint (RFW_FP) was used to calculate 

the compound fingerprints. RFW_FP was calculated as follows: 

      (1) 

where i represents ith Daylight fingerprint. In Daylight theory, each compound 

contains more than one and less than 1024 fingerprints. RFW_FP(i) is ith relative 

frequency-weighted fingerprint. Bit(i) is calculated by Pybel46, a python wrapper of 

Openbabel47. if the compound has ith fingerprint, Bit(i) = 1, else Bit(i) = 0. Factive(i) 

and Finactive(i) are the frequency of ith fingerprint in the active and inactive compounds, 

respectively. α is the amplifying factor. In this study,α was optimized as 0.5 

(Supplementary Fig. S2). 

Then, the Relative Frequency-Weighted Tanimoto Coefficient (RFW_TC) 

between two compounds was calculated as follows: 

      (2) 

where RFW_TC(m,n) is RFW_TC between two compounds m and n. Sm and Sn are 

the sum of RFW_FPs in compound m and n, respectively. Smn is the sum of the 

common RFW_FPs between two compounds. 

Finally, for each query chemical compounds, the maximum RFW_TC between 

the query and the active dataset (9584 compounds) was calculated. Then the P-value, 

based on the maximum RFW_TC, was calculated. As the maximum RFW_TC is less 

than 1.0 and the maximum RFW_TCs of the inactive compounds have a normal 

distribution (Supplementary Fig. S3), we can calculate the P-value as follows: 

      (3) 

where p(χ) is the P-value at the maximum RFW_TC of x; F(χ;μ,σ) is the cumulative 
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function of normal distribution. Using the maximum likelihood method ("fitdist" 

function in R "fitdistrplus" package48), we estimated the location parameter μ of 0.461, 

the scale parameter σ of 0.121. 

SVM model 

SVM is a powerful supervised learning algorithm suitable for non-linear classification 

problems49. It is based on the idea of transforming data not linearly separable in 

feature space to a higher- or infinite-dimensional space where they can be separated 

linearly by a suitable soft-margin hyperplane50. For our binary classification task, we 

firstly chosen kernel function and then perform a grid search of the penalty parameter 

C. The Scikit-learn Python wrappers for libsvm27 were used to choose kernel 

function and explore the hyper-parameter space51,52. The best-performing model was 

selected by plotting receiver operating characteristic (ROC) curve and calculating the 

area under the curve (AUC). The model with kernel function rbf and the penalty 

parameter C of 500 performed best (Supplementary Fig. S4). The detailed method 

for the selection of kernel function and the penalty parameter C can be found in Part 

5 of Supplementary Material. 

RF model 

The algorithm of random forest is based on the ensemble of a large number of 

decision trees, where each tree gives a classification and the forest chooses the final 

classification having the most votes over all the trees in the forest53. Random forest, 

implemented in Scikit-learn51, was chosen as classifier with the following settings: (1) 

Number of trees was set to 900 (n_estimators =900). This parameter was selected by 

calculating AUC (Supplementary Fig. S5). (2) The minimum number of samples to 

split an internal node was set to 2 (min_samples_split = 2, default setting). (3) The 

minimum number of samples in newly created leaves was set to 1 (min_samples_leaf 

= 1, default setting). (4) The number of features to consider when looking for the best 

split was set to the square root of the number of descriptors(max_features = auto, 

default setting). (5) The maximum depth of the tree was expanded until all leaves are 
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pure or until leaves contain less than min_samples_split samples (max_depth = none, 

default setting). (6) Bootstrap samples were used (bootstrap = true, default setting). 

For further documentation on the random forest implementation in Scikit-learn, the 

interested reader is referred to the web site (http://scikit-learn.org). 

Performance evaluation 

To test performance of Anti-HIV-Predictor, 10 runs of 5-fold cross-validation (CV) 

method (Part 2 in Supplementary Material) were used to the three models 

(RFW_FP model, SVM model and RF model). For each model, the ROC was plotted 

and the area under the curve (AUC) was calculated. The results of the CV tests were 

used to calculate the four quality indices: accuracy, precision, recall and F1 score 

which is defined as the harmonic mean of precision and recall. We used the default 

statistical definition for these quality indices: 

 

 

 

 

where true positive (TP) and true negative (TN) correspond to correctly predicted 

anti-HIV compound and non anti-HIV, respectively, false positive (FP) denote non 

anti-HIV compound predicted as anti-HIV compound, and false negative (FN) denote 

anti-HIV compound predicted as non anti-HIV compound. 

Compounds, cells and HIV-1 strain 

The 28 approved drugs were purchased from CASMART 

(http://www.casmart.com.cn). C8166 and H9 cell was kindly provided by the AIDS 

Reagent Project, the UK Medical Research Council (MRC). Cells were maintained in 
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RPMI 1640 medium (Life technology) containing 10% heat-inactivating fetal bovine 

serum (FBS, Life technology), 100units/mL penicillin (Sigma) and streptomycin 

(amresco). Laboratory adapted strain HIV-1NL4-3 was kindly donated by NIH and 

propagated in H9 cells. Virus stocks were stored in small aliquots at -70 ℃. 

Cytotoxicity assays 

The cellular toxicity of tested compounds on C8166 was assessed by MTT 

colorimetric assay54. Briefly, 4×104 per well C8166 cells were co-incubated with or 

without a series diluted test compounds. After 3 days of incubation at 37 ℃, 5% CO2, 

the cell viability was determined by using MTT. Afterward, the 50% cytotoxicity 

concentration (CC50) was calculated. AZT was used as a positive control. 

Inhibition of syncytia formation 

The inhibitory effect of samples on acuteHIV-1NL4-3 infection was measured by the 

syncytia formation assay as described previously55. In the presence or absence of 

various concentrations of compounds, 4×105/ml C8166 cells were infected with 

HIV-1NL4-3 at a multiplicity of infection (MOI) of 0.03, and cultured in 96-well plates 

at 37 ℃  in 5% CO2 for 3 days. AZT was used as a positive control. After 

post-infection for 3 days, cytopathic effect (CPE) was measured by counting the 

number of syncytia in each well of 96-well plates under an inverted microscope (10×) 

(Nicon ECLIPSE TS100). The inhibitory percentage of syncytia formation was 

calculated by the percentage of syncytia number in treated sample compared to that in 

infected control. 50% effective concentration (EC50) was calculated. Therapeutic 

index (TI) was calculated by the ratio of CC50/EC50. 

Inhibition of HIV-1 p24 antigen level in acute infection 

For the compounds with TI value greater than 10, the in vitro inhibitory effect of these 

compounds on HIV-1 replication was further evaluated by quantification of p24 

expression. Briefly, 4×105/ml C8166 cells were infected with HIV-1NL4-3 for 2 hours 

to allow for viral absorption. It was then washed three times with PBS to remove 
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unadsorbed virus. The cells were plated at 4×104 cells/well with or without various 

concentrations of compounds and incubated in a CO2 incubator at 37 ℃ with for 72 

hours. Supernatants were collected and virus was lysed with 0.5% triton X100. HIV-1 

p24 was determined with an in-house ELISA assay described previously31. The 

inhibitory percentage of p24 antigen production was calculated by the OD490/630 value 

of compound-treated culture compared to that in infected control culture and 

EC50were calculated. 

Code availability 

The Python code for predicting anti-HIV activity of given compounds is available 

from the web server Anti-HIV-Predictor (http://10.0.2.53:70/hivpre). 
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Tables 

Table 1. The cytotoxicity (CC50), anti-HIV-1 activity on HIV-1NL4-3 strain (CPE 

EC50), and therapeutic index (TI) of the tested 28 compounds 

Drug name Drug ID 
CC50 (μM) 

Mean±SD 

EC50 (μM) 

Mean±SD 
TI 

Bivalirudin DB00006 >200 >200 Inactivity 

Carbetocin DB01282 >200 >200 Inactivity 

Cetrorelix DB00050 >200 15.285±1.024 >12.3 a 

Cytarabine DB00987 101.819±14.844 54.603±14.602 2.9-1.3 

Dalbavancin DB06219 >200 8.694±0.000 >23.0 

Daunorubicin DB00694 0.279±0.085 0.029±0.010 5.0-19.2 

Desmopressin DB00035 >200 >200 Inactivity 

Doxorubicin DB00997 0.191±0.017 0.013±0.001 13.4-17.3 

Epirubicin DB00445 0.125±0.042 0.007±0.003 9.2-41.8 

Gatifloxacin DB01044 116.743±24.863 126.263±16.005 0.6-1.3 

Gonadorelin DB00644 >200 72.417±3.403 >2.6 
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Idarubicin DB01177 0.077±0.004 0.004±0.001 18.3-26.7 

Levofloxacin DB01137 >200 17.533±1.456 >10.5 

Linaclotide DB08890 >200 >200 Inactivity 

Moxifloxacin DB00218 102.902±13.248 104.286±13.324 0.8-1.3 

Nafarelin DB00666 >200 >200 Inactivity 

Ofloxacin DB01165 >200 114.097±12.820 >1.6 

Pentagastrin DB00183 >200 93.794±42.202 >1.5 

Polymyxin B Sulfate DB00781 109.157±0.879 15.007±4.186 5.6-10.2 

Sofosbuvir DB08934 >200 >200 Inactivity 

Somatostatin DB09099 >200 >200 Inactivity 

sparfloxacin DB01208 85.112±11.066 31.594±2.029 2.2-3.3 

Terlipressin DB02638 >200 >200 Inactivity 

Tolvaptan DB06212 97.532±16.441 15.816±1.101 4.8-7.7 

Triptorelin DB06825 >200 >200 Inactivity 

Valrubicin DB00385 2.405±0.446 0.082±0.002 23.3-35.6 

Vancomycin DB00512 >200 >200 Inactivity 

Verteporfin DB00460 7.502±3.177 10.235±4.213 0.3-1.8 

AZT DB00006 1031.353±286.058 0.004±0.000 >181324 

a. The drugs with TI value more than 10 were highlighted with bold fonts. 
 

Table 2. The anti-HIV-1 activity on HIV-1NL4-3 strain (P24 EC50 ), and 

therapeutic index (TI) of the 7 compounds 

Drug name Original indication EC50(μM) 
Mean±SD TI 

Cetrorelix For assisted reproduction and the inhibition of 
premature LH surges 

1.788±0.115 >105.1 

Dalbavancin For the treatment of acute bacterial infections 
caused by the Gram-positive pathogens 

1.296±0.186 >135.1 

Daunorubicin For treatment of leukemia and other neoplasms 0.016±0.002 17.6-36.4 

Doxorubicin For inhibition of disseminated neoplasma like 
acute leukemia, Hodgkin’s disease and so on 

0.012±0.001 14.5-18.8 

Epirubicin For adjuvant therapy in patients with breast 
cancer 

0.011±0.004 5.9-23.9 

Idarubicin For treatment of acute myeloid leukemia in 
adults 

0.003±0.001 18.3-40.0 

Valrubicin For treatment of cancer of the bladder 0.076±0.032 18.3-64.8 
AZT For treatment of HIV infections 0.005±0.004 >93161 
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Figure legends 

Figure 1. The flowchart of Anti-HIV-Predictor and drug repositioning. After 

construction of benchmark dataset, three models (RFW_FP model, SVM model 

and RF model) were generated to predict anti-HIV activity of chemical 

compounds by training, parameter selection and 5-fold cross validation. The web 

server Anti-HIV-Predictor was established by incorporating the three prediction 

models. The web server was used to screen all FDA approved drugs. Finally, the 

predicted new anti-HIV compounds were evaluated for anti-HIV activity in vitro. 

Figure 2. The performance, input and output of Anti-HIV-Predictor. (a) The 

ROC and AUC for the RFW_FP model (red), SVM model (green) and RF model 

(blue), respectively. (b) The statistical average results for 10 runs of 5-fold cross 

validation. The panel indicate the mean and standard deviation values of accuracy, 

precision, recall and F1 score derived from the RFW_FP model (red), SVM model 

(green) and RF model (blue), respectively. Vertical lines indicate the standard 

deviations (SDs). (c) Input interface of Anti-HIV-Predictor. The web server only needs 

the SMILES of the query compound as input. (d) The output of Anti-HIV-Predictor. 

The output contains the matched similar compound, the predicting information and 

the predicting conclusion whether the query compound has anti-HIV activity (see text 

for details). For example, Anti-HIV-Predictor assigns three ticks for the drug 

nevirapine and a cross for aspirin. 

Figure 3. The results of computational screen of FDA approved drugs using 

Anti-HIV-Predictor. (a) Three-axis plot of all approved drugs based on the predict 

scores of the three models (RFW_FP model, SVM model and RF model). Each dot 

represents a drug. The blue dot means the drug with no anti-HIV activity. The green 

dot means the drug with anti-HIV activity supported by one or two models. The red 

dot indicates the drug with anti-HIV activity predicted by all three models. (b) Venn 

diagram of the screening results. The RFW_FP model, SVM model and RF model 

predicted 240, 178 and 110 anti-HIV drugs, respectively. The overlap is 67 drugs 

which are categorized into three groups: approved anti-HIV drugs (25), drugs with 

anti-HIV activity(7) and drugs with no experimental data (35). 
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Figure 4. The chemical structures and in vitro dose-response curves of the 7 

compounds. Each panel contains the structure and curve for one compound. In 

dose-response curve, the percent inhibition of the compounds on HIV-1 replication in 

the p24 assay is shown in red circles. And the percent viability in cytotoxicity assays 

of the compounds on C8166 is shown in filled black squares. With the increase of 

concentration of the compounds, the percent inhibition is increased but the percent 

viability of C8166 is decreased. The percent viability at the concentration equal to 

EC50 is indicated as blue dashed line. Data are mean ± s.d. (n=6) 
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