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Abstract11

The hippocampal theta rhythm plays important roles in information processing; however, the12

mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-13

based, full-scale (1:1) model of the CA1 area and studied its interneurons during theta oscillations.14

Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct in-15

terneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs.16

Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as17

well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal18

new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.19
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Introduction1

The hippocampal CA1 area supports diverse cognitive tasks including learning, memory, and spa-2

tial processing (Squire, 1992; Remondes and Schuman, 2004; Manns et al., 2007; Moser et al., 2008).3

These cognitive tasks are thought to require coordination of neuronal activity provided by physiolog-4

ical network oscillations, including the theta rhythm (Buzsáki, 2002; Buzsáki and Moser, 2013). In5

rodents, hippocampal theta is a 5-10 Hz oscillation in the local field potential (LFP) and neuronal firing6

probabilities (Soltesz and Deschenes, 1993; Lee et al., 1994; Ylinen et al., 1995; Klausberger and Somogyi,7

2008; Varga et al., 2012, 2014), occurring during locomotion and in REM sleep (Buzsáki, 2002).8

Though several major afferents provide theta-frequency rhythmic input to the CA1 in vivo (Soltesz and Deschenes,9

1993; Buzsáki, 2002; Fuhrmann et al., 2015), recent reports indicate the presence of spontaneous theta-10

frequency LFP oscillations even in the isolated whole CA1 preparation in vitro (Goutagny et al., 2009;11

Amilhon et al., 2015). Therefore, the latter studies suggest an intrinsic ability of the CA1 circuit to12

generate some form of theta waves even without rhythmic external inputs. However, the intra-CA113

mechanisms that may contribute to the generation of the theta rhythm are not well understood14

(Colgin, 2013, 2016).15

Here we investigated the ability of the CA1 to generate intrinsic theta oscillations using a uniquely16

biological data-driven, full-scale computer model of the isolated CA1 network. Recent advances in17

supercomputing power and high-quality synaptic connectivity data present the intriguing opportunity18

to develop full-scale models where every biological synapse and neuron is explicitly represented. In19

principle, such full-scale models of mammalian circuits comprising hundreds of thousands of neurons of20

distinct types advantageously avoid the connectivity scaling tradeoff that besets reduced-scale models:21

smaller models of large networks with realistic single cell electrophysiological properties (e.g., input22

resistance and resting membrane potential) remain silent unless synaptic strengths or numbers are23

arbitrarily increased beyond the biologically relevant levels to compensate for fewer inputs to their24

model cells (e.g., Dyhrfjeld-Johnsen et al. (2007); Sterratt et al. (2011)). Biological relevance may25

also increase as other network components are modeled in greater detail. However, full-scale models26
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require considerable computational resources. Further, such detailed models have a large parameter1

space which risks being sub-optimally constrained by neurobiological properties that are only partially2

quantified (Sejnowski et al., 1988). Because the CA1 area is one of the most extensively studied brain3

regions, there are abundant anatomical and electrophysiological data about its organization, making4

it a logical choice for the development of a full-scale model. The CA1 area is also worth modeling at5

full-scale because of the diverse cognitive tasks it supports. These tasks likely require the simultaneous6

processing of thousands of incoming and outgoing signals, and full-scale network models, at least in7

principle, have the potential to match this in vivo processing capacity.8

In this paper, we describe the development of a full-scale CA1 computational network model of9

unprecedented biological detail and its application to gain insights into the roles and temporal orga-10

nization of CA1 interneurons during theta rhythm. The simulated full-scale CA1 circuit was able to11

spontaneously generate theta waves as well as phase-locked gamma oscillations. Furthermore, distinct12

interneuron types discharged at particular phases of theta, demonstrating that phase-preferential fir-13

ing (Klausberger et al., 2003, 2004, 2005; Ferraguti et al., 2005; Jinno et al., 2007; Fuentealba et al.,14

2008; Klausberger and Somogyi, 2008; Varga et al., 2012; Lapray et al., 2012; Katona et al., 2014;15

Varga et al., 2014) originates in part within the CA1 network. Perturbation experiments revealed16

that parvalbumin-expressing (PV+) interneurons, neurogliaform cells, connections beween CA1 pyra-17

midal cells, and interneuronal diversity were important for theta generation. These results provide18

new mechanistic insights into the emergence of the theta rhythm from within the CA1 circuitry and19

the role of interneurons in theta oscillations.20

Results21

Development of data-driven, full-scale model of the isolated CA122

Details of the full-scale model are described in the Methods, and the most important features are23

illustrated in Figures 1 and 2 and summarized here. Briefly, CA1 model cells were evenly distributed24
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within their respective layers in a 3-dimensional prism with realistic dimensions for the rodent hip-1

pocampal CA1 region (Figure 1A and 1B). The model network contained 338,740 cells (similar to the2

biological CA1 in rats, including 311,500 pyramidal cells and 27,240 interneurons) (Figure 1D-1E and3

Figure 1 - figure supplement 1). In addition, the network also incorporated 454,700 artificial stimu-4

lating cells (spiking units with random, Poisson-distributed inter-spike intervals) to simulate afferents5

to CA1; the cell type-specific distribution, dendritic position, amplitude and kinetics of the excitatory6

input synapses were all experimentally constrained by afferent CA3 and entorhinal cortical data. Cell7

type-specific connectivity data, including cell numbers (Figure 1D) and convergence and divergence8

values (Figure 1E; Figure 1 - figure supplement 1 and Table 1) were taken without alteration from9

our previously published, in-depth, quantitative assessment of the CA1 circuit (Bezaire and Soltesz,10

2013). Anatomical constraints of the connectivity were implemented in the model by accounting for11

the distribution of the axonal boutons as a function of longitudinal and transverse distance from the12

presynaptic cell soma (Figure 1 - figure supplement 2). The afferent divergence and convergence onto13

the cells were also anatomically patterned, maintaining the topographical arrangement seen experi-14

mentally (Hongo et al., 2015), for a total of 5.19 billion synaptic connections in the model network.15

In addition, the remaining parameters that could not be constrained by experimental data were docu-16

mented, with the assumptions used to arrive at them explicitly listed in Table 2 of Bezaire and Soltesz17

(2013) and additional parameter calculations described in the Supplementary Material Section 3 of the18

present paper. To highlight the many constraints applied in the current work and address the uncon-19

strained model parameters, we characterized all model components (constrained and unconstrained)20

in experimental terms, comparing with experimental data where possible (Figure 2; Supplementary21

Material). For a four second simulation, the full-scale model required 3-4 terabytes (TB) of RAM22

and four hours of execution time on a supercomputer using ~3000 processors (or up to 12 hours for23

simulations calculating a high-accuracy local field potential (LFP) analog). Additional details and24

data about model performance are available in Table 2 and Bezaire et al. (2016).25

An important set of constraints was the electrophysiology and other properties of individual cells26

and synapses (Figure 2; Tables 3 and 4) that were based on experimental data. Briefly, our pyra-27
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midal cell model (Poolos et al., 2002) contained 200 compartments in a realistic morphology and six1

fully characterized ion channel types with kinetics and densities based on anatomical location within2

the cell (Figure 2A-2C). We included eight model interneuron types (Klausberger and Somogyi, 2008;3

Soltesz, 2006; Armstrong and Soltesz, 2012): PV+ basket cells (these fast-spiking cells synapse on4

the somata and proximal dendrites of CA1 pyramidal cells), cholecystokinin+ (CCK+) basket cells5

(these regular-spiking cells also innervate the somata and proximal dendrites, but have properties6

and functions distinct from the PV+ basket cells), bistratified cells (these PV+ and somatostatin+7

(SOM+) fast-spiking cells innervate the basal and apical dendritic trees), axo-axonic cells (these PV+8

fast-spiking cells exclusively synapse on the axon initial segments of pyramidal cells and are also9

known as chandelier cells), Schaffer Collateral-Associated (SC-A) cells (these CCK+, regular-spiking10

cells innervate dendrites in the stratum radiatum), oriens-lacunosum-moleculare (O-LM) cells (these11

SOM+ cells project to the distal dendrites in the stratum lacunosum-moleculare though their somata12

are located in the stratum oriens), neurogliaform cells (these cells have relatively small dendrites and a13

dense axonal cloud, and they innervate distal dendrites in the stratum lacunosum-moleculare), and ivy14

cells (these cells are similar to neurogliaform cells, but innervate proximal dendrites) (Figure 2D-2J).15

Some interneurons in the model, as in the biological network, also innervated other interneurons (Table16

1). For greater detail of model connectivity, including convergence per single cell, synaptic amplitude,17

and other factors, see the Supplementary Material. These cell types collectively comprise the majority18

(~70%) of known CA1 interneurons (Bezaire and Soltesz, 2013). The remaining 30% of the interneu-19

rons were not included in the model due to paucity of quantitative data (Bezaire and Soltesz, 2013).20

We differentiated the interneurons by their electrophysiological profiles, connectivity patterns, synaptic21

properties, and anatomical abundance (Gulyas et al., 1991; Hajos and Mody, 1997; Maccaferri et al.,22

2000; Megías et al., 2001; Lee et al., 2010; Krook-Magnuson et al., 2011; Bezaire and Soltesz, 2013;23

Lee et al., 2014). The synaptic connections were implemented using double exponential mechanisms24

to better fit experimental data on rise and decay time constants. We used experimental data to25

constrain the synaptic kinetics, amplitudes, and locations on the postsynaptic cell (Figures 1E, 2K,26

and 2L). We implemented the model in parallel NEURON (Carnevale and Hines, 2005) and executed27
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the simulations on several supercomputers. All model results, characterizations, and experimental1

comparisons are publically available.2

Emergence of spontaneous theta and gamma oscillations in the full-3

scale model in the absence of rhythmic external inputs4

First, we examined whether the well-constrained, biologically detailed, full-scale CA1 model could os-5

cillate spontaneously within the physiological range. Based on reports of spontaneous theta-frequency6

LFP oscillations in the isolated CA1 preparation (Goutagny et al., 2009), we expected a sufficiently7

constrained CA1 model to generate spontaneous theta rhythm when given tonic, arrhythmic exci-8

tation. We varied the magnitude of arrhythmic, tonic excitation to the network (by systematically9

changing the mean spiking frequency of the artificial stimulating cells, see above) and identified exci-10

tation levels where the network developed a stable, spontaneous theta rhythm (5-10 Hz; Figures 3 and11

4). The pyramidal cell spikes (Figures 3C and 3D) exhibited peak power around the theta frequency12

of 7.8 Hz (Figure 4 and Table 7). Importantly, every measure of network activity showed theta os-13

cillations, including the somatic intracellular membrane potential from individual cells (Figure 3D),14

the spike times of individual cells and all cells collectively (Figure 3C), and aggregate measures such15

as the spike density function (Szűcs, 1998) per cell type and the LFP analog (Figures 3A and 4; see16

also Figure 4 - figure supplement 1). In all of these measures of network activity, theta was apparent17

within one theta period of the simulation start. The theta oscillation was stable, maintaining a steady18

power level throughout the duration of the oscillation (Figure 4A). To our knowledge, this is the first19

strictly data-driven, full-scale computational network model of the CA1 that exhibits spontaneous20

theta rhythm without rhythmic synaptic inputs.21

In addition to theta rhythm, the model network displayed gamma oscillations (25-80 Hz; Fig-22

ures 3B and 4D), as expected based on in vivo data (Soltesz and Deschenes, 1993; Tort et al., 2009;23

Colgin and Moser, 2010) and in vitro slice data showing 65-75 Hz gamma oscillations arising in re-24

sponse to theta rhythmic network stimulation (Butler et al., 2016). The amplitude envelope of the25
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gamma oscillation was phase-locked to the theta rhythm (Figure 3A, 3B and 4C), as it is in the bio-1

logical CA1, representing cross-frequency coupling (Soltesz and Deschenes, 1993; Bragin et al., 1995;2

Buzsáki et al., 2003; Jensen and Colgin, 2007; Belluscio et al., 2012). The highest amplitude of the3

gamma oscillations in the model was observed at the theta trough (0o/360o) in the pyramidal layer4

LFP analog (Figure 4C). Because the current study focused primarily on theta oscillations and exper-5

imental data from the isolated CA1 are available only for the theta rhythm (Goutagny et al., 2009;6

Amilhon et al., 2015), the gamma oscillations were not examined further in the present study.7

These results demonstrate that, in spite of gaps in our knowledge, our model was sufficiently well-8

constrained by experimental data that it generated theta and gamma oscillations on its own, without9

extrinsic rhythmic inputs or deliberate tuning of intrinsic parameters.10

Although in this paper we generally refrained from deliberately compensating for missing param-11

eters, it is of course possible to do so. For example, as mentioned above, no sufficiently detailed12

information was available for certain interneuron types. Therefore, these lesser-known interneurons13

were not included in the model, which meant that inhibition received by the pyramidal cells was14

probably weaker than in the biological situation. Indeed, the pyramidal cells in our model described15

above (Figures 3 and 4) tended to fire more than they typically do so during theta oscillations in16

vivo (e.g., Soltesz and Deschenes (1993); Robbe et al. (2006)). Is the higher firing frequency of the17

pyramidal cells related to the weaker inhibition? To answer to latter question, in a subset of the18

simulations we artificially scaled up inhibition in the model to match the inhibitory synapse numbers19

on CA1 pyramidal cells that were expected from electron microscopic reconstructions of pyramidal20

cell dendrites and somata (Megías et al., 2001; Bezaire and Soltesz, 2013). The rationale for scaling21

up inhibition in this way was that, as described in detail in Bezaire and Soltesz (2013), the estimates22

of local inhibitory inputs to pyramidal cells were different when based on experimental observations23

of presynaptic anatomy (local boutons available for synapsing from distinct types of intracellularly24

filled and reconstructed interneurons) as opposed to postsynaptic anatomy ( inhibitory post-synaptic25

densities on pyramidal cell dendrites). In simulations with the model containing this rationally scaled26

up inhibition, only 1% of the pyramidal cells were active, and they fired at a low rate of 1.8 Hz27
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(data not shown), closely resembling the in vivo condition (Soltesz and Deschenes, 1993; Robbe et al.,1

2006). Therefore, the model was capable of reproducing the experimentally observed relatively low2

firing frequencies for the principal cells during theta oscillations in vivo. However, because the source3

of the additional inhibition onto CA1 principal cells has not yet been experimentally identified, we4

used the connectivity estimates as constrained by experimental observations of axonal boutons and5

lengths in the full scale model (without the scaled-up inhibition) described above (Figures 3 and 4)6

in the subsequent computational experiments.7

Mechanism of theta generation and phase-preferential firing of in-8

terneurons in the full-scale model of the isolated CA19

Next, we examined the onset of the theta rhythm and the firing patterns of the various cell types10

in the model circuit during theta oscillations (Figure 5 and Table 5). As mentioned above, distinct11

interneuronal types, defined based on their selective axonal innervation patterns of the postsynaptic12

domains of pyramidal cells, exhibit characteristic, cell-type-specific preferred phases of firing during13

theta oscillations in vivo (Klausberger et al., 2003, 2004, 2005; Ferraguti et al., 2005; Jinno et al.,14

2007; Fuentealba et al., 2008; Varga et al., 2012; Lapray et al., 2012; Katona et al., 2014; Varga et al.,15

2014). Importantly, this fundamental property emerged spontaneously from the full-scale model,16

without purposeful tuning of parameters except the mean spiking frequency and synaptic strength17

of the artificial stimulating cells to set the incoming excitation levels from afferents (see Methods18

for details). As expected, the numerically dominant pyramidal cells, whose intracellular membrane19

potential oscillations to a large extent generate and underlie the extracellular LFP signal during theta20

oscillations (Buzsáki et al., 2012), preferentially discharged around the trough 0o/360o of the LFP21

analog theta rhythm (Figure 5A).22

Interneurons in the model preferentially fired at specific phases of theta oscillations, depending23

on the cell type. Their phase preferences fell into two broad categories (Figure 5A). The cells be-24

longing to the first group, including the PV+ basket cells, bistratified cells and O-LM cells, were25
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most likely to fire at the theta trough compared to other theta phases. Since these cells received1

substantial excitatory inputs from local CA1 pyramidal cells both in the biological state and in the2

model (Bezaire and Soltesz, 2013), their firing in the isolated CA1 model was probably driven by the3

pyramidal cell discharges around the theta trough. In contrast, the second group of cells, including4

the ivy and neurogliaform cells, the CCK+ basket cells and the axo-axonic cells, fired least around5

the theta trough, leading to an inverted firing probability distribution relative to the first group of6

interneurons (Figure 5A). Their differing phase preferences were most likely due to a combination7

of weak or non-existent excitatory inputs from local CA1 pyramidal cells and inhibition from the8

interneurons that prominently discharged around the theta trough. In general agreement with the9

first group of cells being strongly and rhythmically driven by the local pyramidal cells, there was a10

correlation between the phase preference and the strength of modulation (Figure 5C; see Methods),11

with the cells discharging around the trough all showing strong modulation of firing.12

These results were in line with recent data from the isolated CA1 preparation in vitro (Ferguson et al.,13

2015) which showed that cells belonging to the broadly defined SOM+ and PV+ classes (identified14

using genetic drivers) displayed phase preferences similar to the O-LM, PV+ basket and bistratified15

cells in our model (note that Ferguson and colleagues used LFP theta recorded in the stratum radia-16

tum as reference, which is approximately 180 degrees out of phase with the pyramidal cell layer theta17

used in this paper). In addition, the interneuronal phase preferences in the model were also remark-18

ably similar to in vivo data from anesthetized animals (Figure 5B; because no data are available on19

the phase preferential firing of morphologically identified interneurons from the isolated CA1 prepara-20

tion, comparison is made here with results from anesthetized animals, from which the most complete21

data sets are available; see also Discussion). Specifically, the majority (71%; 5/7) of the interneuron22

types for which there were experimental data, including the CCK+ basket, axo-axonic, bistratified,23

O-LM and neurogliaform cells, showed similar preferential maxima in their firing probabilities in the24

model (Figure 5A) and in vivo (Figure 5B). The largest differences between the model and the in vivo25

phase-preferential firing occurred for the PV+ basket cells and the ivy cells, suggesting that during26

theta oscillations in vivo these cells may be strongly driven by CA3 afferents active during the late27
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falling phase of the theta cycle (Colgin and Moser, 2010); note that PV+ cells receive a high number1

of excitatory inputs on their dendrites compared to other interneuron classes (Gulyas et al., 1999).2

A comparison of the model and the anesthetized in vivo data is illustrated in Figure 5D, where the3

arrows indicate the shift required for the model phase preferences (Figure 5A) to equal the in vivo4

(Figure 5B) phase preferences; note that the required shifts (arrows) are small for all interneuron types5

except PV+ basket and ivy cells. A clear majority of the interneuronal types in the model showed6

phase preferences similar to the in vivo condition where rhythmically discharging afferent inputs are7

present, indicating that theta-preferential discharges are to a large extent determined by the wiring8

properties of the CA1 circuit itself.9

Perturbation experiments indicate a key role for interneuronal diver-10

sity in the emergence of spontaneous theta11

Importantly, the ability to generate theta oscillations, phase-locked gamma oscillations, and theta-12

related phase-preferential firing of distinct interneuronal subtypes was not a universal property of the13

model. As shown in Figure 6A, our strongly constrained model only exhibited spontaneous theta14

oscillations at certain levels of afferent excitation. The results described above (Figures 3-5) were15

obtained with an afferent excitation level of 0.65 Hz (labeled as “Control” in Figure 6A), meaning16

that each excitatory afferent cell excited the model network with a Poisson-distributed spike train17

having a Poisson mean interspike interval (ISI) corresponding to a firing rate of 0.65 Hz. When the18

excitation level decreased below 0.65 Hz, the theta rhythm fell apart, and when the excitation level19

increased beyond 0.80 Hz, theta power also started to drop significantly as the oscillation frequency20

rose out of theta range (Figure 6 and Figure 6 - figure supplement 1), evolving into a beta oscillation21

(Engel and Fries, 2010). These data indicate that while synaptic-cellular organization of the CA122

circuit enables the intrinsic, within-CA1 generation of theta waves, the circuit is predisposed to exhibit23

theta oscillations only under particular excitatory input conditions. The observation that, under24

certain conditions the model network can oscillate at frequencies between 12 and 20 Hz, is in agreement25
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with recent experimental findings that rhythmic driving of septal PV+ cells can reliably entrain the1

hippocampus in a 1:1 ratio up to frequencies of 20 Hz (Dannenberg et al., 2015).2

Does the parameter sensitivity of the theta rhythm also apply to recurrent excitation from pyra-3

midal cells and inhibition from CA1 interneurons? In order to answer the latter question, we tested4

whether the theta rhythm was differentially sensitive to the contribution of each inhibitory cell type5

(Figure 6B). We characterized the contribution of each local CA1 cell type to the theta rhythm by6

muting the output of the cell type so that its activity had no effect on the network. First, we stud-7

ied the role of the recurrent collaterals of pyramidal cells, which contact mostly interneurons and,8

less frequently, other pyramidal cells (Bezaire and Soltesz, 2013). When we muted all the outputs9

from pyramidal cells, theta rhythm disappeared (bar labeled “Pyr” in Figure 6B), indicating that the10

recurrent collaterals of pyramidal cells play a key role in theta oscillations.11

Interestingly, muting the relatively rare CA1 pyramidal cell to pyramidal cell excitatory connections12

alone (each pyramidal cell contacts 197 other pyramidal cells in the CA1; Bezaire and Soltesz (2013))13

was sufficient to collapse the theta rhythm (bar labeled “None” in Figure 6C); key roles for inter-14

pyramidal cell excitatory synapses within CA1 have been suggested for sharp wave ripple oscillations15

as well (Maier et al., 2011). Furthermore, the parameter-sensitivity of the theta rhythm was also16

apparent when examining the role of pyramidal cell to pyramidal cell connections, because theta power17

dramatically decreased when these connections were either increased (doubled) or decreased (halved)18

from the biologically observed 197 (Figure 6C). Next, we investigated the effects of muting the output19

from each interneuron type. Silencing the output from any of the fast-spiking, PV family interneurons20

(PV+ basket, axo-axonic, or bistratified cells), CCK+ basket cells, or neurogliaform cells also strongly21

reduced theta power in the network (Figure 6B). In contrast, muting other interneuronal types (S.C.-A22

cells, O-LM cells, or ivy cells) had no effect on this form of theta oscillations generated by the intra-23

CA1 network (Figure 6B). In additional disinhibition studies simulating optogenetic experimental24

configurations, partial muting of all PV+ outputs (PV+ basket, bistratified, and axo-axonic cells25

together) had a larger effect than partial muting of all SOM+ outputs (O-LM and bistratified cells);26

see Figure 6D. Reassuringly, these results were in overall agreement with experimental data from the27
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isolated CA1 preparation indicating that optogenetic silencing of PV+ cells, but not SOM+ cells1

such as the O-LM cells, caused a marked reduction in theta oscillations (Amilhon et al., 2015). The2

differential effects of silencing PV+ versus SOM+ cells could also be obtained in a rationally simplified3

model called the Network Clamp, where a single pyramidal cell was virtually extracted from the full-4

scale CA1 network with all of its afferent synapses intact (for further details, see Bezaire et al. (2016)).5

Since the diverse sources of inhibition from the various interneuronal types are believed to enable6

networks to achieve more complex behaviors, including oscillations (Soltesz, 2006; Rotstein et al.,7

2005; Kepecs and Fishell, 2014), we next tested if reducing the diversity of interneurons in the model8

would affect its ability to produce spontaneous theta oscillations. Surprisingly, giving all interneurons9

a single electrophysiological profile appeared to create conditions that were not conducive for the ap-10

pearance of spontaneous theta oscillations regardless of which interneuronal profile was used (Figure11

6E; note that the cells still differed in the strengths, distribution, and identities of their incoming12

and outgoing connections after this manipulation). To probe this finding further, we focused on PV+13

basket cells, which have been implicated in theta generation in vivo (Soltesz and Deschenes, 1993;14

Buzsáki, 2002; Stark et al., 2013; Hu et al., 2014) and exhibited strong theta power in their spiking in15

the control network model (Figure 4B). We gradually altered (“morphed”) the properties of all other16

model interneuron types until they became PV+ basket cells, by first converging their electrophysio-17

logical profiles, then additionally their synaptic kinetics and incoming synapse weights, then also their18

incoming synapse numbers, and finally their outgoing synaptic weights and numbers (Figure 6F; Table19

7). Theta was not apparent in any intermediate steps nor in the final network where all interneurons20

had become PV+ basket cells (“All PV+B” in Figure 6F). Furthermore, introduction of cell to cell21

variability in the resting membrane potential of interneurons in the “All PV+B” configuration at the22

biologically observed values for PV+ basket cells also failed to restore theta (“Var PV+B” in Figure23

6F shows results with standard deviation of (SD) = 8 mV in the resting membrane potential; SD = 524

mV and SD = 2 mV also yielded no theta; biological SD value: approximately 5 mV in Tricoire et al.25

(2011) and 2 mV in Mercer et al. (2012)). Therefore, although PV basket cells appear to be important26

for theta-generation both in the biological and the model CA1 network, endowing all interneurons with27
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PV basket cell-like properties does not lead to a network configuration conducive to theta oscillations1

(Hendrickson et al., 2015).2

To rule out the possibility that the lack of theta could be due to an inappropriate excitation level3

in these reduced diversity configurations, we subjected the “All PV+ B” network to a wide range of4

incoming excitation levels (Figure 6G). Theta rhythm did not appear at any of these excitation levels.5

While we could not rule out a hypothetical theta regime somewhere in the parameter space of such6

low-diversity configurations, any theta solution space would likely be smaller and more elusive than7

we were able to determine in the control configuration (Figure 6A).8

Taken together, these results indicated, for the first time, that interneuronal diversity itself is an9

important factor in the emergence of spontaneous theta oscillations from the CA1 network.10

Neurogliaform cell signaling and theta generation in the isolated CA111

model12

In agreement with previous predictions (Capogna, 2011), the perturbation experiments described13

above suggested that neurogliaform cells were a necessary component for spontaneous theta to arise14

in the isolated CA1. We wondered why muting the output from neurogliaform cells, but not the closely15

related ivy cells, affected theta oscillations (Figure 6B), especially since there were fewer neurogliaform16

cells than ivy cells, and they were less theta modulated (Figure 5A). These two model interneuron17

groups mainly differed in that the neurogliaform cells evoked mixed GABAA,B postsynaptic events18

(Price et al., 2005), whereas the model ivy cells only triggered GABAA IPSPs (in agreement with19

a lack of evidence for ivy cell-evoked GABAB IPSPs). Could the slow kinetics of GABAB IPSPs20

contribute to the pacing of the theta oscillations? Indeed, when we selectively removed the GABAB21

component of all neurogliaform cell outgoing synaptic connections, theta power was strongly reduced22

(Figure 6H). To test whether the contribution of the GABAB receptors was due to their slow kinetics,23

we artificially sped up the GABAB IPSPs so that they had GABAA kinetics but conserved their24

characteristic large charge transfer. This alteration was implemented by scaling up the GABAA25
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synaptic conductance at neurogliaform cell output synapses to achieve a similar total charge transfer1

as the control GABAA,B mixed synapse (Figure 6 - figure supplement 2). As shown in Figure 6H2

(green bar), theta activity was restored when the neurogliaform cell output synapses had no slow3

GABAB component, only a scaled up fast GABAA IPSP with a charge transfer equivalent to the4

mixed GABAA,B synapses. Therefore, muting the neurogliaform cells strongly disrupted the theta5

oscillations not because the theta oscillations required the slow kinetics of GABAB IPSPs specifically,6

but because the slow kinetics enabled a large total charge transfer.7

Discussion8

Emergence of theta oscillations from a biological data-driven, full-9

scale model of the CA1 network10

We produced a biologically detailed, full-scale CA1 network model constrained by extensive experi-11

mental data (Bezaire and Soltesz, 2013). When excited with arrhythmic inputs at physiologically rel-12

evant levels (see below), the model displayed spontaneous theta (and gamma) oscillations with phase13

preferential firing across the nine model cell types (pyramidal cells and eight interneuron classes).14

Consistent with experimental results (Goutagny et al., 2009; Amilhon et al., 2015), these oscillations15

emerged from the network model without explicit encoding, rhythmic inputs or purposeful tuning of16

intra-CA1 parameters (all anatomical connectivity parameters were exactly as previously published17

in Bezaire and Soltesz (2013)). Cell type-specific perturbations of the network showed that each in-18

terneuronal type contributed uniquely to the spontaneous theta oscillation, and that the presence19

of diverse inhibitory dynamics was a necessary condition for sustained theta oscillations. In addi-20

tion to characterizing roles for specific network components, these model results generally suggest21

that the presence of diverse interneuronal types and the intrinsic circuitry of the CA1 network are22

sufficient and necessary to enable the isolated CA1 to oscillate at spontaneous theta rhythms while23

supporting distinct phase preferences of each class of hippocampal neuron. These abilities may serve24
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to maintain the stability and robustness of the theta oscillation mechanism as it operates in vivo1

in diverse behavioral states. The theta rhythm is thought to be important for organizing disparate2

memory tasks (Lisman and Idiart, 1995; Hasselmo et al., 2002; Hasselmo, 2005; Lisman and Jensen,3

2013; Siegle and Wilson, 2014), and a CA1 network which has evolved a predisposition to oscillate at4

theta and gamma frequencies may enable more efficient processing of the phasic input it receives in5

vivo (Akam and Kullmann, 2012; Fries, 2015). In turn, phase preferential firing may aid information6

processing tasks by providing order and allowing multiple channels of information to be processed in7

parallel (Jensen and Lisman, 2000; Hasselmo et al., 2002; Womelsdorf et al., 2007; Schomburg et al.,8

2014; Jeewajee et al., 2014; Maris et al., 2016).9

Importantly, theta oscillations appeared only within certain levels of excitatory afferent activ-10

ity, around 0.65 Hz for the average firing rate of the Poisson-distributed spike trains. When the11

454,700 stimulating afferents in the model (representing the CA3 and entorhinal synapses; calculated12

in Bezaire and Soltesz (2013)) are active at a Poisson mean of 0.65 Hz, they generate approximately13

37,900 incoming spikes / theta cycle, given a theta frequency of 7.8 Hz (Equation 1).14

15

454,700 afferents ∗

0.65 spikes/s
7.8 theta cycles/s

= 37,892 spikes/cycle (1)16

17

Is the latter number of spikes in the afferents to the CA1 network within a physiologically plausible18

range? The biological CA1 network receives most of its input from CA3 and entorhinal cortical layer19

III (ECIII), and it has been estimated that about 4% of CA3 pyramidal cells fire up to four spikes20

per theta wave (Gasparini and Magee, 2006). We previously estimated 204,700 pyramidal cells in21

ipsilateral CA3 (Bezaire and Soltesz, 2013), giving an estimated 32,750 spikes from ipsilateral CA322

per theta cycle (Equation 2).23

204, 700 cells ∗ .04 cell fraction ∗ 4 spikes/cell = 32, 752 spikes (2)24

About 250,000 principal cells from ipsilateral ECIII synapse onto the CA1 region (Andersen et al.,25

15
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2006), and approximately 2% of these cells are active per theta cycle at a low firing rate (Csicsvari et al.,1

1999; Mizuseki et al., 2009). Therefore, ECIII cells could provide 5,000 input spikes to ipsilateral CA12

(Equation 3).3

250, 000 cells ∗ .02 cell fraction ∗ 1 spike/cell = 5, 000 spikes (3)4

Therefore, about 37,750 spikes per theta cycle arrive from ipsilateral CA3 and entorhinal cortex to the5

CA1 network in vivo, which is reassuringly close to the our modeling results indicating that robust6

theta emerged when the CA1 network model received approximately 37,900 afferent spikes per theta7

cycle. Thus, the model has the capacity to process a biologically realistic number of spike inputs per8

cycle while maintaining the theta rhythm.9

Our results obtained using the 0.65 Hz excitation indicated that the CA1 model network exhibited10

phenomena that corresponded well with experimental results, for example, on the differential roles of11

PV+ basket cells and OLM cells. In addition, the simulations unexpectedly revealed that interneuronal12

diversity itself may also be important in theta generation, since conversion of all interneurons into13

fast spiking PV+ basket cells did not result in a network that was conducive for the emergence of14

theta, in spite of the key role of the PV+ basket cells in hippocampal oscillations. The modeling15

results also provided the interesting insight that GABAB receptors may play important roles in slow16

oscillations such as the theta rhythm not because their slow kinetics pace the oscillations, but because17

their slow kinetics enable a massive charge transfer. This insight was illuminated by the fact that18

slow GABAB synapses were not necessary for theta as long as their large charge was carried by the19

fast GABAA synapses. However, we had to increase the conductance of the GABAA synapse almost20

300 times to achieve a similar charge transfer as that conveyed by the GABAB synapse. Such a large21

conductance is not biologically realistic, indicating that the key role for GABAB synapses may be22

to allow the temporal distribution of the large synaptic charge transfer. Indeed, the importance of23

GABAB receptors has also been indicated by a number of recent experimental studies, for example,24

in the modulation of theta and gamma oscillations (Kohl and Paulsen, 2010), setting of spike timing25

16
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of neuron types during theta (Kohl and Paulsen, 2010), and playing a role in cortical oscillations and1

memory processes (Craig and McBain, 2014).2

In addition to identifying key roles for certain inhibitory components (PV+ interneurons, neu-3

rogliaform cells, GABAB, and interneuron diversity), our results also highlighted the importance of4

the recurrent excitatory collaterals from CA1 pyramidal cells in theta generation in the model of the5

isolated CA1 network. While it may be expected that isolated theta generation would require local6

pyramidal cells to provide rhythmic, recurrent excitation to interneurons, our simulations additionally7

showed that the relatively rare pyramidal cell to pyramidal cell local excitatory connections were also8

required.9

Based on our results, we hypothesize that the inhibitory and excitatory connections within CA110

that were identified to be critical in our perturbation (“muting”) simulations (Figure 6B) interact11

to generate the theta waves in the model as follows. Pyramidal cells preferentially discharge at12

the trough of the LFP analog, strongly recruiting especially the PV+ basket and bistratified cells13

(green and brown raster plots in Figure 3C), which, in turn, cause a silencing of the pyramidal cells14

(blue raster plot in Figure 3C) for about the first third of the rising half (i.e., from 0o to about15

60o) of the LFP analog theta cycle. As the pyramidal cells begin to emerge from this period of strong16

inhibition, initially only a few, then progressively more and more pyramidal cells reach firing threshold,17

culminating in the highest firing probability at the theta trough, completing the cycle. The progressive18

recruitment of pyramidal cells during the theta cycle appears to be paced according to gamma (see blue19

raster plot in Figure 3C), and it is likely that the intra-CA1 collaterals of the discharging pyramidal20

cells play key roles in the step-wise (gamma-paced) recruitment of more and more pyramidal cells21

as the cycle approaches the following trough. The predicted key roles for physiological pyramidal22

cell to pyramidal cell connections in theta-gamma generation during running may be tested in future23

experiments.24

25
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Rationale for bases of comparison between modeling results with ex-1

perimental data2

Because our model represented the isolated CA1 network, the modeling results were compared3

with experimental data from the isolated CA1 preparation when possible. Modeling results for which4

no corresponding experimental data were available from the isolated CA1 preparation, such as the5

phase preferential firing of individual interneuron types during theta oscillations, were compared with6

in vivo data from anesthetized animals (Figure 5B). Experimental results from anesthetized animals7

offered the most complete data set (e.g., no experimental data were available on CCK basket cells8

and neurogliaform cells from awake animals, see Figure 5 - figure supplement 2). Out of the four9

interneuronal types for which in vivo data were available from both the awake and anesthetized10

conditions (Figure 5 - figure supplement 2), the phase preference of the axo-axonic cell in the model11

(163o) was closer to the anesthetized phase (185o) than to the awake phase (251o), whereas the PV+12

basket cells in the model displayed phase preferential firing (357o) closer to data reported from awake13

(289o-310o) than anesthetized animals (234o-271o); the precise reasons underlying these differences14

are not yet clear. In contrast, bistratified and O-LM cells fired close to the trough in the model,15

under anesthesia and in awake animals, potentially indicating the primary importance of pyramidal16

cell inputs in driving these interneurons to fire during theta oscillations under all conditions.17

While our model is fundamentally a model of the rat CA1 (e.g., in terms of cell numbers and18

connectivity; see Table 3 in Bezaire and Soltesz (2013)), some of the electrophysiology data used for19

constructing the single cell models (Supplementary Material) came from the mouse. In addition, the20

experimental data on the isolated CA1 preparation were obtained from both rat (Goutagny et al.,21

2009) and mouse (Amilhon et al., 2015), similar to the experimental results on the phase specific22

firing in vivo (e.g., awake rat: Lapray et al. (2012); awake mouse: Varga et al. (2014)). Because there23

is no reported evidence for major, systematic differences in key parameters such as the phase specific24

firing of rat and mouse interneurons in vivo, we did not compare our modeling results with rat and25

mouse data separately.26
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A final point concerns the nature of the theta rhythm that emerged in our model. In general, the1

in vivo theta rhythm has been reported to be either atropine resistant or atropine sensitive, where the2

former is typically associated with walking and may not be dependent on neuromodulatory inputs,3

while the latter requires intact, rhythmic cholinergic inputs (Kramis et al., 1975). Given that our4

model did not explicitly represent neuromodulatory inputs, it is likely that the theta that emerged5

from our model most closely resembled the atropine resistant form. However, it also plausible that6

both forms of theta benefit from occurring in a network that is predisposed to oscillate at the theta7

frequency, as the model network results suggested.8

An accessible approach to modeling that balances detail, scale, flex-9

ibility and performance10

Our results from the strictly data-driven, full-scale CA1 model are consistent with those of earlier11

models that elegantly demonstrated the basic ingredients capable of producing emergent network os-12

cillations at a range of frequencies in microcircuits and small networks (Rotstein et al., 2005; Siekmeier,13

2009; Neymotin et al., 2011b,a; Ferguson et al., 2013). In addition, our modeling approach also pro-14

vides a full-scale option to advance the recent studies of network activity propagation and information15

processing during theta (Cutsuridis et al., 2010; Cutsuridis and Hasselmo, 2012; Taxidis et al., 2013;16

Saudargiene et al., 2015). Here, we demonstrated that emergent theta and gamma oscillations and17

theta phase preferential firing are possible even as additional interneuron types are incorporated and18

the network is scaled up to full size with realistic connectivity including 5 billion synapses between19

the 300,000-plus cells of our network model.20

This work is one step in our broader effort to build a 1:1 model of the entire temporal lobe us-21

ing a hypothesis-driven model development process, where at each stage of model development the22

models are used to address specific questions. For example, here we employed our newly developed23

full-scale CA1 model to gain mechanistic insights into the ability of the intra-CA1 circuitry to generate24

theta oscillations (Goutagny et al., 2009). The current CA1 network model can be developed into a25

whole hippocampal or temporal lobe model by replacing the designed CA3 and entorhinal cortical26

19
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afferents with biophysically detailed CA3, ECIII, and septal networks. While we design our model1

networks with the motivation to answer a particular question, we keep in mind their potential usage2

for a broad range of questions. Previously, we built a dentate gyrus model to study epileptic network3

dynamics (Santhakumar et al., 2005; Morgan and Soltesz, 2008) that was then used by several groups4

to study disparate topics including epilepsy, network mechanisms of inhibition and excitability, sim-5

ulation optimization, and modeling software (Migliore et al., 2006; Gleeson et al., 2007; Hines et al.,6

2008a,b; Hines and Carnevale, 2008; Thomas et al., 2009; Winkels et al., 2009; Cutsuridis et al., 2010;7

Jedlicka et al., 2010a,b; Thomas et al., 2010; Tejada and Roque, 2014). Our previous model has8

demonstrated how the resource intensive process of designing a detailed, large-scale model is offset9

by its potential usage in numerous ways by a multitude of groups. On the other hand, future efforts10

will be needed to continue to incorporate experimental data obtained by the scientific community on11

additional, not yet represented parameters into the platform offered by our full-scale CA1 network12

model, e.g., on cell type-specific gap junctions and short-term plasticity, neuromodulators, diversity13

of pyramidal cells, glial dynamics, cell to cell variability (e.g., Schneider et al. (2014)) and others.14

We developed a flexible and biologically relevant model that uses computational resources effi-15

ciently, positioning the model to be used by the broader community for many future questions. Im-16

portantly, the model can be run on the Neuroscience Gateway, an online portal for accessing supercom-17

puters that does not require technical knowledge of supercomputing (https://www.nsgportal.org/).18

The model is public, well documented, and also well characterized in experimentally relevant terms19

(See Supplementary Material and online links given in Methods). In addition, all the model configu-20

rations and simulation result data sets used in this work are available online (Bezaire et al., 2015) at21

(http://doi.org/10.6080/K05H7D60) so the same simulations can easily be repeated with a future,22

updated model using SimTracker (Bezaire et al., 2016). Mindful that this model could be used by23

people with a broad range of modeling experience, we have made freely available our custom software24

SimTracker (http://dx.doi.org/10.1101/081927) that works with the model code to support each25

step of the modeling process (Bezaire et al., 2016).26

20
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Conclusion and Outlook1

As highlighted by the BRAIN Initiative, there is an increasing recognition in neurobiology that we2

must compile our collective experimental observations of the brain into something more cohesive and3

synergistic than what is being conveyed in individual research articles if we are to fully benefit from4

the knowledge that we collectively produce (Ramaswamy et al., 2015; Markram et al., 2015). By as-5

similating our collective knowledge into something as functional as a model, we can further probe6

the gaps in our experimental studies, setting goals for future experimental work. On the other hand,7

as powerful new tools are gathering vast quantities of neuroscience data, the extraction and orga-8

nization of the data itself are becoming a challenge. At least three large programs are undertaking9

this challenge: the Hippocampome project (for neuroanatomical and electrophysiological data in the10

hippocampus of mice; Wheeler et al. (2015)), the Human Brain Project (currently for neuroanatom-11

ical and electrophysiological data and models of the rat neocortex, Ramaswamy et al. (2015)), and12

NeuroElectro (for electrophysiological data from all species and brain areas; Tripathy et al. (2014)).13

These comprehensive databases create the opportunity to build strongly biology-inspired models of14

entire networks, with all the cells and synapses explicitly represented. Such models are not subject to15

the connectivity scaling tradeoff wherein smaller networks have unrealistically low levels of input or16

unrealistically high connectivity between cells. In addition, such models are usable for investigations17

into an almost infinite number of questions at any level from ion channels, to synapses, to cell types, to18

microcircuit contributions. This approach represents a new strategy in computational neuroscience,19

distinct from and complementary to the use of more focused models whose role is to highlight the20

potential mechanism of a small number of network components.21

The scale, flexibility, and accessibility of our strictly data-driven, full-scale CA1 model should aid22

the modeling of other large scale, detailed, biologically constrained neural networks. The current CA123

network model produces results in agreement with experimental data, but also extends the results to24

probe the mechanisms of spontaneous theta generation. It provides specific testable predictions that25

enable focused design of future experiments, as well as providing an accessible resource for the broader26
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community to explore mechanisms of spontaneous theta and gamma generation. Because the model1

is available at full scale, it is a relevant resource for exploring the transformation of incoming spatial2

and contextual information to outgoing mnemonic engrams as part of spatial and memory processing,3

and other pertinent network dynamics.4

Methods5

All results presented in this work were obtained from simulations of computational models. We imple-6

mented our CA1 model in parallel NEURON 7.4, a neural network simulator (Carnevale and Hines,7

2005). The model simulations were run with a fixed time step between 0.01 and 0.025 ms, for a sim-8

ulation duration of 2,000 or 4,000 ms (except for Figure 6D where one simulation ran for 1,600 ms).9

We executed the simulations on several supercomputers, including Blue Waters at the National Cen-10

ter for Supercomputing Applications at University of Illinois, Stampede and Ranger (retired) at the11

Texas Advanced Computing Center (TACC), Comet and Trestles at the San Diego Supercomputing12

Center (SDSC), and the High Performance Computing Cluster at the University of California, Irvine.13

We used our MATLAB-based SimTracker software tool to design, execute, organize, and analyze the14

simulations (Bezaire et al., 2016).15

Model Development16

The CA1 network model included one type of multicompartmental pyramidal cell with realistic mor-17

phology and eight types of interneurons with simplified morphology, including PV+ basket cells,18

CCK+ basket cells, bistratified cells, axo-axonic cells, O-LM cells, Schaffer Collateral-associated cells,19

neurogliaform cells, and ivy cells.20

Model neurons sometimes behave much differently than expected when subjected to current sweep21

protocols or synaptic inputs that are outside the range of the original protocols used to construct22

the model. To ensure the model cells exhibited robust biophysical behavior in a wide range of net-23

work conditions, we implemented a standard, thorough characterization strategy for each cell type24

22
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(Supplementary Material).1

The behavior of each cell type was characterized using a current injection sweep that matched2

experimental conditions reported in the literature. Published experimental data was compared side-3

by-side with model cell simulation results (Supplementary Material). Model cells were connected via4

NEURON’s double exponential synapse mechanism (Exp2Syn), with each connection comprising an5

experimentally observed number of synapses (see Table 1).6

The connections between cells were determined with the following algorithm, for each postsynaptic7

and presynaptic cell type combination:8

1. Calculate the distances between every presynaptic cell and postsynaptic cell of the respective9

types;10

2. Compute the desired number and distance of connections, as defined by the presynaptic axonal11

distance distribution and total number of desired connections of this type; the total number of12

incoming connections expected by each postsynaptic cell type is divided into radial distance bins13

and distributed among the bins according to the Gaussian axonal bouton distribution of the14

presynaptic cell;15

3. Assign each of the possible connections determined in step 2 (connections within the axonal16

extent of the presynaptic cell) to their respective distance bins, and randomly select a specific17

number of connections from each bin (the specific number calculated to follow the axonal bouton18

distribution).19

When determining which cells of the model to connect, we distributed all cells evenly within their20

respective layers in 3D space and enabled random connectivity for cell connections where the postsy-21

naptic cell body fell within the axonal extent of the presynaptic cell (looking in the XY plane only).22

Each time a connection was established between two cells, the presynaptic cell innervated the experi-23

mentally observed number of synapses on the postsynaptic cell. The synapse locations were randomly24

chosen from all possible places on the cell where the presynaptic cell type had been experimentally25

observed to innervate. The random number generator used was NEURON’s nrnRan4int.26
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Biological Constraints1

The cell number and connectivity parameters were exactly as we reported previously in our in-depth2

quantitative assessment of anatomical data about the CA1 (Bezaire and Soltesz, 2013). In the latter3

paper that formed the data-base for the current full-scale model, we combined immunohistochemical4

data about laminar distribution and coexpression of markers to estimate the number of each interneu-5

ron type in CA1. We then extracted from the experimental literature bouton and input synapse6

counts for each cell type and multiplied these counts by our estimated number of each cell and de-7

termined the available input synapses and boutons in each layer of CA1. The number of connections8

each cell type was likely to make with every other cell type was based on the results of our quan-9

titative assessment. As the quantitative assessment did not make detailed, interneuron type-specific10

estimates of connections between interneurons, we performed additional calculations to arrive at the11

numbers of connections between each type of interneuron in our model. Briefly, we determined the12

number of inhibitory boutons available for synapsing on interneurons within each layer of CA1. Then,13

we distributed these connections uniformly across the available incoming inhibitory synapses onto14

interneurons that we had calculated for that layer. We calculated available incoming synapses by15

using published experimental observations of inhibitory synapse density on interneuron dendrites by16

cell class and layer in CA1, which we combined with known anatomical data regarding the dendritic17

lengths of each interneuron type per layer. We therefore made the following assumption: All available18

incoming inhibitory synapses onto interneurons in a layer have an equal chance of being innervated by19

the available inhibitory boutons targeting interneurons in that layer. For further details of the exact20

calculations, please see the Supplementary Material.21

The electrophysiology of each cell was tuned using a combination of manual and optimization22

techniques. We first fit each cell’s resting membrane potential, capacitance, time constant, and input23

resistance, followed by hyperpolarized properties such as the sag amplitude and time constant, followed24

by subthreshold depolarized properties such as a transient peak response, and finally active properties25

such as spike threshold, rheobase, firing rate, action potential width, height, and afterhyperpolariza-26
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tion. For some cells, we employed the Multiple Run Fitter tool within NEURON to simultaneously fit1

multiple ion channel conductances. The characterization of each cell type, as well as its comparison2

to experimental data from the same cell type, is included in the the Supplementary Material.3

After fitting the cell model properties, we simulated paired recordings to characterize the connec-4

tions between our model cells. Where experimental data existed for paired recordings, we matched5

the experimental holding potential and synapse reversal potential, then performed 10 different paired6

recordings. We characterized the average synapse properties from those 10 runs, including the synap-7

tic amplitude, 10% - 90% rise time, and decay time constant. Finally, we tuned the synaptic weights8

and time constants to fit our averages to the experimental data.9

To determine the synaptic weights and kinetics for those connections that have not yet been10

experimentally characterized, we used a novel modeling strategy we call Network Clamp, described in11

Bezaire et al. (2016). As experimental paired recording data were not available to directly constrain12

the synapse properties, we instead constrained the firing rate of the cell in the context of the in13

vivo network, for which experimental data have been published. We innervated the cell with the14

connections it was expected to receive in vivo, and then sent artificial spike trains through those15

connections, ensuring that the properties of the spike trains matched the behavior expected from each16

cell in vivo during theta (firing rate, level of theta modulation, preferred theta firing phase). Next,17

we adjusted the weight of the afferent excitatory synapses onto the cell (starting from experimentally18

observed values for other connections involving that cell type) until the cell achieved a realistic firing19

rate similar to had been experimentally observed in vivo.20

Stimulation21

As none of the model neurons in the CA1 network are spontaneously active, it was necessary to pro-22

vide excitatory input to them by stimulating their CA3 and entorhinal cortex synapses. Although the23

model code is structured to allow the addition of detailed CA3 and cortical inputs, the stimulation24

patterns used in the present study were not representative of the information content thought to be25

carried via inputs from those areas, because the focus was on the function of the CA1 network in iso-26
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lation from rhythmic extra-CA1 influences. In accordance with experimental evidence of spontaneous1

neurotransmitter release (Kavalali, 2015), we modeled the activation of CA3 and entorhinal synapses2

as independent Poisson stochastic processes. The model neurons were connected to a subset of these3

afferents, such that they received a constant level of excitatory synaptic input.4

We constrained the synapse numbers and positions of the stimulating afferents using anatomical5

data. To constrain the afferent synapse weights, we used an iterative process to determine the com-6

binations of synaptic weights that enabled most of the interneurons to fire similar to their observed7

in vivo firing rates (Figure 5 - figure supplement 1 and Table 6). First, we used the output of an8

initial full-scale simulation to run network clamp simulations on a single interneuron type, altering9

the incoming afferent synapse weights (but not the incoming spike trains) until the interneuron type10

fired at a reasonable rate. Then, we applied the synaptic weight to the afferent connections onto that11

interneuron type in the full-scale model. The resulting simulation then led to a new network dynamic12

as the constrained activity of that interneuron type caused changes in other interneuron activity. We13

then performed this exercise for each interneuron type as necessary until we achieved a network where14

all cell types participated without firing at too high of a level. CCK+ cells had a steep response to15

the weight of the incoming afferent synapses, remaining silent until the weight was increased signifi-16

cantly and then spiking at a high rate, see Figure 5 - figure supplement 1; the particular difficulty in17

obtaining the in vivo observed firing rate for CCK+ cells in the model may indicate that in vivo they18

may be strongly regulated by extra-CA1 inhibitory inputs (e.g., from the lateral entorhinal cortex;19

see Basu et al. (2016) that are not included in the isolated CA1 model).20

Analysis of Simulation Results21

We analyzed the results of each simulation with standard neural data analysis methods provided22

by our SimTracker software (Bezaire et al., 2016), including the spike density function (SDF) of all23

pyramidal neuron spikes (Szűcs, 1998), the periodogram of the SDF, and the spectrogram of the LFP24

analog. We determined the dominant theta and gamma frequencies for the network as the peak in25

the power spectral density estimate obtained by the spectrogram, and confirmed that those peaks26
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are identical for the SDF and the LFP analog. After finding a dominant theta or gamma frequency,1

we then analyzed the level of modulation and preferred firing phase for each cell type. Finally, we2

calculated the firing rate of each cell type.3

LFP analog4

We calculated an approximation of the LFP generated by the model neurons based on the method5

described by Schomburg et al. (2012). For each pyramidal cell within 100 µm of a reference electrode6

location in stratum pyramidale (coordinates = longitudinal: 200 µm; transverse: 500 µm; height7

from base of stratum oriens: 120 µm), the contribution to extracellular potential at each point along8

the dendritic and axonal morphology was recorded using NEURON’s extracellular mechanism and9

scaled in inverse proportion to the distance from the electrode. In order to reduce the computational10

load of the simulation, 10% of the pyramidal cells outside the 100 µm radius were randomly selected;11

their distance-scaled extracellular potentials were scaled up by a factor of 10 and then added to the12

contributions of the inner cells. We performed reference simulations and LFP analog calculations with13

the inner radius set to 200 µm and 500 µm and obtained results identical with those in Figures 3 and14

4 (where an inner radius of 100 µm was used), except for negligible increases in the theta oscillation15

power found in the LFP analog spectrogram.16

Spike Density Function17

We calculated the spike density function (SDF) of all pyramidal cell spikes using a Gaussian kernel18

with a window of 3 ms and a bin size of 1 ms (Szűcs, 1998). To see how a cell’s spiking activity is19

related to its SDF, see Figure 4 - figure supplement 1.20

Oscillations21

To quantify the frequency and power of the oscillations of the network, we computed a one-sided22

Welch’s Periodogram of the SDF (Colgin et al., 2009) using a Hamming window with 50% over-23
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lap. To characterize the stability of the theta oscillation, we ran the control network for 4 sec-1

onds and then computed the spectrogram of the SDF and of the LFP analog using an analysis2

script from Goutagny et al. (2009) based on the mtspecgramc function from the Chronux toolbox3

(http://chronux.org/).4

Spike Phases and Theta Modulation5

We calculated the preferred firing theta phases of each cell, using all the spikes of that cell type that6

occurred after the first 50 ms of the simulation, relative to the filtered LFP analog. The spike times7

were converted to theta phases, relative to the troughs of the LFP analog theta cycle in which they8

fired. We then subjected the spike phases to a Rayleigh test to determine the level of theta modulation9

of the firing of each cell type (Varga et al., 2014).10

Firing Rates11

The firing rates of the cells were calculated by cropping the first 50 ms of the simulation to remove the12

initial effects, and then dividing the resulting number of spikes of each cell type by the total number of13

cells of that type and the duration of the simulation. An alternate average firing rate was calculated by14

dividing by the number of active cells of that type rather than all of the cells of that type, which gave15

the average firing rate over all firing cells instead, to better compare with experimentally observed16

firing rate averages.17

Statistical Comparison of Theta Power18

For the GABAB-related simulations, we ran three of each condition and then performed an ANOVA19

to test for significance in the difference of theta power among the conditions.20
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Cross correlation of theta and gamma1

To investigate whether a relationship existed between the simultaneous theta and gamma oscillations2

found in the LFP analog of our control simulation, we filtered the LFP analog signal within the theta3

range (5-10 Hz) and the gamma range (25-80 Hz). We applied a Hilbert transform to each filtered4

signal and then compared the phase of the theta-filtered signal with the envelope of the gamma-filtered5

signal to determine the extent to which theta could modulate the gamma oscillation.6

Accessibility7

Our model code is available online at ModelDB (code version used to produce results in this work:8

https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604) and Open Source9

Brain (most recent code version: http://opensourcebrain.org/projects/nc_ca1). Open Source10

Brain provides tools for users to characterize and inspect model components. The model is also char-11

acterized online at http://mariannebezaire.com/models/ca1, along with a graphical explanation12

of our quantitative assessment used to constrain the model connectivity Bezaire and Soltesz (2013), as13

well as links to our model code and model results, and detailed instruction manuals for our NEURON14

code and SimTracker tool (Bezaire et al., 2016).15

For those who wish to view and analyze our simulation results without rerunning the simulation,16

our simulation results are available on CRCNS.org at http://doi.org/10.6080/K05H7D60 and can17

be freely accessed after obtaining a free account (Bezaire et al., 2015). Our analyses of these data can18

be recreated using our publically available SimTracker tool.19

Our custom software tool, SimTracker is further discussed in our com-20

panion paper, Bezaire et al. (2016). SimTracker is freely available online at21

http://mariannebezaire.com/simtracker/ and is also listed in SimToolDB at22

https://senselab.med.yale.edu/SimToolDB/showTool.cshtml?Tool=153281. The tool is of-23

fered both as a stand-alone, compiled version for those without access to MATLAB (for Windows,24

Mac OS X, and Linux operating sytems), and as a collection of MATLAB scripts for those with25
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Figure 1: CA1 network connectivity. (A) The model network is arranged in a layered
prism with the lengths of each dimension similar to the actual dimensions of the CA1 region
and its layers. (B) The model cell somata within a small chunk of stratum pyramidale (as
depicted in A) are plotted to show the regular distribution of model cells throughout the layer
in which they are found. (C) Each pyramidal cell in the network has detailed morphology
with realistic incoming synapse placement along the dendrites and soma. (D-E) Diagrams
illustrate connectivity between types of cells. (D) The network includes one principal cell type
(pyramidal cells) and eight interneuron types. Cell types that may connect are linked by a
line colored according to the presynaptic cell type. Most cell types can connect to most other
cell types. Total number of cells of each type are displayed, as are the number of local output
synapses (boutons) from all cells of each type. (E) The number, position, and cell types of
each connection are biologically constrained, as are the numbers and positions of the cells. See
Figure 1 - figure supplement 1 for details about the convergence onto each cell type. Also see
Table 1 and Figure 1 - figure supplement 2 for information about the cell-type combinations
of the 5 billion connections and the axonal distributions followed by each cell type, as well as
detailed connectivity results at http://doi.org/10.6080/K05H7D60.
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Figure 2: Electrophysiology of the model network components. (A) Ion channel den-
sities vary as a function of location (top) in the morphologically detailed pyramidal cell model
(bottom; adapted from Poolos et al. (2002)). Scale bar: 100 µm and 0.01 µF/cm2. (B - C)
The sodium channel found in the pyramidal cell soma is characterized in terms of (B) the acti-
vation/inactivation curves and (C) the current-voltage relation at peak (transient) current and
steady state. (D - (G)) Current sweeps are shown for 4 model cell types: (D) PV+ basket cell,
(E) CCK+ basket cell, (F) O-LM cell, and (G) neurogliaform cell. Scale bar: 100 ms and 20
mV. (H-J) Electrophysiological properties for each cell type, including (H) input resistance, (I)
membrane time constant, and (J) action potential threshold. (K - L) Pyramidal cell synap-
tic connections are characterized as post-synaptic currents with the postsynaptic cell voltage
clamped at -50 mV; (K) synapses made onto the pyramidal cell from all other cell types and
(L) synapses made by the pyramidal cell onto all network cell types. Cells represented by same
colors as in Figure 1. Source Data available at Figure 2 - Source Data.zip. Additional details
available in the Methods, Table 3, and the Supplementary Material.
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Figure 3: Detailed network activity. (A-D) One second of network activity is shown. (A -
B) The LFP analog, filtered at (A) the theta range of 5-10 Hz and (B) the low gamma range of
25-40 Hz, shows consistent theta and gamma signals. Scale bar represents 100 ms and 0.2 mV
(theta) or 0.27 mV (gamma) for filtered LFP traces. (C) Raster of all spikes from cells within
100 µm of the reference electrode point. (D) Representative intracellular somatic membrane
potential traces from cells near the reference electrode point. Scale bar represents 100 ms and
50 mV for the intracellular traces. Source Data available at Figure 3 - Source Data.zip.
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Figure 4: Spectral analysis of model activity. (A) A spectrogram of the local pyramidal-
layer LFP analog (including contributions from all pyramidal cells within 100 µm of the reference
electrode and 10% of pyramidal cells outside that radius) shows the stability and strength of
the theta oscillation over time. The oscillation also featured strong harmonics at multiples of
the theta frequency of 7.8 Hz. (B,D) Welch’s periodogram of the spike density function for
each cell type, normalized by cell type and by displayed frequency range, shows the dominant
network frequencies of (B) theta (7.8 Hz) and (D) gamma (71 Hz). Power is normalized to the
peak power displayed in the power spectrum for each cell type. (C) Cross-frequency coupling
between theta and gamma components of the LFP analog shows that the gamma oscillation is
theta modulated. The gamma envelope is a function of the theta phase with the largest ampli-
tude gamma oscillations occurring at the trough of the theta oscillation. Following convention,
the theta trough was designated 0o/360o; see e.g., Varga et al. (2012). A graphical explana-
tion of the relation between a spike train and its spike density function is shown in Figure
4 - figure supplement 1. Source Data available for this figure at Figure 4 - Source Data.zip.
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Figure 5: Model and experimen-
tal cell theta phases. All model
results are based on the spiking of
the cells within 100 µm of the refer-
ence electrode. (A-B) Firing probabil-
ity by cell type as a function of theta
phase for (A) model and (B) experi-
mental cells under anesthesia (histograms
adapted from Klausberger and Somogyi
(2008); Fuentealba et al. (2008, 2010)
with permission). The model his-
tograms are normalized; see Figure
5 - figure supplement 1 for firing rates.
(C) Theta phase preference and theta
modulation level were correlated; better
modulated cell types spiked closer to the
LFP analog trough near the phase pref-
erence of pyramidal cells. (D) Theta
phase preference plotted on an idealized
LFP wave for model data (base of ar-
row signifies model phase preference and
head of arrow shows distance to anes-
thetized, experimental phase preference).
Source Data available at Figure 5 - Source
Data.zip.
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Figure 6: Altered network configurations. Oscillation power (in mV2/Hz) of the spike den-
sity function (SDF) for pyramidal cells within 100 µm of the reference electrode, at the peak
frequency within theta range (5-10 Hz) in altered network configurations. For corresponding
peak frequencies, see Figure 6 - figure supplement 1. (A) Theta is present at some excitation
levels. (B) Muting each cell type’s output caused a range of effects. (C) The stability and
frequency of spontaneous theta in the network was sensitive to the presence and number of
recurrent connections between CA1 pyramidal cells. (D) Partially muting the broad classes
of PV+ or SOM+ cells by 50% showed that PV+ muting disrupted the network more than
SOM+ muting. (E) Theta falls apart when all interneurons are given the same electrophysi-
ological profile, whether it be of a PV+ basket, CCK+ basket, neurogliaform, or O-LM cell.
(F) Gradually setting all interneuron properties to those of PV+ basket cells did not restore
theta. From left to right: control network; PV+ basket cell electrophysiology; also weights of
incoming synapses; also numbers of incoming synapses; then all interneurons being PV+ basket
cells (with the addition of the output synapse numbers, weights, and kinetics); then variable
RMP (normal disribution with standard deviation of 8 mV). (G) A wide range in excitation
was unable to produce theta in the PV+ B. network. (H) Removing the GABAB component
from the neurogliaform synapses onto other neurogliaform cells and pyramidal cells showed a
significant drop in theta power. Massively increasing the weight of the GABAA component
to produce a similar amount of charge transfer restored theta power (compare the IPSCs cor-
responding to each condition in Figure 6 - figure supplement 2). Standard deviations (n=3)
shown; significance (p=1.8e-05). Source Data available at Figure 6 - Source Data.zip.
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Pre/Post Axo Bis CCK+B Ivy NGF O-LM Pyr PV+B SC-A
Axo 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.12e+07 0.00e+00 0.00e+00
Bis 2.35e+05 3.54e+05 5.76e+05 2.64e+05 0.00e+00 6.40e+05 3.12e+07 8.85e+05 6.80e+04
CCK+B 1.41e+05 2.12e+05 9.79e+05 5.64e+05 0.00e+00 2.62e+05 3.24e+07 5.31e+05 8.32e+04
Ivy 3.53e+05 5.30e+05 3.42e+06 2.11e+06 1.00e+06 2.23e+06 1.28e+08 1.33e+06 4.08e+05
NGF 0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.09e+05 0.00e+00 4.36e+07 0.00e+00 0.00e+00
O-LM 1.18e+05 1.77e+05 1.44e+06 0.00e+00 4.65e+05 9.84e+04 2.49e+07 4.42e+05 1.60e+05
Pyr 7.19e+05 2.43e+06 0.00e+00 2.38e+05 0.00e+00 1.17e+07 6.14e+07 7.03e+06 1.26e+05
PV+B 5.73e+04 8.62e+04 1.37e+05 7.05e+04 0.00e+00 0.00e+00 5.83e+07 2.16e+05 9.60e+03
SC-A 8.82e+03 1.33e+04 1.30e+05 1.06e+05 0.00e+00 1.97e+04 3.74e+06 3.32e+04 1.44e+04
CA3 1.23e+07 2.56e+07 1.44e+07 3.39e+07 0.00e+00 0.00e+00 3.73e+09 6.69e+07 1.55e+06
ECIII 1.43e+06 1.91e+06 4.02e+06 0.00e+00 3.75e+06 0.00e+00 8.09e+08 0.00e+00 4.58e+05

Table 1: Number of synapses between each cell type. Connections between cells generally comprise 1 - 10 synapses each. Presynaptic
cells are listed down the first column (corresponding to each row) and postsynaptic cells are listed along the first row (corresponding
to each column).
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Supercomputer # Processors Sim Time (s) Exchange Time (s) Load Balance
Comet 1680 2610.28 1.05 0.999
Comet 1704 2566.76 0.65 0.999
Comet 1728 2601.22 0.86 0.999
Comet via NSG 1728 2060.88 0.83 0.999
Stampede via NSG 2048 2471.64 1.71 1.000
Stampede 2048 2578.32 0.29 1.000
Stampede 2528 2189.56 1.78 0.999
Stampede 3008 1844.22 0.91 0.999
Stampede 3488 1641.91 0.86 0.999

Table 2: Simulation time, exchange time, and load balance for simulations executed on various
supercomputers and numbers of processors.
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Condition Pyr PV+B CCK+B SC-A Axo Bis O-LM Ivy NGF
Resting Membrane Potential (mV) -63.0 -65.0 -70.6 -70.5 -65.0 -67.0 -71.5 -60.0 -60.0
Input Resistance (MΩ) 62.2 52.0 211.0 272.4 52.0 98.7 343.8 100.0 100.0
Membrane Tau (ms) 4.8 6.9 22.6 24.4 7.0 14.7 22.4 21.1 21.1
Rheobase (pA) 250.0 300.0 60.0 40.0 200.0 350.0 50.0 160.0 170.0
Threshold (mV) 52.0 -36.6 -40.6 -43.1 -41.6 -28.1 100.2 -27.6 -27.7
Delay to 1st Spike (ms) 12.4 74.6 166.6 127.7 43.5 28.4 8.9 173.3 119.0
Half-Width (ms) 80.7 0.9 1.9 1.6 0.6 0.5 112.9 0.6 0.6

Table 3: Electrophysiological characteristics of each model cell type. For more information about model electrophysiology, see the
Supplementary Material.
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Cell Type Hyper. (pA) Step Size (pA) Depol. (pA)
PV+ B. -300 50 +500
CCK+ B. -100 20 +80
O-LM -130 30 +80
NGF -130 20 +190

Table 4: Current injection levels used to characterize interneuron current sweeps in Figure
2D-2G.
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Cell Firing Modulation Phase
Type Rate (Hz) Level p (0o=trough)
Axo. 8.9 0.07 4.58e-130 163.4
Bis. 18.0 0.76 0.00e+00 340.0
CCK+ B. 54.4 0.10 0.00e+00 202.8
Ivy 43.3 0.33 0.00e+00 142.1
NGF. 55.1 0.07 1.46e-32 176.3
O-LM 17.4 0.76 0.00e+00 334.7
Pyr. 6.0 0.74 0.00e+00 339.7
PV+ B. 0.9 0.46 0.00e+00 356.8
S.C.-A. 5.2 0.03 1.13e-07 197.9

Table 5: Preferred theta firing phases for each model cell type.107
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Cell Firing Rate (Hz) Theta State of
Type Theta Non SWR Phase (o) Animal Animal Ref.

ADI 8.60 0.06 0.25 156 anesth: u+k & x rat Klausberger et al. (2005)
Axo-axonic 17.10 3.50 2.95 185 anesth: u+k & x rat Klausberger et al. (2003)
Axo-axonic 27 27 251 awake, head restraint mouse Varga et al. (2014)
Bistratified 5.90 0.90 42.80 1 anesth: u+k & x rat Klausberger et al. (2004)
Bistratified 34 36 0 awake, head restraint mouse Varga et al. (2014)
Bistratified 30.42 27.65 35.82 2 awake rat Katona et al. (2014)
CCK+ Basket 9.40 1.60 2.70 174 anesth: u+k & x rat Klausberger et al. (2005)
Ivy 0.70 1.70 0.80 31 anesth: u+k & x rat Fuentealba et al. (2008)
Ivy 2.80 2.10 5.20 46 awake, free rat Lapray et al. (2012)
Ivy 2.40 3.00 6.70 awake, free rat Fuentealba et al. (2008)
NGF 6.00 2.65 2.30 196 anesth: u+k & x rat Fuentealba et al. (2010)
O-LM 4.90 2.30 0.23 19 anesth: u+k & x rat Klausberger et al. (2003)
O-LM 29.80 10.40 25.40 346 awake, head restraint mouse Varga et al. (2012)
O-LM 17.30 11.88 18.95 342 awake rat Katona et al. (2014)
PPA 5.75 1.95 1.50 100 anesth: u+k & x rat Klausberger et al. (2005)
PV+ Basket 7.30 2.74 32.68 271 anesth: u+k & x rat Klausberger et al. (2003)
PV+ Basket 234 anesth: u+k & x rat Klausberger et al. (2005)
PV+ Basket 21.00 6.50 122.00 289 awake, free rat Lapray et al. (2012)
PV+ Basket 25.00 8.20 75.00 307 awake, head restraint mouse Varga et al. (2012)
PV+ Basket 28 77 310 awake, head restraint mouse Varga et al. (2014)
Pyramidal 20 anesth: u+k & x rat Klausberger et al. (2003)
Trilaminar 0.20 0.10 69.00 trough anesth: u+k & x rat Ferraguti et al. (2005)
Double Proj. 0.90 0.55 26.93 77 anesth: u+k & x rat Jinno et al. (2007)
Oriens Retro. 0.53 0.37 53.37 28 anesth: u+k & x rat Jinno et al. (2007)
Radiatum Retro. 5.15 1.90 0.70 298 anesth: u+k & x rat Jinno et al. (2007)

Table 6: Firing rates and theta phase preferences for various cell types in various conditions. Theta phase is relative to the LFP
recorded in the pyramidal layer, where 0o and 360o are at the trough of the oscillation. non: non-theta/non-SWR state. SWR:
sharp wave/ripple. u+k & x: urethane + supplemental doses of ketamine and xylazine.
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Theta Gamma Overall
Condition Frequency Power Frequency Power Frequency Power

Tonic Excitation Level (Hz)
0.20 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.40 5.9 5.6e+04 25.4 4.1e+04 13.7 6.5e+04
0.50 9.8 8.1e+04 25.4 1.0e+05 19.5 5.6e+05
0.65 (Ctrl.) 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
0.80 9.8 7.8e+05 29.3 2.6e+05 9.8 7.8e+05
1.00 9.8 6.8e+05 29.3 1.4e+05 9.8 6.8e+05
1.20 9.8 5.1e+05 33.2 1.8e+05 11.7 8.2e+05
1.40 9.8 1.9e+05 25.4 3.4e+05 11.7 8.6e+05
Single Interneuron E’phys. Profile
Ctrl 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
O-LM n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
CCK+B 9.8 5.7e+03 62.5 6.9e+05 62.5 6.9e+05
PV+B n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
NGF 5.9 2.6e+04 39.1 2.4e+06 39.1 2.4e+06
Inh. Cells Converge to PV+ B. Cells
Ctrl 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
E’phys. n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
+input wgt 7.8 6.8e+02 44.9 1.6e+06 21.5 3.4e+06
+input # 9.8 6.1e+03 31.3 1.1e+06 15.6 2.0e+06
All PV+B n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
Var. PV+B n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
Outputs Muted
Ctrl 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
SOM 7.8 4.7e+05 27.3 1.4e+05 7.8 4.7e+05
PV 9.8 3.2e+04 27.3 8.1e+05 13.7 1.5e+06
Pyr to Pyr
2.0x 9.8 1.1e+05 25.4 7.3e+05 13.7 1.0e+06
1.0x (Ctrl.) 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
0.5x 7.8 8.0e+04 29.3 2.2e+05 29.3 2.2e+05
None 9.8 1.1e+00 70.3 3.7e+01 70.3 3.7e+01
Outputs Muted From Each Cell Type
Ctrl 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05
Pyr 7.8 1.1e+00 70.3 3.8e+01 70.3 3.8e+01
PV+B 9.8 8.8e+03 29.3 1.9e+06 29.3 1.9e+06
SC-A 9.8 4.9e+05 27.3 1.8e+05 9.8 4.9e+05
O-LM 7.8 5.1e+05 25.4 8.3e+04 7.8 5.1e+05
NGF 9.8 5.2e+03 27.3 9.1e+05 13.7 1.6e+06
Ivy 7.8 5.3e+05 25.4 2.0e+05 7.8 5.3e+05
CCK+B 5.9 5.5e+03 25.4 3.3e+03 3.9 5.7e+03
Bis 5.9 1.3e+04 29.3 1.7e+06 29.3 1.7e+06
Axo 7.8 4.0e+03 33.2 1.2e+06 15.6 1.9e+06
Pyr & PV+ B. Network: Tonic Excitation Level (Hz)
0.01 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.05 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.10 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.20 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.40 5.9 2.3e+02 25.4 1.2e+02 3.9 2.4e+02
0.65 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
0.80 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
1.20 n/a 0.0e+00 n/a 0.0e+00 n/a 0.0e+00
Ctrl 7.8 5.0e+05 25.4 2.0e+05 7.8 5.0e+05

Table 7: Peak, theta and gamma frequencies and powers of the pyramidal cell spike density
function using Welch’s Periodogram. As in Figure 6 - figure supplement 1, networks where no
pyramidal cells spiked - resulting in zero power within the spectral analysis of the pyramidal
cell spike density function - have their peak frequencies listed as “n/a” for “not available”.

111

112

113

114

45

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2016. ; https://doi.org/10.1101/087403doi: bioRxiv preprint 

https://doi.org/10.1101/087403
http://creativecommons.org/licenses/by/4.0/


Figure Supplements1
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Figure 1 - figure supplement 1: Quantitative Network Connectivity. The average number
of incoming synapses per postsynaptic cell of the given type are shown for (A) all inputs to the
cells, (B) all excitatory inputs to the cells and (C) all inhibitory inputs to the cells.
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Figure 1 - figure supplement 2: Anatomically constrained connectivity. The axonal dis-
tributions are shown per presynaptic cell type. The distribution of boutons is plotted as a
function of distance from the presynaptic cell’s soma. Boutons connecting to all possible types
of postsynaptic cells are included in the plot. The colors correspond to each presynaptic cell
type using the same color code as previous figures.
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Figure 4 - figure supplement 1: Different views of cell activity. Several ways of characteriz-
ing model cell activity per cell type are shown using the spikes from the ivy cells as an example.
(A) The spike times of each ivy cell are plotted as a function of time and ivy cell number. A
subset of ivy cells positioned within 100 µm of the reference electrode location (whose spikes are
shown in black) are then carried forward in the remaining calculations. (B) The spikes of the
local ivy cells are binned into 1 ms windows to give spike counts per window. (C) A continuous
representation of the ivy cell spikes as a function of time is given in the spike density function
(SDF) computed from the ivy cell spike times. (D) A Welch’s Periodogram is computed, which
summarizes the power of each oscillation frequency in the ivy cell SDF Although only a part
of the simulation is shown, the full simulation length (except the first 50 ms) was used in the
spectral analysis.
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Figure 5 - figure supplement 1: Firing rates of model and experimental cells of each
type. For experimental cells, firing rates in both the anesthetized and awake states were
included where available. See Table 6 for sources of experimental data.
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A

B

Figure 5 - figure supplement 2: Theta phase-specific firing preferences of various biolog-
ical hippocampal cell types as reported in the literature. The trough of the pyramidal-
layer LFP is designated as 0o/360o and the peak as 180o. There is variation in phase preference
for given cell types as a function of experimental preparation. Shown are (A) anesthetized and
(B) awake experimental conditions. Reference subscripts correspond to: 1: Klausberger et al.
(2003), 2: Klausberger et al. (2004), 3: Klausberger et al. (2005), 4: Lapray et al. (2012), 5:
Varga et al. (2012), 6: Fuentealba et al. (2008), 7: Fuentealba et al. (2010), 8: Varga et al.
(2014). See Table 6 for further details.
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Figure 6 - figure supplement 1: Peak Frequencies of Oscillations in Altered Networks.
Peak theta frequency (within 5-10 Hz) of the spike density function (SDF) for all pyramidal cells
within 100 µm of the reference electrode in each altered network configuration. For networks
where no pyramidal cells spiked, resulting in zero power within the spectral analysis of the
pyramidal cell spike density function, their peak frequencies are listed as “not available” or
“n/a”. (A) Spontaneous theta oscillation accelerated out of theta range with more excitation.
(B) Muting each cell type shifted the oscillation out of range (neurogliaform, CCK+ basket,
and axo-axonic cells), disrupted theta but not gamma (not shown; pyramidal, PV+ basket,
and bistratified cells), or had little effect (S.C.-A., O-LM, and ivy cells). (C) Doubling the
connections between CA1 pyramidal cells increased the theta frequency, while networks with
half the number or no recurrent collaterals lost the slow oscillation but kept gamma. (D)
Removing 50% of PV+ cell inhibition (PV+ basket, bistratified, and axo-axonic cells) or 50%
of SOM+ cell inhibition (bistratified or O-LM cells) shifted the oscillation out of theta range or
lost the slow oscillation entirely but kept gamma. (E) Peak oscillation shifted out of theta range
when all interneurons had the same electrophysiological profile, regardless of the profile used.
(F) Converging all properties to PV+ basket cells, gamma was restored (not shown) but not
theta (left to right: control; network with 1: diverse interneurons with same electrophysiology; 2:
also with same weights of incoming synapses; 3: also with same numbers of incoming synapses;
4: complete conversion to PV+ basket cells; 5: added variability in resting membrane potential
(normal distribution with st. dev. = 8 mV)). (G) In the all-PV+ basket cell network, a
wide range of excitation levels could not produce a spontaneous theta rhythm. (H) Removing
GABAB increased the oscillation frequency.
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Control

No GABAB
No GABAB, Equiv. CT

Figure 6 - figure supplement 2: IPSCs from the neurogliaform to pyramidal cell synapse
corresponding to the different conditions in Figure 6H. These traces are from pyramidal
cells clamped at -50 mV during a paired recording from a presynaptic neurogliaform cell with a
GABAA reversal potential of -60 mV and a GABAB reversal potential of -90 mV. The currents
shown are averages from 10 recordings. Scale bar = 100 ms and 5 pA.
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Source Data Files1

Figure 2 - Source Data2

Included are data for voltage and current clamp data for ion channel, single cell, and synaptic char-3

acterizations. For the four interneuron types with current injection sweeps displayed, a separate file4

is provided for each injection in the sweep, with the naming convention trace_[cell type]_[current5

injection level].dat, where the current injection level is given in pA. For all interneuron types, the6

current injection sweep data has also been gathered into an AxoClamp ATF (tab-delimited) style of7

file, to allow for (re)calculation of cell properties according to the processes used for calculations from8

biological recordings. These files follow the naming convention of [celltype].atf.9

The ion channel characterized in this figure was an Nav channel, inserted into a single compartment10

cell of diameter and length 16.8 microns (a soma) with a density such that the maximum, macroscopic11

conductance was .001 µS/cm2. The reversal potential of the channel was +55 mV and the settings12

during the characterization protocol were: temperature=34 degrees Celsius, axial resistance = 21013

ohm*cm, [Ca2+]internal = 5.0000e-06 mM, specific membrane capacitance = 1 µF/cm2. For activation14

steps, the cell was held at -120 mV and then stepped to potential levels ranging from -60 mV to +8015

mV. For inactivation steps, the cell was held at various potential levels ranging from -120 mV to +4016

mV for 500 ms and then stepped to +20 mV. Each current injection step is recorded in a separate file,17

with activation step files following the name convention of stepto_[stepped-to potential in mV].dat18

and inactivation step files following the name convention of hold_[held-at potential in mV].dat.19

For the synaptic responses, the postsynaptic cell was voltage-clamped at -50 mV and the reversal20

potential of the synapse was kept at its natural (as defined in the network model code) potential. A21

spike was triggered in the presynaptic cell and the current response was measured in the postsynaptic22

cell at the soma. This recording was repeated 10 times, with a randomly chosen connection location23

each time, and the response was then averaged. In all paired recordings with the pyramidal cell as24

postsynaptic cell, the sodium channels were blocked to prevent a suprathreshold response. The file25

convention for paired recordings is [presynaptic cell].[postsynaptic cell].[Recording #].dat26
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• stepto_[stepped-to potential in mV].dat1

• hold_[held-at potential in mV].dat2

• trace_[cell type]_[current injection level].dat3

• [celltype].atf4

Figure 3 - Source Data5

This zip file contains 3 files. First, it includes the LFP.dat file which contains the raw, theta-filtered,6

and gamma-filtered LFP analog traces (the raw local field potential (LFP) analog was calculated7

from the network activity as detailed in the Methods section). Second, the zip file contains Mem-8

brane_Potentials.txt, which includes the full duration, intracellular somatic membrane potential9

recordings from the specific cells shown in Figure 3. Third, it includes the SpikeRasterLocal.dat10

file which includes the spike times for the length of the entire simulation, from the specific cells dis-11

played in raster shown in Figure 3. The spike times of every single cell in the network are available12

in the CRCNS repository. Note that the displayed spike raster in Figure 3 has been downsampled in13

such a way as to preserve its visual appearance while reducing the image size and load time.14

• FilteredLFP.dat15

• Membrane_Potentials.txt16

• SpikeRasterLocal.dat17

Figure 4 - Source Data18

This zip file contains the All_SDF_Ctrl_Condition.txt file. The file includes the Spike Density19

Functions (SDFs) of each cell type in the control network. The calculation of the Spike Density20

Function is detailed in the Methods section. The power spectra of the SDFs shown in Figure 4 were21

obtained via a one-sided periodogram using Welch’s method where segments have a 50% overlap with22

a Hamming Window. The spectra for each cell type was normalized to itself so that each cell type23
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could use the full range of colors in the colorbar to show the shape of its spectra, despite different1

absolute peak powers for different cell types. Note that the specrogram was computed from the raw2

LFP analog trace (included in the source data of Figure 3) using the method detailed in Goutagny et3

al (2009). The cross-frequency coupling was illustrated by performing a Hilbert transform on the raw4

LFP analog trace to extract the theta phase and gamma envelope as a function of time.5

• LFP.dat6

• All_SDF_Ctrl_Condition.txt7

Figure 5 - Source Data8

This zip file contains a celltype.txt file that summarizes information about each cell type in the9

model, and it contains one file per each cell type, with the name convention Spike_Phase_Time_[cell10

type].txt. The Spike_Phase_Time_* files list, for each cell type, the spike times from all of the cells11

of that type, and calculated theta phases (relative to the theta-filtered LFP analog) of each spike.12

From the list of spike phases per cell type, the preferred theta phase, level of theta modulation, and13

statistical significance were calculated for each cell type using a Rayleigh test for circular data (Varga14

et al, 2014). The average firing rates of each cell type were obtained by dividing the total number of15

spikes by the length of the simulation (4000 ms) and by the number of cells of each type (listed in the16

celltype.txt file).17

• Spike_Phase_Time_*cell.txt18

• celltype.txt19

Figure 6 - Source Data20

This zip file contains two files. First, it includes a tab-delimited text file called Pyramidal_SDF_All_Conditions.txt,21

which contains the full length Spike Density Function computed at a resolution of 1000 Hz from the22

spikes of all pyramidal cells within the local range of the electrode point in the model network, for each23

network condition studied in Figure 6. Second, it contains a file called Mapping_Network_Condition.txt24
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that maps the names of the simulations (used in the header of Pyramidal_SDF_All_Conditions.txt)1

to the bar labels in the graphs of Figure 6.2

The spike times of all pyramidal cells from all network conditions (from which the SDFs were3

computed) are available online within the CRCNS repository at http://doi.org/10.6080/K05H7D604

and the calculation of the Spike Density Function is detailed in the Methods section. The power5

spectra of the SDFs included here were obtained via a one-sided periodogram using Welch’s method6

where segments have a 50% overlap and a Hamming Window. The highest power within the theta7

oscillation frequency range of 5 - 10 Hz is reported in Figure 6, and the frequency at which the highest8

power occurred is reported in Figure 6 - figure supplement 2. Table 6 also lists the power and frequency9

for each condition.10

Figure 6F included three statistically independent simulations from each network condition (control11

+ two experimental conditions). We performed a one-way analysis of variance (ANOVA) of the peak12

power of the pyramidal cell SDF within the theta frequency range, including all three simulations13

from each of the three conditions, grouped by condition.14

• Pyramidal_SDF_All_Conditions.txt15

• Mapping_Network_Condition.txt16
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