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ABSTRACT 
 
The three-dimensional architecture of DNA within the nucleus is a key determinant of 
interactions between genes, regulatory elements, and transcriptional machinery. As a result, 
differences in loop structure are associated with differences in gene expression and cell state. 
Here, we introduce diffloop, an R/Bioconductor package for identifying differential DNA 
looping between samples. The package additionally provides a suite of functions for the quality 
control, statistical testing, annotation and visualization of DNA loops. We demonstrate this 
functionality by detecting differences in DNA loops between ENCODE ChIA-PET datasets and 
relate looping to differences in epigenetic state and gene expression.  
  
 
BACKGROUND 
 
The organization of DNA within the nucleus into hierarchical three-dimensional (3D) structures 
plays a key role in regulating gene expression by determining the accessibility of genes to the 
transcriptional machinery as well as the proximity of genes to their distal regulatory elements. 
Differences in 3D architecture, such as the presence or absence of “loops” between specific 
enhancers and their target genes, are associated with transcriptional variation in both normal and 
disease states [1]. Intriguingly, several recent studies have implicated pathogenic alterations in 
genome topology with a diverse set of diseases including cancers and autoimmune diseases [2-
4]. 
  
Recent experimental techniques that couple chromatin conformation capture (3C)[5] with high-
throughput sequencing have made the genome-wide identification of 3D interactions feasible. 
One such technique, Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-
PET), uses chromatin immunoprecipitation to capture interactions mediated by specific 
structural, regulatory, or transcriptional machinery proteins and is especially suited for high-
resolution identification of 3D interactions. In addition, the high-throughput chromosome 
conformation capture (Hi-C) assay, which yields a potentially complete map of DNA proximity, 
can also be used to identify DNA loops [6, 7].  
 
In order to fully explore the role that 3D genome organization plays in determining normal and 
pathogenic cell states, statistical tools are needed to identify differences in topology in a similar 
manner to which differential expression analysis is applied to transcriptional data. Additionally, 
the systematic integration of biological prior knowledge, such as the location of active enhancer 
regions, into topology analyses can provide annotation and insight into the regulatory role of a 
loop. Examples of loop annotation categories include enhancer-promoter [1] and disrupted 
neighborhoods[4]. Moreover, a computational framework that facilitates integration of other 
genomic data (e.g. DNA variation, RNA transcription, DNA and histone modification, etc.) in 
3D genome analyses will help resolve the functional implication of DNA looping and relate 
these topological features to phenotypic variation. 
 
To address these needs, we have developed diffloop, an R/Bioconductor package that implements 
statistical testing for differential DNA looping between samples from ChIA-PET and other 3D 
assays. diffloop additionally provides functionality for quality control and visualization of 
differential DNA topological features and facilitates a platform for integrative analysis with other 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2016. ; https://doi.org/10.1101/087338doi: bioRxiv preprint 

https://doi.org/10.1101/087338
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

types of genomic data. To demonstrate the utility of diffloop, we compare differences in DNA 
topology between three cancer cell lines using RNA Polymerase II ChIA-PET data from the 
ENCODE project. Subsequent integrative genomic analyses demonstrate the utility of 
incorporating topology data in analysis of epigenetic variation and gene expression. 
 
 
RESULTS 
 
diffloop is designed to integrate with other bioinformatics packages available in the 
R/Bioconductor environment [8]. Although diffloop can identify topological differences and 
provide biological annotation of DNA loops for arbitrarily complex experimental designs, we 
focus for simplicity in this paper on two-group pairwise comparisons. Raw ENCODE project 
ChIA-PET sequencing data was obtained for five samples representing the MCF-7 breast cancer 
cell line (N=2), the K562 leukemia cell line (N=2), and the HCT-116 colon cancer cell line 
(N=1) [9]. 
 
Preprocessing 
Assays such as ChIA-PET enrich for chromatin interactions where interacting loci, termed 
anchors, are bound by a protein of interest. Anchors linked by paired-end tags/reads (PETs) 
represent distal regions of DNA that co-localize in three-dimensional space. The preprocessed 
data input to diffloop consists of interaction counts between putatively interacting anchors, as 
shown in Figure 1. Raw data preprocessing pipelines that produce the standard bed paired-end 
(.bedpe) input data format are described in the Methods. diffloop collates these read counts and 
assembles a list of anchors and a counts matrix (see Methods). In effect, the counts matrix 
provides the level of evidence supporting each putative loop (row) for each sample (column). 
Under this construct, familiar techniques such as differential testing and principal component 
analyses can be applied to the counts matrix. 
 
Quality Control and Normalization 
Across all samples from the three cell lines considered for our analyses, we observed 89,806 
anchor pairs involving 25,802 anchor loci. We first examined whether the cell types could be 
clustered using raw loop PET counts. To achieve this, we first computed the principal component 
plot of the loop counts matrix (see Methods). Figure 2 (A) reflects the first two principal 
components of the matrix with all of 89,806 loops. Counts are scaled by a per-sample size factor 
calculated using the DESeq2 normalization approach [10]. Scaling PET counts by these size 
factors removes the strong dependency of principal components on sequencing depth. A plot of 
the number of loops with varying levels of PET count support (Figure 2 (B)) indicates that the 
MCF-7 and K562 samples have similar coverage, while the HCT-116 sample appears as an 
outlier where very few loops are represented by multiple PETs. This lower quality sample was 
thus excluded from further analysis.  
 
As we wanted to exclude bias related to copy number variation (CNV) in these cancer genomes, 
we removed all interactions that were associated with anchors in known CNV regions in either of 
the MCF-7 or K562 cell lines. CNVs are known to affect chromatin interaction counts [11] and 
likely to bias differential looping analysis, especially in cancer genomes. In order to exclude such 
bias, we only considered interactions where neither anchor overlapped one of the nearly 500 
CNV regions for either the MCF-7 or K562 cell lines. [9] Across all samples, we observed 9,723 
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of our 25,802 anchor regions overlapping a CNV region by at least 1 base and removed all loops 
involving at least one of these anchors, leading to 59,123 CNV-free loops in the K562 and MCF-
7 samples. 
 
We next filtered the observed interactions to retain only those that support valid loops suitable 
for differential analysis through a two-step process. First, we identified statistically significant 
loops by retaining only those anchor pairs whose interaction counts were significantly higher 
than that expected based on the background chromatin interaction frequency. diffloop combines 
counts across samples and assigns statistical significance to each putative loop using the method 
developed by Phanstiel et al. for the Mango ChIA-PET preprocessing pipeline [12]. We retained 
24,601 loops in our combined K562 and MCF-7 samples that were significant at an FDR of 0.01 
from the Mango model. Finally, we excluded anchor pairs not supported by at least two samples 
with two PETs each as proposed in other loop analyses [13], retaining 9,566 loops. Retaining 
loops with sufficiently high PET counts is analogous to filtering for genes that have a reasonable 
expression level in differential expression analyses [10]. Figure 2(C) summarizes the number of 
loops and PETs before and after these quality-filtering measures across each sample.  
 
Differential loop calling 
To identify differential loops between cell types, diffloop applies the statistical test in edgeR [14] 
where counts are modeled using the negative binomial distribution and an empirical Bayes 
procedure is used to moderate the degree of overdispersion. The counts matrix, rather than 
representing reads mapped to genes or transcripts as is typical in an expression analysis, instead 
contains PETs (i.e. paired-end reads). We test for statistically significant differential loop 
strength (i.e PET count) between sample groups. While the mean-variance relationship of the 
ChIA-PET data does not deviate significantly from Poisson at current sequencing depths, the 
trend is similar to that observed at low transcript counts for RNA-Seq data (Figure S1). diffloop 
also makes the limma-voom [15] differential count test available as an alternative but we did not 
find evidence of improved performance relative to the default edgeR method (Figure S6, S7; 
Table S3,S4).  
 
At an FDR of 1%, we identified 2,833 differential loops between the cell types, including 2,122 
loops that were annotated as enhancer-promoter loops (see Methods). Of the 2,833 differential 
loops, 1,581 were more prominent in the MCF-7 (1,252 more prominent in K562). Table 1 
summarizes the top 5 differential enhancer-promoter loops unique to each cell line. To 
characterize the topological differences more systematically, we identified pathways enriched for 
genes involved in differential enhancer-promoter looping. We assessed MsigDB hallmark gene 
sets [16] using a Wilcoxon rank sum test (Table 2). Several of the eight pathways enriched (FDR 
< 0.01) for genes with differential enhancer-promoter loops have existing evidence of relevance 
to the two cell types and cancers. Genes related to estrogen response such as GREB1 and XBP1 
[17, 18], for example, are linked by several strong loops to unique enhancers in the MCF-7 
breast cancer cell line. Conversely, targets associated with c-MYC transcription factor, which 
plays a well-documented role in leukemia [19], were enriched in K562. These results suggest 
that differential topology analyses can systematically uncover known and novel regulatory loops 
related to disease and other phenotypes of interest.  
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Visualizations of differential looping 
Figure 3 shows two examples of regions with differential looping with corresponding tracks for 
the active enhancer mark, H3K27 acetylation (H3K27ac). Panel (A) shows a dynamic 3D 
landscape with many differential loops present more strongly in the K562 leukemia cell line than 
the MCF-7 breast cancer cell line. Most prominently, several unique enhancer-promoter loops 
(red) link the MTHFR promoter with nearby enhancers. Several of the enhancers are also linked 
by enhancer-enhancer loops (purple). Consistent with the increased looping the MTHFR gene is 
expressed at a higher level in the K562 (leukemia) cell line relative to MCF-7 (breast cancer) cell 
line (FDR = 2.95 x 10-11). Notably, variants near this gene have been associated with increased 
risk for a variety of leukemias.[20, 21] Conversely, Panel (B) shows a more active three-
dimensional regulatory system in the MCF-7 cell line near the NFKBIA gene, which has been 
linked to breast cancer [22] and is overexpressed in MCF-7 compared to K562 (FDR = 0.0211).  
 
Epigenetic correlates of differential loops 
To assess the relationship between differential looping and chromatin state, we compared the 
MCF-7/K562 log fold-change in PET count to corresponding ratios for DNase hypersensitivity 
(open chromatin), DNA methylation from the Illumina 450k array, and ChIP-Seq data for 
RAD21 (a cohesin subunit) and H3K27ac. As it has been suggested that the alteration of one 
loop anchor is sufficient to disrupt the loop[13], we used the anchor with the greatest difference 
in epigenetic mark in each case. For the sequencing data (ChIP-Seq, DNase), we subtracted the 
mean of the changes to account for variable total sequencing depth. Figure 4 summarizes these 
results, which indicate that increasing loop strength in a cell type is positively correlated with (A) 
open chromatin, (C) cohesin localization, and (D) active enhancer markings. On the other hand, 
(B) DNA methylation was negatively correlated with loop strength, suggesting that 
hypermethylation of a genomic locus may inhibit loop formation.  
 
Relationship between looping and gene expression 
Having ascertained that loop strength is tightly correlated with epigenetic state, we next sought 
to characterize the relationship between looping and transcription with a focus on the role of 
enhancer-promoter interactions. Figure 5 (A) summarizes differential expression in MCF-7 vs. 
K562 as a function of loop strength showing that differences in enhancer-promoter loop strength 
between the cell types is strongly positively correlated with differences in gene expression level. 
Of the pairs of enhancer-promoter loops/transcripts where both the loop and gene expression 
were significantly differential (FDR < 0.01; N = 144), 98.6% agreed in direction.  
 
As both H3K27 acetylation and DNA methylation are known to correlate with transcription[23], 
we sought to investigate whether these marks might play different roles at gene promoters vs. 
distal enhancers. Figure 5 shows that, as expected, both distal (B) and promoter (C) changes in 
H3K27ac are positively correlated with expression whereas both distal (D) and promoter (E) 
changes in DNA methylation were negatively correlated with expression. Interestingly, the effect 
of epigenetic alterations was far more pronounced at the distal enhancer region compared to the 
promoter region. Table 3 summarizes the simple linear regression and sample sizes for these 
panels as well as each plot contained in Figure 5. In particular, we note that variation in 
enhancer H3K27ac had the strongest correlation with gene expression. Given that identifying the 
enhancers associated with a gene is non-trivial, and that over 40% of enhancers skip the closest 
gene when interacting with their target promoters [24], this finding highlights the utility of a 
genome topology map for integrative analyses of transcription and epigenetics. Differential loops 
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(indicated in red) did not appear to deviate from the overall trend of epigenetic values at 
enhancers/promoters correlated with the transcriptional outcomes. 
 
 
DISCUSSION 
 
A number of recent studies have implicated genome topology alterations in pathogenesis [1-4]. 
As the precise causes and effects of variability in DNA looping between cellular states is not 
well characterized, computational tools are needed to identify topological differences with 
statistical rigor and integrate putative regions of differential looping with the wealth of existing -
omics data. To address this need, we have presented diffloop, an R/Bioconductor package that 
borrows much of its statistical methodology from differential expression analysis methods for 
RNA-Seq count data. Our package provides a full suite of functions to identify, annotate and 
contextualize DNA loops that vary between samples. The implementation of diffloop readily 
integrates with other R/Bioconductor packages and workflows and provides straightforward 
functionality for integrating genetic, epigenetic, and transcriptional data in the context of 
variability in the three-dimensional genome.  
 
The base functionality of diffloop is designed to import processed data in a form that resembles 
.bedpe files (as shown in Figure 1) and perform differential loop calling two or more conditions 
that each have two or more samples. We note that integrating ChIA-PET data from experiments 
that target different factors is not advised. Moreover, while conditions without replicates can be 
analysed, diffloop will not assign statistical confidence for differences in this setting. Thus, we 
focused our analysis on ChIA-PET data from the K562 and MCF-7 cell lines that had replicates 
of ChIA-PET data against RNA POL2. Other analyses may focus on loops derived from ChIA-
PET protocols against other commonly studied factors such as CTCF, SMC1 or RAD21 as well 
as loops derived from Hi-C and similar chromosome conformation capture protocols. 
 
We first compared the aggregate of the topological loops from ChIA-PET between three types of 
cancers and determined that cellular phenotypes indeed cluster based on their distinctive 
topology. However, as one of these cancer types (HCT-116) had only one technical replicate and 
had considerably poorer coverage we focused all subsequent analyses on the comparison of two 
cancer types with replicates, namely, K562 and MCF-7. While our comparison is close to 
minimal for statistical inference (2 groups by 2 replicates each), diffloop can handle arbitrarily 
complex designs, providing unique avenues to access the topological changes associated with 
cell lineages, such as differentiating stem cells [13] or pre-cancerous, oncogenic, and metastatic 
cell states.  
 
Since chromatin interaction counts are known to be strongly distance dependent, we additionally 
investigated whether there could be between-sample variation in this relationship. This would 
suggest making the size factor dependent on loop width or loop PET count, similar to an 
approach used for Hi-C [25]. In this dataset, we did not find evidence for such a loop width 
dependency (Figure S3) and hence decided that a single scale factor correction value for each 
sample was sufficient for normalization of the examined datasets. 
 
When assessing the correlation between variability in epigenetic features (open chromatin, DNA 
methylation, histone acetylation, and cohesin localization) and differential loops (Figure 4), we 
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determined that strong changes in these one-dimensional epigenetic data at either anchor were 
highly correlated (Table 3) with the presence of a differential loop. It is possible that significant 
alterations in DNA methylation or open chromatin may affect the ability of loop-mediating 
proteins to bind to the genome, and that resulting loss of a DNA loop prevents the transcriptional 
machinery from activating target genes. We therefore expect that the topological structure of the 
genome is a vital link in understanding the effect of epigenetic variability on gene expression. 
Similarly, much of the effect of distal genetic variation on transcription as uncovered through 
expression quantitative trait loci analyses may be mediated through the 3D architecture of the 
genome.  
 
One key finding was that variation in distal DNA methylation and distal enhancer markings 
(indicated by H3K27ac) are more highly correlated with differential expression than the 
epigenetic signature at proximal promoter regions. Our finding corroborates previous findings 
that enhancer DNA methylation more highly correlated with gene expression [26], and provides 
a framework to use topological data to conveniently link distal enhancer regions to their specific 
transcription start sites. While the distal regulatory elements accounted for a significant 
proportion of the variability in gene expression (Table 3), the complexities associated with 
multiple enhancer-promoter and enhancer-enhancer loops per transcription start site convolutes 
the direct effect of epigenetic variation on gene expression. We anticipate that subsequent 
iterations of diffloop will include functionality to synthesize the full spectrum of connections 
when linking epigenetic data to transcriptional variation as mediated through the 3D genome.  
 
An estimated nearly 40% of enhancer regions affect genes that are not the closest (in one-
dimension)[24] implying analysis of the topology of the genome is vital to understanding what 
epigenetic modifications affect transcriptional processes. Moreover, as significant variability in 
transcription leads to distinct cellular states, characterizing the variable topology of the genome 
is vital for mechanistically bridging epigenetic changes like variable open chromatin and DNA 
methylation to their transcriptional effects. While 3C assays have provided a means to localize 
distal regulatory regions in the topological landscape to specific genes, statistically rigorous and 
computationally flexible tools are needed to fully characterize the 3D genome. Our analyses of 
the topological variability between cancers from the ENCODE project suggest that diffloop may 
be a useful resource for integrating genome topology data into existing workflows. 
  
 
CONCLUSIONS 
 
Our novel software package, diffloop, provides a user-friendly environment for analyzing 
genome topology data in the R/Bioconductor environment. Specifically, diffloop provides a suite 
of tools to uncover differential loops in DNA with statistical rigor and integrate other 
bioinformatics data. Our analyses show how differences in chromatin accessibility, DNA 
methylation, histone modifications, and cohesin localization correlate with differences in DNA 
looping, and how looping relates to differences in gene expression and cellular phenotypes. In 
particular, epigenetic variability in distal regulatory elements is more tightly correlated with gene 
expression than in promoter regions, emphasizing the value of an improved understanding of the 
3-dimensional structure of the genome.   
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METHODS 
 
diffloop Data Structure 
The core functionality of diffloop is designed around loops objects, a novel S4 class implemented 
in the package. Each loops object contains five slots that provide an efficient storage of three-
dimensional data in the R environment. Specifically, the anchors slot contains a GRanges[27] 
object specifying the genomic coordinates of the DNA anchors identified through peak calling; 
the interactions slot represents each loop (row) by a pair of indices (two columns) specifying its 
two anchors; the counts matrix summarizes the number of supporting PETs for each loop (row) 
per sample (column); the colData slot contains per-sample information, such as group labels and 
normalizing constants; and the rowData slot, which provides per-loop annotation, such as loop 
width, loop type, and statistical significance measures. Figure 6 provides a graphical overview 
of the loops object as well as the functions (indicated in bold) employed in diffloop to integrate 
the heterogeneous data and the additional software packages that readily integrate with our 
framework. 
 
Preprocessing ChIA-PET Sequencing Data for Import into diffloop 
A number of software solutions, including the Mango pipeline, exist to process raw sequencing 
reads from a ChIA-PET assay into putative loops in the bedpe format that is imported into 
diffloop [28]. These tools typically consider interactions for a single sample at a time when 
identifying statistically significant loops. For the purposes of differential analysis, it is important 
to make this determination using all samples collectively on order to define a common set of 
loops. We therefore recommend the use of inclusive preprocessing parameters that do not filter 
out interactions, retaining all data for import and subsequent filtering in diffloop. In Mango, this 
is achieved by setting the reportallpairs flag to TRUE. 
 
ENCODE ChIA-PET Data 
All ChIA-PET data in this study was generated as part of the ENCODE Project and downloaded 
from the Sequence Read Archive (SRA)[9]. The format of raw ChIA-PET data is .fastq files that 
correspond to paired-end reads from a sequencing experiment. For our preprocessing, we used 
the default parameters in Mango except for specifying that all interactions be preserved 
(reportallpairs = TRUE) and ChIP peaks be extended by 1,000 base pairs (peakslop = 1000) 
rather than the default 500 bp. Additionally, we specified linker sequences previously described 
in the ENCODE ChIA-PET protocol[9] which also correspond to the default parameters in 
Mango. Table 4 (A) provides an overview of the ChIA-PET samples used in this study, 
including the raw read counts, the location of the data on GEO, as well as the number of PETs 
used in diffloop after data processing with Mango. These results of the Mango processing are 
also summarized in Figure 2 (D).  
 
Quality Control in diffloop 
We filtered amplified or deleted copy number variation (CNV) regions in either of K562 or 
MCF-7 using the removeRegion() function to reduce the chance that genome alterations would 
bias differential loop calls. We next retained only those loops whose interaction counts were 
significantly higher than that expected based on the background chromatin interaction frequency 
using a threshold of 0.01 on q-values generated by the mangoCorrection() function. diffloop 
aggregates count data across all samples, providing more power to call valid loops than when 
analyzing each sample individually. In order to further reduce the multiple testing burden we 
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further restricted loops to those with a minimum of 2 samples with at least 2 PETs per loop 
(similar as to what was used previously [13]) using the filterLoops() function. The low counts 
associated with the discarded loops would preclude meaningful inference about between group 
differences. 
 
One peculiar feature of the data was the presence of  “discordant” loops that were highly variable 
between the replicates. Setting a threshold of five or more counts in one replicate but zero in the 
other identified 337 such loops (red dots on Figures S3 (A, B)). Some of these discordant loops 
appear significantly differential as a result of the variance shrinkage performed in the association 
model. For example, while a loop with counts of 45 and 0 for one group and 0 and 0 for another 
is classified as differential, this finding is unlikely to be reliable. Many (166 of 337 or 49%) of 
these identified discordant loops (such as the example noted above) were removed using the 
filterLoops() function since they don’t meet the criterion of being present in 2+ samples. 
 
Loop Annotation 
The annotateLoops() function classifies each loop as enhancer-promoter, promoter-promoter, 
enhancer-enhancer, or no special annotation for POL2 loops. Additional annotation for loops 
mediated by CTCF or cohesin subunits is also currently supported. Moreover, loops that connect 
distal regulatory elements and gene promoters can be selected using the keepEPloops() function. 
For the analyses described in this manuscript, enhancer regions were defined by a 1kb radius 
around an H3K27ac peak for either cell type. Other epigenetic markings may also be suitable for 
nuanced logic in defining promoter and regulatory regions. For our analyses, peaks were 
downloaded from GEO using the accession numbers provided in Table 4(B). Promoter regions 
were defined as being within a 1kb radius of a RefSeq transcription start site. 
 
Differential Loop Calling 
To determine differential topological features, diffloop uses the edgeR package to model PET 
counts from the loops object counts matrix using a negative binomal distribution [14]. To 
account for variation in sequencing depth, a per-sample size factor is included as an offset in the 
model, as previously described. Loop-wise dispersion estimates are stabilized using an empirical 
Bayes shrinkage procedure. In effect, the implementation of differential loop calling in diffloop 
applies the RNA-Seq gene read count test from edgeR to loop PET counts.  
 
Though the application of the edgeR framework to our counts data was intuitive, we note the 
mean-variance trend in Figure S1 that fails to show overdispersion beyond that in the Poisson 
model at the current sequencing depths. As this pattern is also observable at low counts for many 
RNA-Seq datasets, [29] we expect that topology libraries with better sequencing depths will 
likely also demonstrate greater overdispersion and benefit from application of the Negative 
Binomial regression model.  
 
To assess whether alternate models may be better candidates for identifying differential loops, 
we considered a stratified model using binned loop widths (Figure S4, S5) and examined loops 
with altered significance compared to the standard model (Table S1, S2). We also considered the 
limma-voom model (Figure S6, S7) and noted the loops with the largest changes in significance  
(Table S3, S4). We found no evidence that the alternate models performed better than the edgeR 
model. The supplement provides a more complete synopsis of these analyses.  
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Integration of DNA Methylation, DNase Hypersensitivity, and ChIP-Seq Data 
diffloop provides means for integration of processed epigenetic data as shown in Figure 6. To 
demonstrate this functionality, raw probe intensities from the Illumina 450k array were 
processed using minfi v1.3.1[30] and exported as .bedgraph format files for both the K562 and 
MCF-7 cell lines. Per-anchor methylation was computed by averaging the Beta methylation 
estimates across all CpGs contained in the specific anchor using the annotateAnchors.bed() 
function. Bigwigs of RAD21, H3K27ac, and DNase hypersensitivity were downloaded from 
GEO accessions as specified in Table 4 (B). Similar to the methylation values, per-anchor 
intensities for the ChIP-Seq and chromatin accessibility were computed by averaging over all 
values contained in the specific anchor using the annotateAnchors.bigwig() function.  
  
Differential Expression Analyses 
Paired 75 base pair reads from PolyA RNA-Seq for each of the K562 and MCF-7 cell lines from 
the ENCODE Project were processed (GEO series GSE33480). These data included two samples 
for K562 (GSM958729) and three samples for MCF-7 (GSM958745). An additional replicate 
was processed for K562 (GSM646524) for a balanced differential expression analysis. Each 
samples’ reads were individually aligned using Tophat v1.0.14 [31] and hg19 RefSeq reference 
transcriptome counts were generated using HTSeq 0.6.1.[32] Differential expression was 
performed using DESeq2 v1.11.45 [10] to determine variable gene expression between the two 
cancer cell lines. Enhancer-promoter loops that uniquely linked to a single transcription start site 
were annotated with the summary statistics from DESeq2 using the annotateLoops.dge() 
function. While this function has additional parameters to handle loops that do not clearly link to 
a single transcription start site, all analyses including transcription annotation retained only 
enhancer-promoter loops where the “promoter” anchor mapped to within 1kb of a single 
transcription start site in the hg19 Refseq build.  
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Figures 
 

 
 
Figure 1: Overview of DNA looping data and its representation. The ChIA-PET assay generates 
sequencing reads that represent chromatin interactions associated with a protein of interest. 
Preprocessing involves identifying the interacting loci (loop anchors) and counting the number of 
reads supporting each interaction. These data are typically represented in .bedpe or a closely 
related format. The core functionality of diffloop imports these preprocessed loop data and 
assembles a counts matrix as part of a larger structure with metadata that can be used to assess 
differential looping.  
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Figure 2: Principal component analysis and quality control summary. (A) A plot of the first two 
principal components of the loop PET count matrix. (B) The number of putative loops at varying 
levels of PET count support identifies the HCT-116 sample as an outlier. (C) The number of 
unique loops (blue), total PETs (red), and filtered PETs (green) supporting loops. The HCT-116 
sample shows no filtered PETs as it was removed before quality control filtering on the loops.  
 

 
Figure 3: Sample visualizations of differential looping. Each panel shows the combined POL2 
ChIA-PET replicates for the K562 and MCF-7 cell lines as well as the cell type-specific 
H3K27ac ChIP-Seq track. Line widths are indicative of the number of PETs supporting a loop 
while colors represent biological annotation (red: enhancer-promoter; purple: enhancer-enhancer; 
black: no special annotation). MTHFR (A) and NFKBIA (B) have variable topological and 
epigenetic landscapes between the two cell lines and have been implicated in leukemia and 
breast cancer, respectively. 
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Figure 4: Differential loop strength correlated with various epigenetic factors. In each panel, the 
log2 fold change computed by diffloop for K562/MCF-7 is plotted against the log2 fold change 
of the epigenetic feature averaged over the region defined by the loop anchor. The anchor with 
the largest deviation from zero was chosen for each loop. Higher loop strength is associated with 
higher levels of (A) open chromatin, (C) cohesin binding, and (D) H3K27ac and lower levels of 
DNA methylation (B).  
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Figure 5: Effects of differential looping on transcription. (A) All loops that uniquely map to a 
single promoter region of differentially expressed transcript (FDR < 0.01). Increasing enhancer-
promoter loop strength is positively correlated with increased transcription. We linked enhancer-
promoter loops to their corresponding genes and assessed the effects of H3K27ac (B) distally 
and (C) proximally to the transcription start site. Similarly, the (D) distal and (E) proximal 
effects of DNA methylation were plotted against the expression fold-difference of the 
corresponding gene. Differential loops (FDR < 0.01) are highlighted in red in panels (B) - (E).  
 
 
 

 
 
 
Figure 6: Overview of software, files, data objects, and functions used in the analyses described 
in this manuscript. Critical functions called in diffloop are indicated in bold. External software 
used in this manuscript to preprocess additional data are also noted in regular font.  
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Tables and Table Legends 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Top differential loops between MCF-7 
and K562. The 5 most significant differential 
enhancer-promoter loops between these two cell 
types both more prevalent in MCF-7 and more 
prevalent in K562 are displayed. The loop 
annotation is listed alongside the summary 
statistics of each loop, which includes the 
number of reads that support each loop per 
sample. The final column lists all the genes of 
all promoter regions within 1kb of the loop 
anchor.  
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(A)	Gene	Sets	in	E-P	Loops	Stronger	in	K562		 		
Name	 FDR	
MYC_TARGETS_V1	 0.00025496	
G2M_CHECKPOINT	 0.00025496	
E2F_TARGETS	 0.00025496	
REACTIVE_OXIGEN_SPECIES_PATHWAY	 0.0097082	
(B)	Gene	Sets	in	E-P	Loops	Stronger	in	MCF-7		 		
Name	 FDR	
ESTROGEN_RESPONSE_EARLY	 8.74E-09	
TNFA_SIGNALING_VIA_NFKB	 6.15E-06	
P53_PATHWAY	 0.0073623	
ESTROGEN_RESPONSE_LATE	 0.0092096	

 
 
Table 2: Pathway enrichment for differential enhancer-promoter loops. Querying the MsigDB 
hallmark gene sets [16] using a Wilcoxon rank sum test, we identified eight enriched pathways at 
an FDR of 0.01. 
 

Figure	 Predictor	 Outcome	 n	 Effect_Size	 R2	
4a	 Anchor_DNase	 Loops	 9565	 1.168	 0.501	
4b	 Anchor_Methylation	 Loops	 9046	 -4.801	 0.096	
4c	 Anchor_RAD21	 Loops	 8404	 1.132	 0.154	
4d	 Anchor_H3K27ac	 Loops	 9566	 1.138	 0.579	
5a	 Loops	 Expression	 250	 0.902	 0.617	
5b	 Distal_H3K27ac	 Expression	 2307	 1.187	 0.602	
5c	 Proximal_H3K27ac	 Expression	 2307	 0.596	 0.273	
5d	 Distal_Methylation	 Expression	 2295	 -5.542	 0.073	
5e	 Proximal_Methylation	 Expression	 1934	 -0.256	 0.001	

 
 
Table 3: Model summaries of simple linear regression analyses of comparisons shown in 
Figures 4-5. The sample sizes, effect sizes, and R2 values of associations in Figures 4-5 are 
listed alongside the Figure panel and variables used in the model. All models had a strong 
statistically significant linear term. 
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(A)	Summary	Statistics	for	ChIA-PET	from	GSE33664	
Local	Name	 SRR	 #	unique	loops		 #	useful	PETs		 #	raw	PETs	
K562_r1	 SRR372747	 31,721	 95,210	 25,778,343	
K562_r2	 SRR372748	 50,072	 161,053	 37,685,853	
MCF7_r1	 SRR372741	 23,329	 50,216	 29,098,917	
MCF7_r2	 SRR372742	 36,199	 85,640	 40,474,778	
HCT116	 SRR372743	 5,404	 6,044	 149,484,905	

 
(B)	GEO	Sources	of	ENCODE	Epigenetic	and	RNA-Seq	Data	used	in	Integrative	Analyses	

Data	Type	 K562	GSM	 MCF-7	GSM	
450k	Methylation	Arrays	 GSM999341	 GSM999373	
CNV	Regions	 GSM999287	 GSM999333	
DNase	BigWig	 GSM736629	 GSM736581	
H3K27ac	BigWig	 GSM733656	 GSM945854	
H3K27ac	Peaks	 GSM733656	 GSM946850	
RAD21	BigWig	 GSM803447	 GSM1010791	
RNA-Seq	Data	 GSM646524,	GSM958729	 GSM958745	

 
Table 4: Published data used in this manuscript. (A) Accession of GEO sequencing reads for 
each of the ChIA-PET samples with summary statistics. (B) Accessions of the epigenetic, 
genetic, and transcriptomic data used for downstream analyses in diffloop.  
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