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Abstract

The existence of sexual partnerships that overlap in time (concurrent relationships) is
believed by some to be a significant contributing factor to the spread of HIV, although
this is controversial. We derive an analytic model which allows us to investigate and
compare disease spread in populations with and without concurrency. We can identify
regions of parameter space in which its impact is negligible, and other regions in which
it plays a major role. We also see that the impact of concurrency on the initial growth
phase can be much larger than its impact on the equilibrium size. We see that the effect
of concurrency saturates, which leads to the perhaps surprising conclusion that
interventions targeting concurrency may be most effective in populations with low to
moderate levels of concurrency.

Author Summary

We consider the spread of an infectious disease through a population modeled by a
dynamic network with demographic turnover. We develop a stochastic model of the
disease and derive governing equations that exactly predict the large population
(deterministic) limit of the stochastic model. We use this to investigate the role of
concurrency and find that interventions targeting concurrency may be most effective in
populations with lower levels of concurrency.

Our model is not intended to be an accurate representation of any single population.
Rather it is intended to give general insights for intervention design and to provide a
framework which can be further specialized to particular populations.

This model is the first model to allow for analytic investigation of the impact of 1

concurrent partnerships in a population exhibiting demographic turnover. Thus it will 2

be useful for investigating the “concurrency hypothesis.” 3

Introduction 4

The HIV epidemic has had significant impact worldwide, but it has had an especially 5

large impact in SubSaharan Africa [1]. The reasons for this difference are many, 6

complex, and not fully understood. One proposed factor is a larger frequency of sexual 7
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partnerships that overlap in time, the so-called “concurrency hypothesis” [2, 3]. The 8

concurrency hypothesis has received significant attention, but it is controversial [4–10]. 9

The development and evaluation of potential interventions against infectious disease 10

spread requires us to be able to predict the spread of the disease with and without the 11

intervention in place. A crucial factor that must be considered in evaluating any 12

potential intervention is the indirect effects of the intervention: If we directly preventing 13

one infection from occurring, then this also prevents that individual from transmitting 14

onwards, thus indirectly reducing exposures of other individuals. In turn their reduction 15

in exposure reduces potential exposures of others further down the line. 16

Such a feedback mechanism is an inherently nonlinear effect, and so the full outcome 17

of an intervention will depend nonlinearly on the direct effect. Doubling the 18

intervention effort will not double the intervention impact. It may have greater or lesser 19

impact depending on the magnitude of the indirect effect. Because of this, we often rely 20

on mathematical models to predict the total intervention outcome. The required model 21

complexity depends on the intervention under consideration, the biological properties of 22

the disease, and the contact structure of the population. 23

Most mathematical models of disease spread ignore the fact that partnerships have 24

duration. This is reasonable in a population with many partnerships and low 25

transmission probabilities [11], but for a disease such as HIV, the relevant partnerships 26

are often long-lasting and the typical number of overlapping partnerships is generally 27

small. To be relevant for the concurrency hypothesis, we require that the mathematical 28

model incorporate partnership duration in some form. Without it, it is impossible to 29

consider partnerships that overlap in time. Additionally, given the time-scale of the HIV 30

epidemic, demographic turnover plays an important role. There has not been a 31

mathematical model which captures all of these features, and so most investigations 32

turn to simulation, many of which are reviewed in [12]. 33

The absence of an analytic model contributes to a large gap in our ability to 34

understand concurrency. Analytic models make it much easier to interpret model 35

predictions, to specifically isolate the impact of different effects, and to clarify 36

underlying assumptions. Simulated results may be difficult to replicate by other 37

researchers, the slow process of simulation may make parameter space impossible to 38

investigate, and it may be difficult to identify which assumptions of the simulation are 39

responsible for which outcomes. All of this contributes to the ongoing controversy about 40

concurrency, and even miscommunication within the field. With an analytic model, 41

these issues are significantly reduced. 42

Recent work [13–17] has shown that it is possible to make mathematical models for 43

SI and SIR disease spread in networks with only a handful of equations. The approach 44

has been generalized to networks with changing partnerships, but still assume a closed 45

population. Because the HIV epidemic developed over decades, it is not appropriate to 46

ignore individuals entering and leaving the at risk-population as they age. 47

In this paper we adapt the approach of [15–17] in order to accommodate “births” 48

and “deaths” representing entry into and exit from the at-risk population. We show 49

that the resulting equations accurately predict the outcome of simulations in large 50

populations, and our primary focus is on using the model to investigate the role that 51

concurrency can play in the spread of a “Susceptible–Infected” (SI) disease such as HIV. 52

Concurrency 53

A potentially important, but incompletely understood, factor in the spread of HIV and 54

other sexually transmitted diseases is the role of “concurrent” relationships as compared 55

to serial monogamy [2,3]. Whether its impact is significant is hotly debated [4–10]. 56

To highlight the potential role of concurrency, we consider an individual “Alex” who 57

has two partners “Bobbie” and “Charlie” over a period of 1 year. We demonstrate two 58

PLOS 2/19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2016. ; https://doi.org/10.1101/087213doi: bioRxiv preprint 

https://doi.org/10.1101/087213
http://creativecommons.org/licenses/by-nc/4.0/


t

Bobbie Alex Charlie

t

Bobbie Alex Charlie

t

Bobbie Alex Charlie

t

Bobbie Alex Charlie

Fig 1. Sample scenarios comparing concurrent and serially monogamous
relationships: Shaded regions denote the existence of a partnership. Dashed lines
denote infection opportunities within the relationship that would cause infection if one
individual were susceptible and the other infected. Vertical red lines denote time in
which an individual is infected, and horizontal red lines denote successful transmissions.
In the concurrent case, we keep exactly the same number of transmission opportunities
with the gaps exactly doubled, assuming that the interaction rate within each
partnership is half that of the serial case. Concurrency can speed up onward
transmission and provide additional transmission routes.

potential partnership arrangements and explore their impact on disease transmission in 59

Fig. 1. 60

In the first scenario, the partnership with Bobbie lasts for six months and is replaced 61

by a six month partnership with Charlie (the serial case), while in the second scenario 62

both partnerships overlap for the entire period (the concurrent case). In the concurrent 63

case, the intervals between transmitting events are doubled. 64

Let us focus first on Alex’s risk of infection if Bobbie is initially infected. In both 65

cases, Alex has the same probability of becoming infected, though infection would occur 66

sooner in the serial case. In contrast, if Charlie is initially infected, Alex would become 67

infected sooner in the concurrent case (but again with the same overall probability). So 68

the two models appear to give similar outcomes from the point of view of the 69

cumulative risk of infection to Alex. 70

For onward transmission, however, we see the potential for large differences. If 71

Bobbie is initially infected, transmission from Bobbie to Alex to Charlie will tend to 72

happen faster in the concurrent case because there is no built-in delay while waiting for 73

the partners to change.1 In turn this allows Charlie to begin transmitting to other 74

partners earlier. In addition, if Charlie is initially infected, transmission from Charlie to 75

Alex to Bobbie is possible only in the concurrent case. 76

It is important to recognize that the “concurrency hypothesis” does not suggest that 77

there is a difference in the total risk of infection of an individual who has multiple 78

concurrent partners compared to one who has the same number of partners sequentially. 79

Instead, it increases the risk to the partners. 80

As a general rule we anticipate that concurrency will increase the spread of disease 81

through two mechanisms: 82

1. by allowing the disease to trace transmission routes faster, and 83

1However, the probability of a Bobbie to Alex to Charlie transmission chain is slightly reduced
because some of the interactions between Alex and Charlie will have already happened by the time Alex
is infected.
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Fig 2. Scenarios for low transmission rates: In the low transmission rate limit
where we can assume at most one transmission happens per partnership, the additional
transmission paths and faster transmissions from concurrent partnerships do not play a
significant role. There are two cases of interest: The first two columns show the case in
which the Bobbie-Alex partnership transmits relatively earlier in the partnership than
the Alex-Charlie partnership. The last two columns show the Alex–Charlie partnership
transmitting faster.

2. by providing additional transmission routes. 84

In the low transmission rate limit, for which the possibility of transmitting multiple 85

times is negligible, we can assume that each partnership either transmits once or not at 86

all. In this case, Fig. 2 suggests that the difference between concurrent and serial 87

relationships is likely to be insignificant. 88

Conceptually we can explain this by imagining that we only observe transmission 89

events. Anything that influences the disease spread must be detectable by our 90

observations. Conversely, if we cannot detect something by observing disease 91

transmission events, then it cannot matter to the disease spread. In particular, if no 92

partnerships transmit more than once, then we cannot tell whether an individual who is 93

transmitting is doing so to one of several randomly selected current partners or if it is 94

transmitting to its current partner who is randomly selected from the potential partners. 95

Materials and Methods 96

Our goal is twofold: 97

1. To demonstrate an analytic model for disease spread in a dynamic population with 98

concurrency and show that it accurately predicts simulations in large populations. 99

2. To use the model developed to provide guidance about the role of concurrent 100

relationships in simplified scenarios. 101

In this section we introduce our stochastic population and disease model, state the 102

governing equations for the large population limit (the equations themselves are derived 103

in the Supporting Information), and demonstrate that they accurately reproduce 104

simulated epidemics in large populations. 105

Part of the reason for the debate about concurrency’s effect can be traced to the 106

large parameter space and the amount of time it takes to simulate for different 107

parameters. Simulations have studied only a relatively small portion of parameter space, 108
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Fig 3. Sequence of events in each time step. We begin with a network with some
infected individuals (red). Then infected individuals transmit to some partners (red
edges). Then some individuals leave the population (white). Other individuals are born
(blue). Then some edges break (dashed). Finally edges are added so that the new
individuals, the individuals whose partners left, and the individuals whose edges broke
all return to their target number of partners. The sequence then repeats.

and so some of the disagreement revolves around intuition about how parameter 109

changes would affect outcomes rather than quantitative statements. Our analytic model 110

will allow for a much more efficient exploration of parameter space. 111

Population/Disease Assumptions 112

We will use a discrete-time model. Each time step is broken down into sub-intervals in 113

which the actions occur in a specific order, shown in Fig. 3. At the start of a time step, 114

each partnership connecting a susceptible and infected individual transmits with 115

probability τ . Then some individuals leave the population, each independently with 116

probability µ. Next µN new individuals arrive where N is the typical population size. 117

Then each remaining partnership ends independently with probability η. Finally new 118

partnerships are formed until all individuals reach their target number of partners. 119

These assumptions are similar to those of [18,19]. 120

We will present an analytic model that captures the deterministic limit of these 121

assumptions. We have chosen a discrete-time model because the complementary 122

simulations are easier in a discrete-time framework. In a large enough simulated 123

population with a large enough time step, many partnerships end and many new 124

individual enter at each time step. Thus an individual who needs a new partner has 125

many choices. In a continuous-time model or with a small time step (relative to 126

population size), it would be more difficult for an individual who has recently ended a 127

partnership to find a new partner. 128

For simulations, we choose the time step of the discrete-time framework to balance 129

competing interests. We want a small time step so that µ, η, and τ are small (at leading 130

order they are proportional to the time step). When they are not small, the somewhat 131

arbitrary order of events we have assumed will begin to impact outcomes. However, too 132

small of a time step will mean that few partnerships end in a time step. This makes it 133

difficult for nodes to immediately find new partners. As the population size increases 134

this becomes less of a problem so smaller time-steps become feasible. However, the 135

computational effort becomes greater. This is not an issue in the analytic model, and so 136

a continuous-time model is not difficult to consider. The predictions from the 137
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continuous-time and discrete-time models will be the same for small parameters. 138

Governing equations 139

We derive the governing equations in the Supporting Information. These equations are 140

based on the “Edge-based Compartmental Modeling” approach of [13, 15, 16]. They are 141

low-dimensional, but are significantly more involved than even the dynamic network 142

models presented in [16]. This is because the age of an individual gives us some 143

information about that individual’s status. In addition the age of a partnership gives 144

information about the age of the partner. Thus in calculating the risk an individual has 145

from its partners, we need to account for the probability the partner has a given status, 146

which depends on the age of the partner, which in turn depends on the age of the edge, 147

which itself is dependent on the age of the individual. To sort out the dependencies, age 148

of individual and age of partnership are needed as independent variables. 149

Table 1 defines the variables and parameters of the model. 150

151

The model parameters are the death probability µ, the transmission probability τ ,
the partnership change probability η, and the initial fraction infected ρ. We seek the
susceptible and infected fractions of the population S and I. The governing equations
are

S(t) = µ

∞∑
au=0

(1− µ)aus(t, au)

s(t, au) =

{
ψ(Θ(t, au)) au < t

(1− ρ)ψ(Θ(t, t)) au ≥ t

I(t) = 1− S(t)

Θ(t, 0) = 1

Θ(0, au) = 1

Θ(t, au) = Θ(t− 1, au − 1)− τΦI(t− 1, au − 1) t, au ≥ 1

ΦI(t, au) = Θ(t, au)− ΦS(t, au)

ΦS(t, au) = (1− pb)auφS(t, au, au) + pb

au−1∑
ae=0

(1− pb)aeφS(t, au, ae)

φS(t, au, ae) = Θ(t− ae, au − ae)χ(t, ae)

χ(t, ae) =



(1− ρ)ψ
′(Θ(t,t))
〈K〉 ae ≥ t

(1− Pe)ψ
′(Θ(t,ae))
〈K〉

+Peµ

t−1∑
av=ae+1

(1− µ)av−ae−1Θ(t− ae, av − ae)ψ
′(Θ(t,av))
〈K〉 ae < t

+Pe(1− ρ)Θ(t− ae, t− ae)ψ
′(Θ(t,t))
〈K〉 (1− µ)t−ae−1

where pb = 1− (1− η)(1− µ) is the probability an individual’s partnership ends in a 152

time step either because of partnership change or the partner leaving the population, 153

and ψ(x) =
∑
k P (k)xk is the probability generating function of the degree distribution. 154

We derive this model and a continuous-time differential equations version in the 155

Supporting Information. 156
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Variable Description

t Time

u The test individual

au
The age of test individual u, measured so that au = 0 in the first time
step after u is born.

ae
Age of an edge of interest, measured so that ae = 0 in the first time
step after the edge forms.

S(t)

The proportion of the population that is susceptible at time t, equiva-
lently the probability a randomly selected individual is susceptible at
time t, or equivalently the probability a test individual is susceptible
at time t.

I(t) 1− S(t): The proportion infected at time t.

s(t, au) The probability a test individual of age au is susceptible at time t.

Θ(t, au)
The probability a stub belonging to u has not transmitted infection to
it from a partner by the start of time step t.

ΦS(t, au)
As for Θ, but with the additional requirement that at the start of time
step t the partner is susceptible.

ΦI(t, au)
As for Θ (no partner has transmitted to u through the stub), but with
the additional requirement that at the start of time step t the partner
is infected.

φS(t, au, ae)
The probability that a stub belonging to an age au individual has not
transmitted infection to it by time t, is connected to a susceptible
neighbor, and the current partnership has age ae.

χ(t, ae)
The probability that an age ae edge of a test individual connects to a
susceptible individual.

ψ(x)

∑∞
k=0 P (k)xk: The probability generating function of the degree

distribution.

µ
The probability a random individual will leave the population in a
given time step.

τ The transmission probability in a time step.

η The probability a partnership will end in a time step.

pb

1− (1− µ)(1− η): The probability that a test individual’s partnership
will end (break) either because the partnership ends naturally η, or
the partner leaves the population µ. It does not include the possibility
of the test individual leaving.

Pe
(1−µ)(η+µ−ηµ)

(1−µ)(η+µ−ηµ)+µ : The probability that a newly formed partnership

will be with a previously existing individual.

ρ The proportion of the population randomly infected at t = 0.

b
The number of individuals entering the population each time step
(assumed to be constant).

N b/µ: The average population size.

Table 1. The variables for our simulations and equations.
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Fig 4. Comparison of dynamics from analytic prediction and stochastic
simulation: (Left) We consider stochastic epidemic simulation in populations of
average size N = 102, 103, 104 and 105 with k = 3, η = 0.2/3, τ = 0.05/3, ρ = 0.02,
and µ = 0.01. As N increases, the simulations converge to the prediction. (Right) For
η1 = 0.1, τ1 = 0.1, ρ = 0.02, µ = 0.01 and average population size N = 10000 we
compare predictions and simulations for different values of k, using τ = τ1/k and
η = η1/k. We find excellent agreement.

Comparison with simulation 157

To demonstrate the accuracy of the equations and provide some insight into model 158

predictions, we compare predicted dynamics (solutions of the system of equations) with 159

stochastically simulated epidemics under different conditions in Figs. 4 and 5. 160

We start Fig. 4 with a plot showing that as the population size increases, the 161

simulations converge to the predicted dynamics for one set of parameters. 162

The second plot of Fig. 4 considers populations in which all individuals have k 163

partners for k = 1, 2, 3, 4, and 5 with τ = τ1/k and η = η1/k for various values of τ1 164

and η1. Simulations and predictions are a good match for different values of k. 165

Interestingly we see that for different values of k the equilibrium level does not vary 166

much, but the early growth rate does. 167

None of the populations in Fig. 4 have heterogeneous degree. Figure 5 looks at 168

disease spread in populations with heterogeneous degrees, again showing excellent 169

agreement between stochastic simulation and predictions. 170

From the first plot in Fig. 5 we infer that for a given population, the initial 171

proportion infected does not influence the final state. Interestingly, we see that it is 172

possible for the disease to initially grow and then decay for some region of ρ. This is 173

because in this region the number of infected high degree nodes increases quickly from 174

the initial condition while the number of infected low degree nodes decreases slowly. At 175

long time, reach a steady state, with the decrease of low degree infections outweighing 176

the increase in high degree infections. 177

From the second plot of Fig. 5, we infer that increasing the population turnover rate 178

decreases the proportion infected. This is not particularly surprising as it implies that 179

infected individuals leave the population sooner, having had less opportunity to cause 180

further infections. 181

Our main conclusion from Figs. 4 and 7 is that the equations accurately predict the 182

dynamics of simulations regardless of the parameters used. The numerical solution of 183

these equations is much faster than simulation. 184

Results & Discussion 185

The previous section showed that the analytic equations provide accurate predictions of 186

the disease dynamics in the large-population limit. We now specifically explore the 187
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Fig 5. Comparison of dynamics from analytic prediction and stochastic
simulation in populations with heterogeneous degree: (Left) Disease spread in
populations with average size N = 10000 and degree probabilities P (2) = P (7) = 1/2.
The parameters are τ = 0.01, η = 0.005, and µ = 0.01. The initial fraction infected
varies. (Right) Disease spread in populations with average size N = 10000 and degree
probabilities P (1) = 1/2, P (10) = 1/3, and P (20) = 1/6. The parameter µ varies
between populations. The remaining parameters are η = 0.05 and τ = 0.1. In both
plots the dashed curves are predictions and thin solid curves are stochastic simulations.

predictions the model makes if we change the amount of concurrency in the population. 188

The second plot of figure 4 hints at our results. We generally see relatively little impact 189

of concurrency on the proportion infected at equilibrium, while we do see an impact on 190

the early growth. 191

Although the equations allow different individuals to have a different number of 192

partners, for the remainder of this paper we focus on populations in which all 193

individuals have the same number of partners. In particular, this eliminates the need to 194

consider how per-partnership transmission rates may depend on the individual’s number 195

of partners. This allows us to separate the effect of concurrency from the effect of some 196

individuals having more frequent sexual activity than others. 197

So for our purposes, ψ(x) = xk, 〈K〉 = k for some fixed value k. As a base-case, we 198

consider serial-monogamy where each individual has a single partner (k = 1). 199

Transmission occurs in a time-step with probability τ1 and partnerships end with 200

probability η1. Individuals leave the population with probability µ. We compare this 201

with homogeneous populations having concurrency. 202

We assume that each population is arranged such that the number of partners an 203

individual has over a long period of time is the same. This implies that η = η1/k so 204

that the k partnerships each lasts k times as long. Similarly we assume that the 205

expected number of transmissions an infected individual would cause in a time step is 206

the same. This requires τ = τ1/k. 207

Because of how we have set up our populations, we can rule out many causes for the 208

differences we see. We know that the effects we observe are not explained by 209

within-population heterogeneity in degree, within-population heterogeneity in sexual 210

activity rates, between-population differences in typical life-time number of partners, or 211

between-population differences in the number of transmissions an individual causes per 212

time step. All of these effects have been removed. The only remaining difference 213

between the populations is the number of concurrent partnerships. 214

Impact on equilibrium size 215

We see in Fig. 6 that the impact of concurrency on the equilibrium epidemic size can be 216

significant, but that the effect of increasing k saturates quickly. Little changes once 217

k > 2. This suggests that reducing concurrency may play an important role in reducing 218
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Fig 6. Comparison of equilibrium sizes for different values of k: The
equilibrium fraction infected for µ = 0.01 and different η1 and τ1. We use the same axes
η1 and τ1, taking η = η1/k and τ = τ1/k. As k increases, the figures quickly converge.
The effect of concurrency on the equilibrium size quickly saturates.

the epidemic size, but that if there is significant clustering, a small or moderate change 219

is unlikely to have a significant impact. 220

From the perspective of intervention design, this suggests that interventions which 221

aim to reduce concurrency may be most effective in populations with lower rates of 222

concurrency already. We can think of this analagously with interventions targetting R0 223

in an SIR disease. Reducing R0 from a large number to a moderate number has little 224

effect on the predicted final size, while a reduction from a moderate number to a small 225

number (even if still above 1) would have a much larger impact. 226

We note that close to the epidemic threshold the impact of any parameter change 227

(including amount of concurrency present) can be significant. 228

Impact on early growth 229

Although Fig. 6 appears to suggest concurrency is unimportant, this is only for the 230

equilibrium size. We saw in Fig. 4 that concurrency can play a role when we consider 231

the early growth rate of the disease even if the equilibrium size is unaffected. That is, 232

concurrency facilitates early spread of a disease. We demonstrate this more generally in 233

Fig. 7. Although the impact of increasing k will eventually saturate, it takes much 234

longer before saturating for early growth than for equilibrium size. 235

This makes sense: if a disease invades a population with serial monogamy, then no 236

matter how infectious it is, it must wait until a partnership ends before it can spread 237

further. However, if there is concurrency, this restriction vanishes, and the spread is not 238

restricted by the partnership time scale. If there are only a few partners, then 239

transmissions lead to localized depletion of susceptibles around an infected individual, 240

stifling further transmissions. As the number of partners increases with a corresponding 241

decrease in transmission rate, the number of transmission opportunities remains the 242
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Fig 7. Comparison of early growth with different levels of concurrency:
Contour plots of ∆I/I once the dynamics have entered the early exponential phase.
Although eventually the change saturates with larger k, it does not saturate nearly as
quickly as does the equilibrium size.

same but the transmissions go to more individuals. 243

Caveats 244

There are a number of caveats of our study that must be highlighted to avoid 245

overinterpreting these results. To simply the model we present, we have neglected many 246

effects. Many of these can be easily incorporated into more sophisticated versions of the 247

model. 248

• Acute Phase: Before mounting an immune response, an individual’s viral load is 249

several orders of magnitude larger than after the immune response develops. 250

During this early phase infectiousness is dramatically increased [20,21]. If the 251

individual has multiple partnerships, then many more infections can happen in 252

this phase than would be seen if the individual were only in contact with its 253

infector. 254

• Heterogeneous degree: Some people have many more partnerships than 255

others [22]. They generally become infected sooner, and in turn transmit to more 256

individuals. Even if many individuals do not engage in concurrent relationships, if 257

there are some who have many partners, the effects may still be present. This 258

provides an opportunity to reduce disease transmission through an intervention 259

that encourages those without concurrent relationships to select partners without 260

concurrent relationships. 261

• Temporal behavior changes: If the disease dynamics are driven by individuals 262

having periodic high-risk episodes between long-term relationships, then the 263
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assumptions of this model are invalid. To correct this, the model must be adapted 264

to allow for periods of high risk behavior, for example when a partnership ends. 265

• Age structure: If there is age-structure in the contact patterns, different effects 266

may be seen. For example, we might think of the younger cohort as a population 267

which has not yet been invaded by infection. In this case, the results about disease 268

invading may be more relevant than the results about population size. Here 269

reducing concurrency could be expected to play an important role in slowing the 270

invasion of this younger cohort. 271

• Coital dilution: We have assumed that the transmission rate scales such that 272

individuals have effectively the same number of sexual acts regardless of their 273

number of partners. This allows us to isolate the effect of concurrency from the 274

effect of frequency of sexual acts. However, if concurrent relationships are 275

associated with more frequent sexual acts, then the conclusions we reach here may 276

not be valid. To correct for this, we need to appropriately weight the transmission 277

rates based on the number of concurrent relationships each partner has. 278

Conclusion 279

We have derived an analytic model which accurately reproduces simulated SI epidemics 280

in a population with concurrent relationships and demographic turnover. We use this 281

model to isolate the role of concurrency in the spread of a disease such as HIV. In 282

isolating concurrency, we consciously choose to neglect a number of other important 283

effects. 284

Although the model is highly simplistic, it gives insight into the role of concurrency. 285

We see first that the impact of concurrency on the equilibrium size of SI epidemics 286

appears to saturate quite quickly. Consequently we might expect that interventions 287

targeting concurrency will have little impact unless they come close to eliminating 288

concurrent relationships. 289

However, we see a much larger role for concurrency in determining the early growth 290

rate. As concurrency increases, the early growth is increased, and the impact of 291

concurrency saturates much slower than for the epidemic size. So for slowing the initial 292

invasion of an epidemic, reducing concurrency is likely to have an important impact. 293

Our observations that the impact of concurrency saturates suggests care may be 294

needed before diverting resources from some intervention to an intervention aimed at 295

reducing concurrency. A more realistic model is needed, and some consideration will 296

need to be made for whether the population is already in equilibrium or whether the 297

epidemic is still growing. 298

The model presented here is intended as a framework for developing more detailed 299

models. Our goal in introducing this model has been to provide this framework and 300

clearly demonstrate that it is possible to use analytic models to explore disease spread 301

in populations with concurrent relationships with demographic turnover. The 302

predictions our model has provided are true for the simplistic assumptions made. More 303

careful models will be needed to identify conditions under which interventions targeting 304

concurrency will be effective. These models will need to incorporate additional effects 305

such as the acute phase of infection and more realistic information about degree 306

distributions and correlations. 307
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Supporting Information 308

Our primary goal in the Supporting Information is to derive the governing equations. 309

For simplicity, we have ignored many effects. Although in the main text we assume all 310

individuals have the same number of concurrent partners, in our derivation here we 311

allow different individuals within the same population to have a different number of 312

concurrent partners as long as all partnerships have the same transmission probability 313

and typical duration. These assumptions could be modified, and a number of other 314

complexities added to the model we develop here, but we do not attempt this now. 315

Stochastic population and disease model 316

We now describe the stochastic rules we assume govern the population and disease 317

dynamics. We use a discrete-time model. We begin with the population dynamics in the 318

absence of disease. At each time step, Nµ individuals enter the population, and each 319

individual has probability µ to independently leave the population. This leads to an 320

equilibrium population size of N , but with variation around this value. 321

Each individual u has a constant number of partners ku which is assigned 322

independently to u when u enters the population. P (k) gives the probability that 323

ku = k. We think of u as having ku “stubs” (also called “binding sites” by [18,19]). The 324

stubs pair with stubs from other individuals to form partnerships. When a partnership 325

ends the two newly freed stubs join with other free stubs to form new partnerships. We 326

assume that individuals immediately replace their partners so that at the start of each 327

time step all individuals have a full set of partners.2 328

We are interested in the epidemic timescale, which is longer than the individual’s 329

active period. So we must include “birth” and “death” or equivalently immigration and 330

emigration. 331

We begin with a fraction ρ of the population randomly infected. In each time step, 332

multiple events can happen. Since the order of events can matter (a partnership cannot 333

transmit after it ends), we provide a consistent order, shown in figure 3. First, infected 334

individuals transmit to their susceptible partners independently with probability τ . 335

Second, individuals may “die” (or leave the population) independently with probability 336

µ. Third, µN new individuals are added to the population (so the average number 337

present is N) and assigned stubs. Fourth, each remaining partnership breaks with 338

probability η. Finally, the unpaired stubs form new partnerships, subject to the 339

constraint that old partnerships are not reformed and individuals do not join to 340

themselves. In simulations, these constraints are occasionally not satisfied, in which case 341

the corresponding individuals wait a time step before attempting to reform edges. In a 342

large population, the impact of this failure is negligible, and for our analytic equations 343

below, we can assume that they are satisfied. 344

Equation Derivation 345

Preliminaries 346

It will be useful to define the function 347

ψ(x) =
∑
k

P (k)xk

to be the probability generating function of the degree distribution. It has some 348

important properties: ψ(1) =
∑
P (k)1k = 1, ψ′(1) =

∑
kP (k)1k−1 = 〈K〉 where 〈X〉 349

denotes the mean of the random variable x. 350

2In [16] there is discussion of how to include more complicated partnership dynamics.
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We now provide a derivation of the deterministic equations governing the large 351

population limit of our model. The derivation is based on [16]. We review the concept 352

of a “test individual” (effectively equivalent to the cavity state of [23]). We start with 353

the assumption that the population-scale dynamics are deterministic in the large 354

population limit. A direct consequence of this assumption is the observation that the 355

probability a randomly selected individual has a given status equals the proportion of 356

the population with that status. 357

Calculating the probability a random individual has a given status turns out to be 358

simpler than calculating the number of individuals in each state. An important 359

observation is that the probability a single randomly chosen individual u has a given 360

status is not affected if we prevent it from infecting any other individuals3 If we prevent 361

u from transmitting to its neighbors, then the status of its neighbors become 362

independent of one another, but this does not alter the probability that u is susceptible. 363

We define a test individual to be an individual u chosen uniformly at random from 364

the population and prevented from transmitting infection. We have the following 365

sequence of questions which have identical answers if the dynamics are deterministic: 366

Given the initial conditions, 367

1. What fraction of individuals are susceptible or infected at time t? 368

2. What is the probability a random individual is susceptible or infected at time t? 369

3. What is the probability a randomly chosen test individual is susceptible or 370

infected at time t? 371

In our derivation we assume that a fraction ρ is randomly infected at t = 0. As long as 372

ρN � 1, our equations are appropriate. 373

To begin our calculations we start with Θ(t, au), the probability that a stub 374

belonging to an age au test individual u has never been involved in a transmission to u. 375

Once we know that, then the probability a test individual of age au and ku partners is 376

susceptible at time t is Θ(t, au)ku . Averaging this over the entire population of age au 377

individuals the probability an age au individual is susceptible is 378

s(t, au) =

{
ψ(Θ(t, au)) au < t

(1− ρ)ψ(Θ(t, au)) au ≥ t

where we recall
∑
k P (k)xk = ψ(x), and the 1− ρ factor in the second term accounts for 379

the fact that the individual would be infected at t = 0 with probability ρ. 380

The probability that a random individual present at time t has age au is µ(1− µ)au . 381

The fraction susceptible is thus 382

S(t) = µ
∞∑

au=0

(1− µ)aus(t, au)

The probability of being infected is 383

I(t) = 1− S(t)

The focus of our calculations is on determining Θ(t, au). As a boundary condition 384

we have 385

Θ(t, 0) = 1

3Although it is not necessary here, it may be helpful to recognize that that the assumption the
stochastic process exhibits deterministic population-scale dynamics means that a change of out come
for a vanishingly small fraction of events does not alter the population-scale dynamics.
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stating that when an individual is first introduced, it has not yet received any infection. 386

Similarly we have the initial condition 387

Θ(0, au) = 1

as well, stating that prior to the disease introduction, no transmissions have occurred. 388

The change in Θ in a time step is −τΦI where ΦI is the probability that the stub has 389

not previously brought infection to u and connects to an infected partner at the start of 390

the time step. So we have 391

Θ(t, au) = Θ(t− 1, au − 1)− τΦI(t− 1, au − 1)

However to do this calculation we require ΦI(t, au) which is still unknown. We can shift 392

our unknown from ΦI to ΦS (the probability the stub has not transmitted to u and 393

currently connects to a susceptible partner) by using 394

ΦI = Θ− ΦS .

As in calculating S, to calculate ΦS , we turn it into a sum. The probability that a 395

partnership created when u joined still exists is (1− pb)au . The probability that a 396

partnership has some smaller age ae is pb(1− pb)ae . So 397

ΦS = (1− pb)auφS(t, au, au) + pb

au−1∑
ae=0

(1− pb)aeφS(t, au, ae)

where φS(t, au, ae) is the probability that a stub belonging to an age au individual that 398

is part of an age ae edge has not transmitted by time t and pb is the probability that a 399

stub is freed to find a new partnership (either by death of the partner, or termination of 400

the partnership). The one term outside the sum represents the fact that when the 401

individual first enters the population the stub definitely forms a partnership. 402

We now find φs(t, au, ae). If the edge formed when u was born (ae = au) then this is 403

simply the probability the partner v is susceptible given that v has an age au 404

partnership with u, which we denote χ(t, au). However, if the edge formed after u was 405

born (ae < au), then φS(t, au, ae) is the probability Θ(t− ae, au − ae) that the stub was 406

not responsible for transmitting infection to individual u prior to the current partnership 407

forming times χ(t, ae). As Θ(t− au, 0) = 1 these coincide when au = ae, so we can write 408

φS(t, au, ae) = Θ(t− ae, au − ae)χ(t, ae)

We now find χ(t, ae) similarly to s(t, au). It is 409

χ(t, ae) =

∞∑
Av=ae

P (av = Av|ae)P (v susceptible|av = Av) .

If ae ≥ t, then we know that v was born either when the disease was introduced or
earlier. Thus no previous partnership could have transmitted to v. if we assume
av = Av ≥ ae, then the probability v is susceptible is the probability that it escaped
infection when the disease was introduced 1− ρ times the probability that it has not
been infected by any other partners. Because of how v is selected (it is u’s partner), v is
likely to have a higher degree than a randomly selected individual. The probability v
has degree kv = k is kP (k)/ 〈K〉. So the probability v is susceptible given Av is
(1− ρ)

∑
k[kP (k)/ 〈K〉]Θ(t, Av)k−1 = (1− ρ)ψ′(Θ(t, Av))/ 〈K〉. Thus for ae ≥ t we have

χ(t, ae) =
∞∑

Av=ae

P (av = Av|ae)P (v susceptible|av = Av)

=

∞∑
av=ae

µ(1− µ)av−ae(1− ρ)
ψ′(Θ(t, av))

〈K〉
ae ≥ t
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For ae < t there are three important cases to consider based on whether the partner was 410

born before or at the same time that the partnership was formed and whether the 411

partner was born before or after the disease was introduced. 412

• If the edge formed when v was born then Av = ae for which 413

P (av = ae|ae) = (1− Pe) and 414

P (v susceptible|av = ae) =
∑
k[kP (k)/ 〈K〉]Θ(t, ae)

k−1 = ψ′(Θ(t, ae))/ 〈K〉, 415

which measures the probability that another partner of v has not transmitted to v. 416

• If v was born before the edge formed but after the disease was introduced then 417

ae < Av < t and P (av = Av|ae) = Peµ(1− µ)Av−ae−1. Although u has not 418

transmitted to v, it is possible that a previous partner of v that was eventually 419

replaced by u did. Thus the probability v is susceptible is 420

Θ(t− ae, Av − ae)ψ′(Θ(t, Av)). 421

• If v was born before the disease was introduced, then Av ≥ t. We again have 422

P (av = Av|ae) = Peµ(1− µ)Av−ae−1, but there is an extra factor of 1− ρ in the 423

probability v is susceptible. 424

P (v susceptible|Av) = (1− ρ)Θ(t− ae, Av − ae)ψ′(Θ(t, Av)). 425

So for ae < t we have

χ(t, ae) =

∞∑
Av=ae

P (av = Av|ae)P (v susceptible|av)

= P (av = ae|ae)P (v susceptible|av = ae)

+

t−1∑
Av=ae+1

P (av = Av|ae)P (v susceptible|av = Av)

+
∞∑

Av=t

P (av = Av|ae)P (v susceptible|av = Av)

= (1− Pe)
ψ′(Θ(t, ae))

〈K〉

+ Peµ
t−1∑

Av=ae+1

(1− µ)Av−ae−1Θ(t− ae, Av − ae)
ψ′(Θ(t, Av))

〈K〉

+ Peµ(1− ρ)
∞∑

Av=t

(1− µ)Av−ae−1Θ(t− ae, Av − ae)
ψ′(Θ(t, Av))

〈K〉

Simplification for au > t 426

We claim that the value of Θ(t, au) is the same for all au ≥ t. This follows from the fact 427

that at t = 0 all the values are 1. By inspecting the equations for the evolution of Θ, we 428

see that if we assume Θ(t, au) is the same for all au ≥ t, then the change in Θ is also 429

the same. Thus we can assume Θ(t, au) = Θ(t, t) if au > t. This argument would break 430

down if partnership formation were affected by age differences. 431

Among the resulting simplifications is the observation that for ae ≥ t, the expression 432

for χ(t, ae) simplifies to (1− ρ)ψ′(Θ(t, t))/ 〈K〉. 433
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Governing Equations 434

Our full system of equations becomes

S(t) = µ
∞∑

au=0

(1− µ)aus(t, au)

s(t, au) =

{
ψ(Θ(t, au)) au < t

(1− ρ)ψ(Θ(t, t)) au ≥ t

I(t) = 1− S(t)

Θ(t, 0) = 1

Θ(0, au) = 1

Θ(t, au) = Θ(t− 1, au − 1)− τΦI(t− 1, au − 1) t, au ≥ 1

ΦI(t, au) = Θ(t, au)− ΦS(t, au)

ΦS(t, au) = (1− pb)auφS(t, au, au) + pb

au−1∑
ae=0

(1− pb)aeφS(t, au, ae)

φS(t, au, ae) = Θ(t− ae, au − ae)χ(t, ae)

χ(t, ae) =



(1− ρ)ψ
′(Θ(t,t))
〈K〉 ae ≥ t

(1− Pe)ψ
′(Θ(t,ae))
〈K〉

+Peµ
∑t−1
Av=ae+1(1− µ)Av−ae−1Θ(t− ae, Av − ae)ψ

′(Θ(t,Av))
〈K〉 ae < t

+Pe(1− ρ)Θ(t− ae, t− ae)ψ
′(Θ(t,t))
〈K〉 (1− µ)t−ae−1

We can derive a differential equations version of this by replacing the time step n with 435

the time step n∆t, and then calculating derivatives in the ∆t→ 0 limit. 436

A differential equations version of this can be derived by treating the time step as 437

∆t rather than 1 and assuming that the event probabilities are all proportional to ∆t. 438

Then taking ∆t→ 0 yields differential equations. We will use µ̂ = lim∆t→0 µ/∆t and 439

similarly define other variables. 440
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We find

S(t) = µe−auµs(t, au)

s(t, au) =

{
ψ(Θ(t, au)) au < t

(1− ρ)ψ(Θ(t, t)) au ≥ t

I(t) = 1− S(t)

Θ(t, 0) = 1

Θ(0, au) = 1(
∂

∂t
+

∂

∂a

)
Θ(t, au) = −τΦI(t, au)

ΦI(t, au) = Θ(t, au)− ΦS(t, au)

ΦS(t, au) = e−pbauφS(t, au, au) + pb

∫ au

0

e−pbavφS(t, au, ae) dae

φS(t, au, ae) = Θ(t− ae, au − ae)χ(t, ae)

χ(t, ae) =



(1− ρ)ψ
′(Θ(t,t))
〈K〉 ae ≥ t

(1− Pe)ψ
′(Θ(t,ae))
〈K〉

+Peµ
∫ t
ae
e−µ(Av−ae)Θ(t− ae, Av − ae)ψ

′(Θ(t,Av))
〈K〉 dAv ae < t

+Pe(1− ρ)Θ(t− ae, t− ae)ψ
′(Θ(t,t))
〈K〉 e−µ(t−ae)

The simplest numerical method to solve this system of equations would apply an Euler 441

method, which corresponds to solving the discrete-time equations above. 442
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