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Abstract 

Functional connectivity analysis has become a powerful tool for probing the 

human brain function and its breakdown in neuropsychiatry disorders. So far, 

most studies adopted resting state paradigm to examine functional 

connectivity networks in the brain, thanks to its low demand and high tolerance 

that are essential for clinical studies. However, the test-retest reliability of 

resting state connectivity measures is moderate, potentially due to its low 

behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, 

an emerging approach for cognitive neuroscience with high ecological validity, 

could potentially improve the reliability of functional connectivity measures. To 

test this hypothesis, we characterized the test-retest reliability of functional 

connectivity measures during a natural viewing condition, and benchmarked it 

against resting state connectivity measures acquired within the same 

functional magnetic resonance imaging (fMRI) session. We found that the 

reliability of connectivity and graph theoretical measures of brain networks is 

significantly improved during natural viewing conditions over resting state 

conditions, with an average increase of almost 50% across various 

connectivity measures. Not only sensory networks for audio-visual processing 

become more reliable, higher order brain networks, such as default mode and 

attention networks, also appear to show higher reliability during natural viewing. 
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Our results support the use of natural viewing paradigms in estimating 

functional connectivity of brain networks, and have important implications for 

clinical application of fMRI. 

 

Introduction 

Clinical and cognitive neuroscience communities have increasingly recognized 

the essential role of large-scale communications or connections between 

distributed brain regions in brain function (Biswal, et al., 1995; Fox and 

Greicius, 2010; Fox, et al., 2005; Friston, 2011; Greicius, et al., 2003). 

Noninvasive functional neuroimaging techniques offer a powerful approach to 

map these large-scale connections, estimated by the statistical dependencies 

between signal fluctuations. The mapping of functional connectivity is now 

widely used to delineate brain functions in healthy subjects and characterize 

pathological changes in neuropsychiatric disorders (Albert and Barabási, 2002; 

Biswal, et al., 1995; Buckner, et al., 2013; Fox and Greicius, 2010; Fox, et al., 

2005; Friston, 1994; Friston, 2011; Greicius, 2008; Greicius, et al., 2003; Jafri, 

et al., 2008; Newton, et al., 2011; Van Den Heuvel and Pol, 2010; Vatansever, 

et al., 2015). In addition to the estimate of basic correlations, graph theory is 

applied to quantify higher-level network features in the brain (Barthelemy, 2004; 

Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Dai, et al., 2014; 

Guye, et al., 2010; Hayasaka and Laurienti, 2010; He and Evans, 2010; van 
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den Heuvel, et al., 2008; Zuo, et al., 2012). Graph theoretical metrics such as 

degree centrality, clustering coefficient, efficiency and modularity are 

commonly used to define the local and global organization of functional 

connectivity networks. 

The majority of research on functional connectivity networks has been 

conducted with resting state fMRI paradigms. With low performance demand 

and high compliance, resting state fMRI hence minimizes behavioral 

confounds normally presenting during task conditions. These practical features 

of resting state fMRI make it particularly suitable for clinical studies where 

participants are usually challenged by task demand (Greicius, 2008); over the 

last two decades, resting state fMRI paradigm has become increasing popular 

in studies involving clinical patients. However, resting state fMRI suffers from 

some drawbacks due to its unconstrained nature: it is difficult to control 

unwanted behavioral confounds such as head movement and sleep 

(Tagliazucchi and Laufs, 2014; Van Dijk, et al., 2012; Vanderwal, et al., 2015). 

Furthermore, test-retest reliability of resting state connectivity measures has 

been shown to range between moderate to good with optimal processing, but 

not yet met the standard for clinical use (Braun, et al., 2012; Cao, et al., 2014; 

Guijt, et al., 2007; Guo, et al., 2012; Li, et al., 2012; Patriat, et al., 2013; 

Telesford, et al., 2010; Wang, et al., 2011). 

Recently, the use of naturalistic stimuli, such as movies and music, is gaining 
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increasing traction in cognitive neuroscience (Hasson and Honey, 2012; Spiers 

and Maguire, 2007). These naturalistic paradigms have provided novel 

insights on how human brain functions in real-life context, which is more 

dynamic and complex than what can be studied using abstract tasks designed 

for laboratory setting (Bartels and Zeki, 2004a; Bartels and Zeki, 2004b; 

Bartels, et al., 2008; Betti, et al., 2013; Felsen and Dan, 2005; Golland, et al., 

2007; Lahnakoski, et al., 2012; Malinen, et al., 2007). From a clinical point of 

view, naturalistic paradigms offer several advantages over existing fMRI 

paradigms. Naturalistic paradigms share similar advantages in participant 

compliance as resting state, but exert implicit behavioral constraint that 

enables targeted investigations of brain dysfunction. In challenging 

populations such as children or cognitively-impaired patients, naturalistic 

paradigms could greatly alleviate anxiety related to in-scanner performance as 

well as head motion (Vanderwal, et al., 2015). A series of innovative studies 

have recently revealed altered brain dynamics and connectivity during natural 

movie viewing in autism, major depressive disorder and altered states of 

consciousness (Guo, et al., 2015; Hasson, et al., 2009; Hyett, et al., 2015; Naci, 

et al., 2014). Therefore, naturalistic paradigms could provide a promising 

condition for mapping connectivity changes in neuropsychiatric disorders.  

To further develop the clinical potential of naturalistic paradigms, in particular 

for tracking longitudinal changes, rigorous evaluation is needed to establish 

the test–retest reliability of functional brain measures derived from naturalistic 
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paradigms. In this study, we provided the first such evaluation that examines 

the test-retest reliability of functional connectivity and graph theoretical 

measures derived from naturalistic fMRI data. To benchmark the reliability of 

natural viewing data, we compared these results with the test-retest reliability 

of resting state connectivity measures. Here, healthy participants underwent 

repeated fMRI sessions three months apart which contained a resting state 

paradigm followed by a movie viewing paradigm: the same movie was used in 

both sessions. We focused on long-term reliability instead of short term 

reliability (within session), as it is often more useful to monitor brain function 

over period of months and years in the clinic (Guo, et al., 2012). For a 

comprehensive investigation, several different preprocessing and analytical 

strategies were used to derive the whole brain functional connectivity 

measures, and test-retest reliability was assessed at both individual unit-wise 

and scan-wise levels (Guo, et al., 2012). 

 

Material and Methods 

Participants 

Twenty right-handed participants (11 females, 9 males; aged between 21 and 

31 years; mean age 27 ± 2.7 years) participated in the study. The participants 

were recruited from the University of Queensland and provided written 

informed consent. Participants received a small monetary compensation ($50) 
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for their participation in the study. The study was approved by the human ethics 

research committee of the University of Queensland and was conducted 

according to National Health and Medical Research Council guidelines.  

 

Experimental paradigm 

The experiment comprised two scanning sessions. For each session, 

participants underwent an 8-min resting state fMRI exam with eyes closed, and 

then freely viewed a 20-min short movie “The Butterfly Circus”. Resting state 

condition was always acquired first to avoid potential effect of movie viewing 

experience on resting state brain activity, and also to reduce the likelihood of 

fatigue and sleep during resting state. The Butterfly Circus is a short film that 

depicts an intense, emotionally evocative story of a man born without limbs 

who is encouraged by the showman of a renowned circus to reach his own 

potential. The movie is live action, color and shot in high definition. It was 

selected based on the following criteria: 1) produced within the last decade; 2) 

a critically acclaimed, award winning film; 3) rated >7.5 out of 10 by >1000 

people on IMDb (Internet Movie Database, the biggest online entertainment 

database); 4) short duration (< 25 mins). Criteria 1-3 are to ensure high 

production quality and popularity of selected movies; criterion 4 allows the 

entire movie to be fitted into a single imaging session without clipping or editing, 

so that the full storyline can be appreciated. Additional details of the 
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experiment were previously reported (Nguyen, et al., 2016b). 

Three months after the first scan session (Session A), participants returned for 

the second imaging session (Session B) involving an identical protocol of 

resting state and movie viewing paradigms. All participants reported that they 

had not previously seen the movie and were asked not to watch it outside the 

scan sessions before the conclusion of this study. The movie stimulus was 

presented using the Presentation software (NeuroBehavioral Systems, USA) 

and displayed via an MRI-compatible monitor located at the rear of the scanner. 

The sound track of the movie was delivered through an MRI-compatible audio 

headphone (Nordic NeuroLab, Norway). 

Three participants were excluded from the reliability analysis: one was due to 

technical problems during data recordings and the other two did not return for 

the second session. Hence, functional connectivity measures were derived 

from the 18 and 17 participants for session A and B, respectively; test-retest 

reliability analyses were performed on data from the 17 participants who 

finished both scan sessions. 

 

Functional image acquisition and preprocessing 

Functional and structural images were acquired from a whole-body 3-Tesla 

Siemens Trio MRI scanner equipped with a 12-channel head coil (Siemens 
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Medical System, Germany). Functional images were acquired using a 

single-shot gradient-echo Echo Planar-Imaging (EPI) sequence with the 

following parameters: repetition time (TR) 2200 ms, echo time (TE) 30 ms, flip 

angle (FA) 79o, Field of View (FOV) 192 x 192 mm, pixel bandwidth 2003 Hz, a 

64 x 64 acquisition matrix, 44 axial slices, and 3 x 3 x 3 mm3 voxel resolution. A 

high-resolution T1-weighted MPRAGE structural image covering the entire 

brain was also collected for each participant with the following parameters: TE 

= 2.89 ms, TR = 4000 ms, FA = 9o, FOV = 240 x 256 mm, and voxel size 1 x 1 

x 1 mm3. 

Functional images were preprocessed using Statistical Parametric Mapping 

toolbox (SPM12, Welcome Department of Imaging Neuroscience, Institute of 

Neurology, London) and the Data Processing Assistant for Resting-state fMRI 

software (DPARSF, (Yan and Zang, 2010)) implemented in Matlab (Mathworks, 

USA). The first five volumes of each EPI sequence were discarded to allow 

scanner equilibrium to be achieved. The remaining functional images were 

slice-time corrected and realigned to the first image using a six-parameter 

linear transformation, and subsequently co-registered to the T1 structural 

image of each individual subject. The structural images were segmented into 

gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using the 

Segment algorithm implemented in the voxel-based morphometry (VBM) 

toolbox. The functional images were subsequently normalised to the Montreal 

Neurological Institute (MNI) space using Diffeomorphic Anatomical 
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Registration Through Exponentiated Lie algebra (DARTEL) (Ashburner, 2007) 

without additional smoothing. The images were further regressed out of 

nuisance signals, bandpass filtered (0.0083 - 0.15 Hz) and detrended. 

Nuisance signals include principle components of WM and CSF signals (first 

five principle components were selected; WM and CSF signals were derived 

from common WM and CSF masks provided by DPARSF) using the CompCor 

method (Behzadi, et al., 2007) and Friston-24 motion parameters (6 movement 

parameters of the current volume, 6 parameters of the preceding volumes, and 

the square of each parameter (Yan, et al., 2013)). To examine the robustness 

of our results to preprocessing methods, we repeated our analyses with two 

additional noise regression strategies: (1) the mean signals of WM and CSF 

voxels and (2) regression of global signals in addition to the WM and CSF 

signals. 

 

ROI-based functional connectivity analyses 

Functional connectivity analyses were first performed on region of interest 

(ROI) atlases that cover the whole brain. Two previous established atlases 

were used: the 200 ROI atlas based on Craddock 2012 parcellation (Craddock, 

et al., 2012) and the 17 ROI atlas proposed by Yeo et al. (Yeo, et al., 2011). 

Since the two atlases yielded similar results, results based on the Craddock 

200 ROI atlas are presented in the main text, and results based on the Yeo 17 
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template are presented in Supporting Information.  

ROIs’ time series were extracted from preprocessed fMRI data, by taking the 

mean across all voxels within each ROI. Pearson correlation was computed 

between each pair of ROIs’ time series separately for each condition in each 

session, resulting in four 200×200 connectivity matrices for each subject (two 

for resting state and two for natural viewing). For each matrix, the correlation 

coefficients were transformed to z-scores using Fisher’s transformation, 

averaged across all subjects for each condition, and then reverted to 

Pearson’s r values to derive group-level connectivity matrices, following 

previous method (Vanderwal, et al., 2015). To quantitatively evaluate the 

differences between connectivity matrices under different conditions, we 

performed paired t-test on the connectivity matrices between the two 

conditions within the same session. The results were thresholded using an 

FDR-corrected p < 0.05. 

 

Graph theoretical analysis on ROI matrices 

We further derived graph theoretical measures from the ROI connectivity 

matrices. The fully connected ROI matrices were thresholded to determine the 

presence or absence of connections (edges) between ROIs (nodes). Weighted 

adjacency matrices were hence generated where each suprathreshold edge 

retained its correlation coefficient denoting edge weights, whereas 
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subthreshold edges were assigned values of 0. To ensure robustness of the 

threshold chosen, we repeated our analyses using a serial of thresholds (Tr = 

0.1, 0.3 and 0.5). Additional analyses using sparsity thresholding method are 

presented in Supporting Information.  

Using Brain Connectivity Toolbox (Rubinov, et al., 2009) and GRETNA Toolbox 

(Wang, et al., 2015), graph metrics were derived from the weighted adjacency 

matrices, including degree centrality, clustering coefficient, efficiency, 

betweenness centrality and an alternative centrality metric, eigenvector 

centrality (Zuo, et al., 2012). Degree centrality measures the connectedness of 

each node, computed as the weighted sum of all the edges connected to the 

node. Clustering coefficient measures the likelihood of the nodes tending to 

cluster together, calculated as the fraction that the number of edges actually 

exist to the number of all edges possibly exist. Efficiency represents the 

efficiency of information transfer, which is reciprocal to path length (the minimal 

number of edges necessary to traverse from one node to another). 

Betweenness centrality signifies the centrality of a node in the network, defined 

as the ratio of shortest paths in the whole graph that threads a certain node 

(Bullmore and Sporns, 2009). Eigenvector centrality denotes the importance of 

a node (if the neighbors of a node are central within the network itself, the node 

is of high eigenvector centrality, namely of high importance), defined as the 

first eigenvector of the adjacent matrix (Lohmann, et al., 2010; Zuo, et al., 

2012). 
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Voxel-based degree centrality 

We further employed a voxel-based strategy to examine functional connectivity 

across the whole brain. We computed the degree centrality of a connectivity 

graph that contains every voxel in the gray matter (Liao, et al., 2013). We first 

generated a group gray matter mask, which encompassed all gray matter 

voxels, both cortical and subcortical, across all subjects in our fMRI data. Then, 

we constructed a voxel-based functional connectivity network for each subject, 

where functional connections (edges) between each pair of voxels (nodes) 

were estimated using the Pearson’s correlation coefficient between their BOLD 

signals. The ensuing fully connected functional graphs were thresholded to 

determine the presence or absence of connections between voxels. To 

generate weighted adjacency matrices, each suprathreshold edge retained its 

correlation coefficient as its edge weight, whereas subthreshold edges were 

assigned values of 0. To ensure robustness to the threshold chosen, we 

studied a broad range of thresholds (Tr = 0.1, 0.3 and 0.5). Finally, voxel-based 

degree maps were generated for each subject by computing the degree 

centrality of each voxel, i.e., the sum of weights over all suprathreshold edges 

for that voxel. Degree centrality map of each individual was spatially smoothed 

using a Gaussian smoothing kernel (full-width at half-maximum = 6 mm) 

before test-retest reliability analysis (Zuo, et al., 2012).  
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Test-retest reliability  

In this paper, we assessed test-retest reliability using intraclass correlation 

coefficient (ICC) (Caceres, et al., 2009; Mcgraw and Wong, 1996; Shrout and 

Fleiss, 1979). A one-way ANOVA was applied to the measures of the two scan 

sessions across subjects, to calculate between-subject mean square (���) 

and within-subject mean square (���). ICC values were then calculated as:  

��� �
��� ����

��� � �	 � 1����
 

where d = the number of observations per subject.For every functional 

connectivity measure, we assessed reliability at both individual unit-wise and 

scan-wise levels. Unit-wise reliability is commonly reported in the literature 

(Birn, et al., 2013; Braun, et al., 2012; Guo, et al., 2012; Liao, et al., 2013; 

Schwarz and McGonigle, 2011; Shehzad, et al., 2009; Wang, et al., 2011; Zuo, 

et al., 2012). Here, one ICC value was calculated for each measurement unit, 

such as the connectivity score of each ROI pair (edge), or graph metric of each 

ROI or voxel (node). The ICC values for all measurement units were then 

averaged across the network to represent unit-wise level reliability. Additionally, 

we reported scan-wise reliability, which estimates the reliability of one 

connectivity score derived from the entire scan session (Guo, et al., 2012). 

Here, a single ICC value was calculated for the mean connectivity scores or 

graph metric averaged across all edges or nodes of the network. Note that for 
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the graph metric, efficiency, the scan-wise reliability was computed directly 

from global efficiency while the unit-wise reliability was based on local 

efficiency of each ROI.  

The reliability results are referred as excellent (ICC > 0.8), good (0.79 > ICC > 

0.6), moderate (0.59 > ICC > 0.4), fair (0.39 > ICC > 0.2), and poor (ICC < 0.2) 

(Guo, et al., 2012).  

 

Statistical analysis for ICCs 

The statistical significances of ICC and differences in ICC between conditions 

were assessed using non-parametric permutation tests (Termenon, et al., 

2016). To identify the significance of ICCs, we randomly shuffled the order of 

subjects in session B to disrupt the subject correspondence between two 

sessions (Termenon, et al., 2016), and computed ICCs between two scanning 

sessions. This process was repeated 5,000 times to generate the null 

distribution of ICCs. One-tailed tests were performed to compare the observed 

ICCs to the null distribution. A 95% confidence interval was formulated for each 

permutation test as the highest value with p > 0.05 (Ernst, 2004; Lamotte and 

Volaufova, 1999). 

To access whether ICCs were significantly different between resting state and 

natural viewing, we performed a paired non-parametric permutation test under 

the null hypothesis that the difference of resting and natural viewing ICCs is 
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drawn from a distribution with zero mean. First, we created two surrogate 

conditions for session A by concatenating randomly selected images from the 

resting state and natural viewing data. Then, two surrogate conditions were 

created for session B using the corresponding segments as selected in 

session A. We then computed the ICCs for these two surrogate conditions, and 

the ICC difference between them. This process was repeated 5,000 times to 

generate the null distribution of ICC differences. Two-tailed tests were 

performed to compare the true differences in ICC values with this null 

distribution. 95% confidence intervals of the paired permutation tests were 

formulated as the lowest and highest value with p > 0.025 (Ernst, 2004; 

Lamotte and Volaufova, 1999). 

For voxel-wise analyses, as permutation tests are time consuming with large 

number of voxels, we sampled functional images to 6 x 6 x 6 mm3 voxel 

resolution to improve the computational efficiency, and conducted paired 

permutation test at only Tr = 0.1.  

 

Test-retest reliability during different movie segments 

To assess whether the level of reliability varies during the natural viewing 

conditions, we further performed time-varying reliability analysis on different 

movie segments. We divided the movie into a serial of segments of 215 TRs 

(about 8 min), matching the duration of resting state paradigm, moving forward 
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with a 10-TR step. Then we computed test-retest reliability of functional 

connectivity and degree centrality based on ROI connectivity matrices at both 

individual unit-wise and scan-wise levels for each segment. Tr = 0.1 was used 

as the threshold to calculate degree centrality. 

 

Head motion 

We also examined the profiles of head motion during resting state and natural 

viewing, using framewise displacement proposed by Power et al. (Power, et al., 

2012). Framewise displacement is a scalar quantity defined as: �
� � |∆	��| �

�∆	��� � |∆	��| � |∆��| � |∆��| � |∆��| , where 	�� , 	��  and 	��  are 

translational displacements along X, Y and Z axes, respectively; ��, �� and �� 

are rotational angles of pitch, yaw and roll, respectively; ∆	�� � 	���	
� � 	��, 

∆	�� � 	���	
� � 	�� , ∆	�� � 	���	
� � 	�� , ∆�� � ����	
 � �� , ∆�� � ����	
 � �� , 

∆�� � ����	
 � �� . Rotation displacements were converted from degrees to 

millimeters of distance on a sphere surface (radius: 50 mm, assumed to be the 

radius of a head). One spike was counted when �
� was greater than 0.3 mm 

(Vanderwal, et al., 2015; Yan, et al., 2013). Considering the difference in the 

durations of resting state and natural viewing paradigms, we calculated the 

frequency of spikes as the number of spikes per volume and compared it 

between the two paradigms using paired t-test. 
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Results 

Seventeen healthy participants underwent repeated scan sessions of resting 

state and natural viewing paradigms approximately three months apart. 

Functional connectivity measures and their test-retest reliability were derived 

from and compared between resting state and natural viewing paradigms. To 

avoid potential influence of scan duration on reliability measures, most 

analyses were performed on data of the same duration – the first 8 min of 

natural viewing and the full 8 min of resting state data. 

 

Functional connectivity during resting state and natural viewing conditions 

We first examined and compared functional connectivity during resting state 

and natural viewing conditions. To assess functional connectivity in the whole 

brain, we adopted an established parcellation atlas comprising 200 ROIs, 

which covers the entire cortical and subcortical regions (Craddock, et al., 

2012). ROI connectivity matrices were generated for resting state and natural 

viewing conditions for the two scan sessions separately (Fig. 1A). For visual 

clarity, the connectivity matrices were organized into visual, somatosensory, 

dorsal attention, ventral attention, limbic, frontoparietal and default mode 

networks, according to the 7-network scheme (Yeo, et al., 2011). ROIs not 

included in the 7-network scheme were referred to as ‘Other areas’, which 

cover parts of cerebellum, thalamus, brainstems, and caudate. In both 
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sessions, resting state and natural viewing conditions reveal similar functional 

connectivity architecture, with high intra-network connectivity and low 

inter-network connectivity (Fig. 1A; left and middle panels). Overall, functional 

connectivity measures tend to be higher during resting state than natural 

viewing conditions, particularly in somatomotor network (Fig. 1A, right panel; 

Fig. 1C; FDR-corrected p < 0.05, paired t-tests, d.f. = 17 in session A and d.f. = 

16 in session B). Similar patterns were observed using mean signal regression 

strategy (Sfig. 1A). Functional connectivity matrices after global signal 

regression show much lower level of connectivity on average, consistent with 

previous studies (Sfig. 2A) (Guo, et al., 2012; Liao, et al., 2013). 

 

Test-retest reliability of functional connectivity 

Test-retest reliability of ROI-based connectivity matrix was previously reported 

to be fair to moderate at resting state (Guo, et al., 2012; Schwarz and 

McGonigle, 2011; Shehzad, et al., 2009). Here, we hypothesized that the 

reliability of connectivity matrix could be improved during natural viewing 

condition, where the engagement is likely stronger than resting state. 

Following previous studies, intraclass correlation coefficient (ICC) was used to 

quantify test-retest reliability at both unit-wise and scan-wise levels (Guo, et al., 

2012). Unit-wise reliability refers to the individual ICC value derived from each 

connection within the matrix. Overall, there is a significant improvement of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2016. ; https://doi.org/10.1101/087197doi: bioRxiv preprint 

https://doi.org/10.1101/087197
http://creativecommons.org/licenses/by-nc-nd/4.0/


20   C. C. Guo., J. Han 

 

reliability with natural viewing paradigm (Fig. 1B,D; p < 0.001, paired 

permutation test; Table 1). Importantly, this significant improvement is robust to 

different preprocessing strategies (Sfig. 1B,2B; p < 0.001, paired permutation 

test). 

Consistent with previous findings, scan-wise ICCs, based on the mean 

connectivity strengths of the ROI matrices, were generally higher than the 

average unit-wise ICCs for both resting state and natural viewing conditions 

(Fig. 1B) (Guo, et al., 2012). Similar to the results based on unit-wise reliability, 

natural viewing condition was associated with much higher scan-wise ICC 

(0.7593) than resting state (0.5381), supporting overall improved reliability 

during natural viewing (p = 0.0014, paired permutation test; Table 1). 

 

Test-retest reliability of degree centrality 

We further examined graph theoretical metrics during resting state and natural 

viewing conditions. To ensure robustness to the chosen threshold, we derived 

graph metrics across a broad range of thresholds (Tr = 0.1, 0.3, 0.5). We first 

focused on degree centrality, as it is a basic graph metric with good reliability 

during resting state (Guo, et al., 2012; Schwarz and McGonigle, 2011). Similar 

to the results based on ROI connectivity matrices, degree centrality is higher 

overall during resting state than natural viewing conditions (Sfig. 3A, upper 

panel). To ensure robustness of our results to the composition of connectivity 
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networks, we also derived whole brain degree maps using a voxel-based 

approach (Sfig. 3A, lower panel). The degree maps show somewhat different 

spatial patterns from previous studies (Buckner, et al., 2009; Du, et al., 2015; 

Zuo, et al., 2012). Additional analysis suggested that the differences are 

mostly contributed by the inclusion of global signal regression in those 

previous studies (Sfig. 3B). 

We then examined the reliability of degree centrality at both the individual unit- 

and scan-wise levels. Here, unit-wise reliability refers to the ICC values 

derived from degree centrality of each node (ROI or voxel). As we 

hypothesized, unit-wise ICCs of degree centrality are significantly higher 

during natural viewing than resting state conditions, irrespective of the 

threshold used (Fig. 2A,B,C; Sfig. 4; paired permutation tests; Table 1). The 

increases in reliability are substantial across many brain regions: while primary 

visual and auditory cortices showed robust improvements, higher order brain 

regions also become more reliable during natural viewing, including the 

anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and 

dorsal medial prefrontal cortex (DMPFC; Fig. 2C). The improved reliability in 

higher order brain networks is further revealed by examining the 7 networks 

separately, where the greatest increases were observed for limbic, 

frontoparietal and default mode networks (Fig. 2D). 

We also found substantial improvement with scan-wise reliability. Scan-wise 

ICC values increased from fair during resting state (0.0295-0.5627) to good 
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during natural viewing (0.3449-0.7915; Fig. 2B, lower panel; Table 1). Across 

analyses, reliability of degree centrality is generally higher when the graph is 

generated with a lower threshold, hence more densely connected (Fig. 2B; 

Sfig. 4), as shown in previous reports (Guo, et al., 2012; Schwarz and 

McGonigle, 2011). The improvement in reliability during natural viewing is 

remarkably robust to different parcellation schemes (Sfig. 5A,B; Stable 1) and 

different thresholding strategies (Sfig. 6A,B; Stable 2). 

 

Test-retest reliability of additional graph metrics  

We further quantified the test-retest reliability of additional graphical theoretical 

metrics, including clustering coefficient, efficiency, betweenness centrality and 

eigenvector centrality based on ROI connectivity matrices. Similar to 

correlation measures and degree centrality, test-retest reliability of these graph 

metrics is significantly improved during natural viewing across all three 

thresholds (Fig. 3; Table 1), except for scan-wise ICC of eigenvector centrality 

and betweenness centrality at the high threshold (Tr = 0.5). Similar to degree 

centrality, test-retest reliability of graph metrics tends to decrease when the 

graph becomes sparser (Fig. 3). We further replicated these results with 

sparsity thresholding strategy (Sfig. 6C; Stable. 2) and Yeo 2011 parcellation 

(Sfig. 5C; Stable. 1). 
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Reliability during different segments of natural viewing 

Movie viewing is a dynamic and evolving process. In this movie stimulus, the 

storyline develops gradually and reaches the climax towards the end (~17 min), 

which is presumably the most important and engaging point of the movie 

(Nguyen, et al., 2016b). We hence asked whether the reliability of functional 

connectivity measures would vary during the movie as the storyline and viewer 

engagement develop. Here, we computed test-retest reliability separately for 

32 overlapping segments of the movie – windows of 215 TRs moving forward 

with a 10-TR step. At both unit- and scan-wise levels, reliability of functional 

connectivity measures gradually increases as the movie develops, peaking 

around ¾ of the movie (24th segment; Fig. 4A,B). Reliability of degree 

centrality follows the same trend as that of functional connectivity (Fig. 4A,B). 

Interestingly, connectivity measures derived from these later movie segment 

were almost as reliable as the ones from the entire 20-min of natural viewing 

data (Fig. 4; FM: full movie). These results support that behavioral constraints 

and engagements, which tend to increase as the storyline evolves, could 

improve test-retest reliability of functional measures of brain activity. Not only 

the visual network showed considerable improvement, higher-order networks, 

including limbic and frontoparietal networks, also become much more reliable 

as the movie evolves (Fig. 4C,D).  
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Head motion 

Consistent with previous report, head motion is generally less during natural 

viewing comparing to resting state condition (Vanderwal, et al., 2015). In our 

dataset, movie viewing is associated with significantly less framewise 

displacement than resting state conditions for both scan sessions (Fig. 5; Table 

2). 

 

Discussion 

In this study, we for the first time evaluated the test-retest reliability of 

functional connectivity measures derived from a naturalistic fMRI paradigm. 

Our results demonstrated that naturalistic paradigm offers a reliable 

experimental condition in measuring functional connectivity in the brain. Using 

both simple correlation measures and graph metrics, we showed that 

test-retest reliability of functional brain measures is good to excellent during 

naturalistic fMRI paradigm, much improved over resting state measures. This 

improvement in reliability is robust to the choice of preprocessing approach, 

thresholding strategy and parcellation scheme. Noticeably, reliability appears 

to improve during the natural viewing paradigm, potentially reflecting increased 

cognitive engagement as the storyline develops. This positive impact of 

cognitive engagement on reliability seems to outweigh the potential negative 

impact of familiarity due to repeated viewing. Overall, our results support the 
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use of naturalistic neuroimaging paradigms in examining functional brain 

networks, especially paradigms that allow for the appreciation of the full 

storyline.  

In general, functional neuroimaging measures during resting state condition 

show moderate test-retest reliability. Consistently with previous reports, ICCs 

range between fair to good for functional connectivity measures, and good to 

moderate for graph metrics like degree centrality (Braun, et al., 2012; Cao, et 

al., 2014; Du, et al., 2015; Guo, et al., 2012; Patriat, et al., 2013; Shehzad, et 

al., 2009). To improve the reliability of resting state functional measures, 

previous studies have tested a variety of experimental and analytical strategies. 

Some have been found to be effective, such as not regressing out global 

signals (Guo, et al., 2012; Liao, et al., 2013), using wavelet processing (Guo, 

et al., 2012), or requiring eyes fixation (Patriat, et al., 2013). The improvements, 

however, have been moderate, perhaps reflecting the intrinsic limitation of 

resting state as a data acquisition condition. Resting state measures other 

than connectivity-based ones, such as amplitude of low frequency fluctuation 

(ALFF) and regional homogeneity (ReHo), showed comparable reliability 

(Jiang and Zuo, 2015; Li, et al., 2012; Zuo, et al., 2013). 

On the other hand, test-retest reliability of functional measures during 

task-based paradigms tend to be higher than the ones during resting state 

(Aron, et al., 2006; Cao, et al., 2014; Raemaekers, et al., 2007; Specht, et al., 
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2003), supporting the benefit of behavioral constraints during functional 

neuroimaging paradigms. Our study provides further support for this notion by 

directly comparing the reliability measures between behavioral conditions 

within the same scan session. The improvement in reliability during natural 

viewing appears to be particularly prominent for weakly connected edges and 

nodes. During resting state, ICC was positively correlated with connectivity 

strength: weak connections tend to be associated with low reliability. This 

relationship, however, was minimal during natural viewing, where the weak 

connections showed equivalent reliability as strong connections (Sfig. 7). 

Therefore, behavioral constraint during natural viewing might reduce the noise 

or variability among these weakly connected edges and nodes.  

Functional neuroimaging combined with dynamic natural stimuli could offer an 

effective paradigm to study neural processes during naturalistic experiences 

and its disruption in neuropsychiatric disorders. With minimum training or 

in-scanner performance required, this approach enjoys similar advantages as 

resting state acquisitions in minimizing anxiety associated with completing 

difficult or repetitive tasks, and can hence be conducted in clinical populations 

with high tolerance. On the other hand, natural stimuli put ecologically relevant 

constraints on neuronal processes and might be more effective in selectively 

engaging brain networks of interest than resting state acquisitions. In our 

recent study on major depressive disorder, many of the results are more robust 

during natural viewing than resting state paradigms (Guo, et al., 2016). Here, 
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we provided convincing results on the superb test-retest reliability using 

naturalistic paradigms, further supporting its potential in clinical application, 

particularly as longitudinal markers to track disease progression. 

Several analytical choices have similar effects on test-retest reliability in both 

behavioral conditions. First, summary measures that quantify network 

connectivity as a whole are more reliable than individual measures of 

connectivity. In our study, given the same behavioral conditions and analytical 

approaches, scan-wise ICCs are consistently higher than the mean of 

unit-wise ICCs. Second, lower thresholds for graph theoretical analyses yield 

more reliable graph metric. We found the reliability of graph metric is generally 

higher using thresholds of 0.1 or 0.3 than 0.5: the decrease in reliability with 

higher thresholds is particularly obvious for unit-wise ICC (Fig. 2B,3A). Finally, 

comparing across graph metrics, degree centrality, cluster coefficient, and 

efficiency are the most reliable graph metrics, while betweenness centrality 

and eigenvector centrality tends to have low unit-wise reliability (Fig. 2,3; Sfig. 

5,6). These observations converge with previous findings based on resting 

state fMRI (Andellini, et al., 2015; Braun, et al., 2012; Du, et al., 2015; Guo, et 

al., 2012). 

Naturalistic neuroimaging paradigms could further contribute to our 

understanding of brain connectomics during natural, stimulus-driven conditions. 

Resting state fMRI has been instrumental to our understanding of the brain by 
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mapping its intrinsic connectivity architecture (Zuo and Xing, 2014). How this 

connectivity architecture is modulated by stimulus-driven conditions, however, 

remains unclear. Previous meta-analyses of task-based paradigms have 

revealed that the topography of resting-state networks closely resembles that 

of functional systems activated by task (Biswal, et al., 1995; Greicius, et al., 

2003; Smith, et al., 2009), as well as task-evoked functional connectivity 

networks (Cole, et al., 2014). Functional connectivity during natural viewing 

also shares similar patterns with resting state connectivity, although not 

identical (Fig. 1) (Betti, et al., 2013; Vanderwal, et al., 2015). Therefore, it is 

conceivable that naturalistic paradigms, with improved reliability, could provide 

an ecologically-valid condition for characterizing functional connectivity 

architecture in healthy brain or neuropsychiatric disorders. The improvement of 

reliability during naturalistic paradigms is not limited to sensory regions, but 

also extends to several higher-order networks, including the default mode 

network. Furthermore, with rich and dynamic context, naturalistic 

neuroimaging paradigms could further advance the understanding of effective 

and dynamic connectivity of the brain (Nguyen, et al., 2016a). 

 

Limitations and future directions 

Our study did not fully compare the effect of scan duration between resting 

state and movie viewing conditions. Previous studies showed that the reliability 
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of resting state connectivity measures improves with longer scans (Birn, et al., 

2013; Zuo and Xing, 2014; Zuo, et al., 2013). The gain in reliability was most 

significant around 8-12 min and plateaued with longer scans (Birn, et al., 2013). 

Using the similar reliability measure, functional connectivity during natural 

viewing is more than 20% more reliable when using the full data of 20 min than 

the first 8 min (Fig. 4A). Therefore, natural viewing data could still be more 

reliable than resting state dataset of longer duration, especially considering the 

proneness to sleep and movement associated with long resting state scan. 

However, since we did not acquire 20 min of resting state data in our study, we 

cannot fully compare the effect of scan duration between these two conditions.  

In addition, our findings could be confounded by time-dependent effects. As 

resting state condition is always acquired before movie viewing, it is possible 

that subjects became more relaxed and settled after the initial session. In our 

experience, however, participants tend to get fatigue and sleepy after being in 

the scanner for a while, and therefore we opted to prioritize the resting state 

acquisition first. We always gave participants time to get settled into the 

scanner environment. A final consideration is that this design avoids the 

potential effect on resting state brain activity from movie viewing experience. 

Given that our reliability results on resting state are well within the range 

reported in the literature (Birn, et al., 2013; Braun, et al., 2012; Guo, et al., 

2012; Liao, et al., 2013; Schwarz and McGonigle, 2011), and our functional 

connectivity results on resting state and movie viewing are very similar to a 
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recent study that counterbalanced the conditions (Vanderwal, et al., 2015), we 

do not believe the acquisition order had a significant impact on our findings.  

Finally, it is important to note that functional connectivity during natural viewing 

is not equal with resting state connectivity. We here used resting state as 

benchmark for natural viewing data and showed that natural viewing offers 

high reliability. We, however, do not imply natural viewing is superior to nor 

should replace resting state – these two conditions engage distinct mental 

state and high test-retest reliability might not be the most desired outcome in 

some situation. Rather, our results suggest natural viewing could offer a 

complementary and reliable approach for mapping brain function, particularly 

for clinical research. Many technological issues, however, remain to be 

addressed. The choice of movie might have an impact on functional 

connectivity measures and their reliability (Betti, et al., 2013; Vanderwal, et al., 

2015). It is also possible that movie might engage different populations, such 

as by gender and age, in different manners. These issues should be carefully 

investigated to further evaluate the applicability of naturalistic paradigms.  
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Figure 1. ROI connectivity matrix analysis. A. Group-level connectivity 

matrices during resting state (RS), natural viewing (NV) and the differences 

between them for session A (SA; upper panel) and session B (SB; lower panel). 

ROI connections with significant differences are shown in color (warm color, 
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NV > RS; cool color, NV < RS; FDR-corrected p < 0.05, paired t-test, d.f. = 17 

in session A and d.f. = 16 in session B). ROIs are organized according to the 

7-network system (Yeo et al.), as labeled on the top of the figure and to the left 

of each panel. The mean connectivity strength of each condition is indicated 

on the bottom of each matrix. B. Unit-wise ICCs of ROI connectivity matrix 

during resting state and natural viewing and the differences between them 

(green: non-significant difference; warm color: NV > RS; cool color: NV < RS; 

FDR-corrected p < 0.025, paired permutation test). Average unit-wise and 

scan-wise ICC values are indicated below the matrices. C. Distribution of 

connectivity coefficients. Shades signify SEM (standard error of the mean) 

across subjects. For visual clarity, only SEM for session A is displayed. D. 

Distribution of unit-wise functional connectivity ICCs. 
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Figure 2. Degree centrality reliability analysis. A. Permutation tests of the 

unit-wise reliability of degree centrality derived from ROI-based method at 

threshold of 0.1. Upper panel: unit-wise ICCs are compared to corresponding 

null distribution with 5,000 randomizations. Vertical lines indicate the observed 

values in each condition. Data from resting state is color coded in cyan, and 
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natural viewing in green. Dashed lines indicate 95% CIs. Lower panel: 

Difference in unit-wise ICC is compared to the null distribution with 5,000 

randomizations. The vertical line indicates the observed difference. Dashed 

lines indicate 95% CIs. B. Average unit-wise (upper panel) and scan-wise 

(lower panel) ICCs during resting state (RS) and natural viewing (NV) across 

three thresholds (Tr = 0.1, 0.3, 0.5). Dashed lines indicate 95% CIs where 

values above the CI lines indicate significant reliability. Results based on both 

ROIs-and voxels-based analyses are presented. C. Unit-wise ICC differences 

between natural viewing and resting state with both ROI- and voxel-based 

approaches. Significant differences are shown in color (warm color, NV > RS; 

cool color, NV < RS; FDR-corrected p < 0.025, paired permutation test). D. 

Average unit-wise ICC differences across ROIs within each network. Dashed 

lines indicate 95% CIs where values above the CI lines indicate significantly 

greater reliability during natural viewing than resting state. Positive values 

represent higher unit-wise ICC during natural viewing than resting state. For 

illustration purpose, results in A, C and D were generated using threshold Tr = 

0.1. 
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Figure 3. Additional graph theoretical metrics – clustering coefficient, efficiency, 

betweenness centrality and eigenvector centrality – derived using ROI-based 

approach. Average unit-wise (A) and scan-wise (B) ICCs during resting state 

(RS) and natural viewing (NV) across three thresholds (Tr = 0.1, 0.3, 0.5). 

Dashed lines indicate 95% CIs where values above the CI lines indicate 

significant reliability. 
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Figure 4. Reliability analysis of movie segments. Mean unit-wise ICCs (solid 

lines) and scan-wise ICCs (dashed lines) for ROI correlation coefficient (A) 

and degree centrality (B) derived from different segments during natural 

viewing. The 1st segment and the segment with highest reliability (24th) are 

signified with red and blue crosses, respectively. The indices of fMRI volumes 

for these two segments are labeled on the bottom. ICC values of the full movie 

(FM) and resting state (RS) are indicated by horizontal lines as references. C. 

Unit-wise ICC differences between the full movie and resting state, and 

between the 24th segment and resting state. Significant differences are shown 
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in color (warm color, movie segment > RS; cool color, movie segment < RS; 

FDR-corrected p < 0.025, paired permutation test). D. Average unit-wise ICC 

differences between the full movie and resting state (left panel), and between 

the 24th segment and resting state (right panel) across ROIs within each 

network. Positive values represent higher unit-wise ICC during movie 

segments than resting state. Dashed lines indicate 95% CIs where values 

above the CI lines indicate significantly greater reliability during natural viewing 

than resting state. For illustration purpose, results in B, C and D were 

generated using threshold Tr = 0.1. 

 

 

Figure 5. Head motion comparison. Framewise displacement (FD, A) and 

frequency of spikes (B) under different conditions (Session A: SA; session B: 

SB; resting state: RS; natural viewing: NV). Each dot represents the mean FD 

or spikes frequency of each subject. The data for the same subject are 

connected by lines. * signifies significant differences between NV and RS (p < 

0.05; paired t-test, d.f. = 17 in session A and d.f. = 16 in session B). 
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Tables 

Table 1. Paired permutation tests of the differences in reliability between 

resting state (RS) and natural viewing condition (NV). Graph theoretical 

metrics are derived using Craddock parcellation at both unit- and scan-wise 

levels (Tr = 0.1, 0.3, 0.5). TD represents true difference (TD = ICCNV - ICCRS; 

for TD at unit-wise level, ICCRS and ICCNV are ICC values averaged across all 

ROIs during RS and NV, respectively). CI indicates 95% confidence interval. 

Nonsignificant results are in italic. 

 

Metric Unit-wise Scan-wise 

Functional 
connectivity 

TD 0.1293 0.2212 
P 0.0002 0.0014 
CI [-0.0093, 0.0095] [-0.1438, 0.1484] 

Threshold 0.1 0.3 0.5 0.1 0.3 0.5 

ROI- 
wise 

Degree 
centrality 

TD 0.1806 0.1795 0.2438 0.2125 0.2017 0.2672 
P 0.0002 0.0002 0.0002 0.0052 0.0092 0.0002 

CI 
[-0.0446,  
0.0439] 

[-0.0408, 
0.0409] 

[-0.0339, 
0.0341] 

[-0.1605, 
0.1605] 

[-0.1619, 
0.1624]  

[-0.1464, 
0.1500] 

Clustering 
coefficient 

TD 0.2566 0.2339 0.1514 0.2564 0.2477 0.3236 
P 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

CI 
[-0.0243, 
0.0245] 

[-0.0221, 
0.0229] 

[-0.0217, 
0.0219] 

[-0.1291, 
0.1320] 

[-0.1218, 
1245] 

[-0.1333, 
0.1294] 

Efficiency 

TD 0.2838 0.2476 0.0877 0.2811 0.2720 0.1862 
P 0.0002 0.0002 0.0002 0.0006 0.0012 0.0161 

CI 
[-0.0469, 
0.0491] 

[-0.0335, 
0.0352] 

[-0.0239, 
0.0267] 

[-0.1623, 
0.1617] 

[-0.1622, 
0.1619] 

[-0.1670, 
0.1689] 

Betweenness 
centrality 

TD 0.0831 0.0705 0.0492 0.2435 0.1774 0.1861 
P 0.0002 0.0002 0.0038 0.0016  0.0126  0.0320  

CI 
[-0.0294, 
0.0282] 

[-0.0288, 
0.0288] 

[-0.0359, 
0.0349] 

[-0.1555, 
0.01550] 

[-0.1602, 
0.1563] 

[-0.1925, 
0.1969] 

Eigenvector 
centrality 

TD 0.0622 0.0843 0.1495 0.4574 0.5095 -0.0201 
P 0.0002 0.0002 0.0002 0.0002 0.0002 0.5855 
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CI 
[-0.0195,
0.0197] 

[-0.0195, 
0.0195] 

[-0.0219, 
0.0216 

[-0.1679, 
0.1669] 

[-0.2080, 
0.2178] 

[-0.2123, 
0.2191] 

Voxel 
-wise 

Degree 
centrality 

TD 0.0704 
0.0002 

- 
- 

- 
- 

0.1570 
0.0002 

- 
- 

- 
- P 

CI 
[-0.0083, 
0.0083] 

- - 
[-0.0234, 
0.0243] 

- - 

 

Table 2. Mean values and stand deviations (s.t.d) for mean framewise 

displacement (FD) and frequency of spikes in different conditions (session A: 

SA; session B: SB; resting state: RS; natural viewing: NV). P and CI (95% 

confidence interval) were derived from paired t-test. Nonsignificant results are 

in italic. 

Metric SA, RS SA, NV SB, RS SB, NV 

FD 

Mean 0.1390 0.0888 0.1144 0.0833 
s.t.d 0.0722 0.0442 0.0545 0.0464 

P 0.0039 0.0022 
CI [0.0185, 0.0819] [0.0130, 0.0493] 

Spikes 

Mean 0.0884 0.0279 0.0432 0.0286 
s.t.d 0.1005 0.0414 0.0681 0.0499 

P 0.0141 0.1136 
CI [0.0138, 0.1071] [-0.0039, 0.0311] 

Degree of freedom 17 16 
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