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ABSTRACT

Selective visual attention enables organisms to enhance the representation of behaviorally
relevant stimuli by altering the encoding properties of single receptive fields (RFs). Y et we know
little about how the attentional modulations of single RFs contribute to the encoding of an entire
visual scene. Addressing thisissue requires (1) measuring a group of RFsthat tile a continuous
portion of visual space, (2) constructing a population-level measurement of spatial
representations based on these RFs, and (3) linking how different types of RF attentional
modulations change the population-level representation. To accomplish these aims, we used
fMRI to characterize the responses of thousands of voxels in retinotopically organized human
cortex. First, we found that the response modulations of voxel RFs (VRFs) depend on the spatial
relationship between the RF center and the visual location of the attended target. Second, we
used two analyses to assess the spatial encoding quality of a population of voxels. We found that
attention increased fine spatial discriminability and representational fidelity near the attended
target. Third, we linked these findings by manipulating the observed vRF attentional modulations
and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered
that attentional enhancements of population-level representations largely depend on position
shifts of VRFs, rather than changes in size or gain. Our data suggest that position shifts of single
RFs are a principal mechanism by which attention enhances population-level representationsin

visual cortex.

SIGNIFICANCE STATEMENT
While changes in the gain and size of RFs have dominated our view of how attention modul ates

information codes of visual space, such hypotheses have largdly relied on the extrapolation of
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single-cell responses to population responses. Here we use fMRI to relate changes in single
voxel receptive fields (VRFs) to changes in the precision of representations based on larger
populations of voxels. We find that VRF position shifts contribute more to population-level
enhancements of visual information than changes in vRF size or gain. This finding suggests that
position shifts are a principal mechanism by which spatial attention enhances population codes
for relevant visual information in sensory cortex. This poses challenges for |abeled line theories
of information processing, suggesting that downstream regions likely rely on distributed inputs

rather than single neuron-to-neuron mappings.

INTRODUCTION

Spatial receptive fields (RFs) are a core component of visual information processing
throughout the visual system. They are modified by selective visual attention to improve the
fidelity of sensory representations, likely enabling more precise, accurate perception (Desimone
and Duncan, 1995; Anton-Erxleben and Carrasco, 2013). Prior studies in non-human primates
have found that covert spatial attention changes the position, size, and amplitude of responsesin
single-cell RFsin early cortical areassuch as V1, V4, and MT (Moran and Desimone, 1985;
Connor et al., 1996, 1997, Womelsdorf et a., 2006, 2008; Roberts et al., 2007; David et al.,
2008). Recent neuroimaging studies have also shown that single-voxel RFs (VRFs) undergo
similar response changes with attention, shifting towards the attended target or changing in size
(deHaaset al., 2014; Klein et al., 2014; Kay et al., 2015; Sheremata and Silver, 2015). Most
accounts suggest that these RF modulations improve the spatial representations of the attended
target, either by boosting the signal-to-noise ratio (SNR) by increasing response amplitude, or by

increasing the spatial resolution by decreasing RF size (Desimone and Duncan, 1995; Anton-
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Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). These mechanisms are akin to turning
up the volume (gain increase) or to using smaller pixelsto encode a digital image (size decrease).

Degspite these documented modulations, it is not yet clear how different types of RF
modulations are combined to facilitate robust population codes. Recent studies have only begun
to explore how interactions between neurons may affect the coding properties of the population
(Anton-Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). Y et analyzing these data at a
population level is crucial for understanding how spatial attention changes the overall
representation of an attended area. Prior fMRI studies that measured many VRFSs across space
were often unable to report the full pattern of response modulations with respect to the attended
target because subjects attended to the mapping stimulus, rather than to a fixed point in space
(Sprague and Serences, 2013; Kay et al., 2015; Sheremataand Silver, 2015). Studies which fixed
the locus of attention have reported mixed results on vVRF modulations (de Haas et al., 2014;
Klein et al., 2014). The first aim of this study was thus to evaluate how properties of VRFsin
retinotopic areas change with attention, especially near the peripheral attention target.

The second aim of the study was to evaluate how different types of RF modulations
contribute to population-level enhancements of an attended region of space. Single RFsin early
visual areas are fundamentally local encoding models that are relatively uninformative about
regions outside their immediate borders. To study their relationship to a population-level
representation of space, other metrics are needed to integrate information across al local
encoding units—e.g., VRFs — to evaluate how attentional modulations impact the quality of
population codes. Here, we used two different population-level metrics of spatial encoding
fidelity to investigate these questions, and to determine how changes in vRF amplitude, size, or

position affect the population-level representations. First, we used a measure related to Fisher
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95 Information to evaluate the spatial discriminability of population codes. Second, we used a

96  gspatial encoding model that incorporates information across voxels to form representations of

97  stimuli in the mapped visual field (Brouwer and Heeger, 2009; Sprague and Serences, 2013;

98 Spragueet al., 2015).

99 We found that VRF position shifts increase both the spatial discriminability around the
100 attended region aswell asthefidelity of stimulus reconstructions near the attended target.
101  Surprisingly, shiftsin vRF position accounted for more of the population-level enhancements
102  with attention than changesin VRF size or gain. This finding is unexpected in the context of
103 ‘labeled-line models of information processing, which posit that visual representations rely on
104  RFsthat transmit consistent ‘labels' for visual features such as spatial position. Our findings
105 suggest that apparent shiftsin the labels of RFs play an important role in the attentional
106  enhancement of visual information.
107
108 MATERIALS& METHODS
109 Task design and participants
110  We collected data from 9 human participants (4 female), 6 of whom had previously completed a
111  set of retinotopic mapping scansin the lab (participants AA, AB, AC, Al, and AL in Sprague &
112  Serences, 2013; participants AA, AC, and Al in Sprague et al., 2014; all participants in Ester et
113  al., 2015). All participants provided written informed consent and were compensated for their
114  time ($20/hour) as approved by the local UC San Diego Institutional Review Board. Participants
115 practiced both the attention task and the localizer task before entering the scanner. A minimum
116  of four hours of scanning was required to complete the entire analysi's, so one participant was

117  excluded dueto insufficient data (they only completed 2 hours). Another participant was
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118  excluded for inconsistent behavioral performance, with average task accuracy at chance (48.6%).
119 Thisyielded atotal of 7 participants who completed the entire experiment (3 2-hour scan

120  sessions per participant).

121 Participants centrally fixated a gray rectangular screen (120x90 cm) viewed via a head-
122 coil mounted mirror (~3.85 m viewing distance). They attended one of three fixed locations on
123  the screen: the fixation point or atarget to the lower left or lower right of fixation. During each
124 2000 mstrial, subjects reported a change in the attention target. When subjects attended fixation,
125 they reported whether a brief contrast change (100 — 400 ms, starting 300 — 1000 msinto the
126  tria) was dimmer or brighter than the baseline contrast. The peripheral attention targets were two
127  pentagons (0.17° radius; 50% contrast) centered 2.1° to the left and right of fixation (Fig 1a).
128  When subjects attended a peripheral target, they reported whether it rotated clockwise or

129  counter-clockwise (rotation duration 100 - 300 ms, starting 300 - 1600 msinto thetrial). Inter
130 tria intervals (ITls) randomly varied between 1000 to 3000 msin 500 ms increments (mean ITI:
131 2000 ms). The magnitude of the contrast change or the rotation was adjusted on each run to keep
132  task performance for each participant near 75% (mean = 75.90%, bootstrapped 95% C.I.

133 [72.46%, 79.20%)]), with no significant difference between conditions as evaluated with a one-
134  way repeated measures ANOV A randomization test (F(1,11) = 0.220, randomized p = 0.800).
135  For four participants, we collected 6 runs on the attend periphery tasks without a changein the
136  luminance of the fixation stimulus. Performance on the attend periphery tasks was stable across
137  runswith and without the luminance change (repeated-measures ANOV A with run type x

138  random participants factor; p = 0.439, null F distribution using randomized labels for 10,000
139 iterations). Therefore, these data were collapsed across scan sessions with and without changes

140 in fixation luminance.


https://doi.org/10.1101/086892

bioRxiv preprint doi: https://doi.org/10.1101/086892; this version posted February 14, 2017. The copyright holder for this preprint (which was

141

142

143
144
145
146
147
148
149
150
151
152
153

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spatial attention from units to populations 7

Fixation/ITI
1,000 - 3,000 ms

Mapping probe locations
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jittered +/- 0.42°
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b Estimate voxel RF (vRF) parameters
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< 5N amplitude
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C Estimate how attentional modulations in VRFs affect population measures
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;
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Figure 1. Covert spatial attention task and hypothesized representation changes with shifts of
gpatial attention. (a) Subjects fixated centrally and attended to brief rotations in the pentagon
stimulus on the left or right while a flickering checkerboard probe stimulus appeared at one of 51
grid locations across the visual field. On control runs, subjects attended to a contrast change at
fixation. fMRI data measured during this attention task is used to create visualizable estimates of
voxel receptive fields (VRFs) and stimulus reconstructions. (b) A receptive field model isfit to
the responses of each voxel, and can be described by itsx and y position (center), its response
basdline, response amplitude, and its size (full-width half maximum). (c) Given a population of
voxelsin aretinotopic region, such as V1, we examine two different measures of spatial
information in the population. Thefirst, a spatial discriminability metric, scales with the slope of
the tuning curve at a given location in space (M aterials and Methods). The second relieson a

Stimulus
reconstruction
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154  multivariate inverted encoding model (IEM) for space. By reconstructing images of the mapping
155  stimulus on each test trial, we can measure how population-level spatial information changes
156  with attention. We then can model how changes in individual vRFs affect both of these

157  population measures.

158

159 On 51 of the 61 trials in each run, afull-contrast 6 Hz flickering checkerboard (0.68°
160 radius; 1.67 cycles/deg) appeared for 2000 ms at one of 51 different locations across the screen
161 to map the spatial sensitivity of visually responsive voxels. These mapping stimuli covered a
162  region of the screen roughly subtending 9° horizontal and 6° vertical when their position was
163 jittered. When one of these checkerboards overlapped with any of the static attention targets,
164  they were partially masked with a small circular aperture the same color as the screen

165 background (0.16°/0.25° radius aperture for fixation/pentagon, respectively) that allowed the
166 stimulusto remain visible. Participants were instructed to ignore the task-irrelevant flickering
167 checkerboards throughout the experiment. During the 10 null trials on each scan, the participant
168  continued to perform the attention task but no checkerboard was presented. Null trials and

169 mapping stimulus trials were presented in a pseudorandom interleaved order.

170 The location of the checkerboard mapping stimulus on each trial was determined by
171  generating an evenly spaced triangular grid (0.84° between grid points) and centering the

172  checkerboard on one of these grid points. The location of the checkerboard mapping stimulus
173  wasthen jittered arandom amount from these grid points (+/- 0.42°/0.37° horizontal/vertical).
174  When subjects attended the peripheral target, half of the runs were presented at the discrete grid
175 positions so that we could achieve more stable stimulus reconstructions (see Population analysis
176  (2)).

177  Magnetic resonanceimaging
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178 We obtained all structural and functional MR images using a GE 3T MR750 scanner at

179  University of California, San Diego. We collected all functional images (19.2 cmx 19.2 cm
180 FOV, 64 x 64 acquisition matrix, 35 interleaved slices, 3 mm?® voxels with 0 mm slice gap, 128
181  volumes per scan run) using a gradient echo planar pulse sequence (2000 ms TR, 30 ms TE, 90°
182 flip angle) and a 32-channel head coil (Nova Medical, Wilmington, MA). Five dummy scans
183  preceded each functional run. A high-resolution structural image was acquired at the end of each
184  session using a FSPGR T1-weighted pulse sequence (25.6 cmx 25.6 cm FOV, 256 x 192

185  acquisition matrix, 8.136/3.172 ms TR/TE, 192 slices, 9° flip angle, 1 mm?® voxels). All

186 functional scans were co-registered to the anatomical images acquired during the same session,
187 and thisanatomical was in turn co-registered to the anatomical acquired during the retinotopy
188  scan.

189 EPI images were unwarped with a custom script from UCSD’ s Center for Functional
190 Magnetic Resonance Imaging using FSL and AFNI. All subsequent preprocessing was

191 performed in BrainVoyager 2.6.1, including slice-time correction, six-parameter affine motion
192  correction, and temporal high-pass filtering to remove slow signal drifts over the course of each
193 run. Data were then transformed into Talairach space and resampled to have a 3x3x3 mm voxe
194  size. Finally, the BOLD signal in each voxel was transformed into Z-scores on a scan-by-scan
195 bass. All subsequent analyses were performed in MATLAB using custom scripts (available
196  online on Open Science Framework: osf.io/s9vqv).

197

198 Independent localizer task

199 We constrained our analyses to visually responsive voxels in occipital and parietal cortex

200 using aseparate localizer task (3-5 runs per participant). On 14 trials, participants fixated
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201  centrally and viewed afull-field flickering checkerboard (10 Hz, 11.0/8.3° width/height) for
202 8000 ms. Participants detected whether a small area (2D Gaussian, ¢ = 0.2°) within the

203  checkerboard dimmed in contrast. Contrast dimming occurred between 500 to 4000 ms after the
204  start of thetrial, and lasted between 2000 to 3000 ms (all uniformly sampled in 500 ms steps).
205 Thiscontrast change occurred infrequently (randomly on 5 out of 14 trials) at arandom location
206  within the checkerboard. The average contrast change was varied between runs to maintain

207  consigtent performance at ~75% accuracy (mean performance 78.0%). On 8 trials participants
208  simply fixated throughout the trial without a checkerboard being presented. We then used a
209  standard general linear model (GLM) with a canonical two-gamma hemodynamic response

210 function (HRF, peak at 5 s, undershoot peak at 15 s, response undershoot ratio 6, response

211 dispersion 1, undershoot dispersion 1) to estimate the response to the checkerboard stimulusin
212  each voxe. For all subsequent analyses, only voxelsin the retinotopically defined areas V1, V2,
213 V3,V4,V3A/B and IPSO with asignificantly positive BOLD response to the localizer task (at
214  FDR g =0.05) were included (Benjamini and Y ekutieli, 2001).

215

216 Estimating singletrial BOLD responses

217 For all subsequent analyses, we used trial-wise BOLD z-scores. We estimated these by
218  creating aboxcar model marking the duration of each checkerboard mapping stimulus and

219  convolving it with a canonical two-gamma HRF (peak at 5 s, undershoot peak at 15 s, response
220  undershoot ratio 6, response dispersion 1, undershoot dispersion 1). To standardize our data
221  acrossruns, we z-scored the BOLD responses within each run and concatenated the z-scores
222  acrossruns. We then solved a GLM to find the response to each predictor.

223
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224  Statistical procedures

225  All reported confidence intervals (Cls) are computed by resampling the data with replacement
226  (i.e bootstrapping). The number of iterations for each bootstrapping procedure varied

227  (depending on available computing power and time for that procedure) and are therefore reported
228  with each result. For tests comparing a bootstrapped distribution against zero, p-values were

229  computed by conducting two one-tailed tests against O (e.g., mean(param_change < 0) &

230 mean(param_change > 0)) and doubling the smaller p-value. All repeated tests were FDR

231  corrected (g = 0.05).

232

233  Voxe receptivefied (VRF) estimation, fitting, and parameter analysis

234 Wefirst estimated vRFs for each attention condition to investigate (1) how vRF

235 parameters changed when participants attended to different locations and (2) the spatial pattern
236  of VRF changes across visual space. We note here that prior reports have referred to similar

237  voxe RF models as population receptive fields, or pRFs, to emphasize the fact that each voxel
238  contains a population of spatially tuned neurons (Dumoulin and Wandell, 2008; Wandell and
239  Winawer, 2015). However, since we are comparing modulations at different scales in the present
240  study (i.e. modulationsin single voxels and in patterns of responses across many voxels), we will
241  refer to these single voxel measurements as voxel receptive fields (VRFs), and will reserve the
242 term ‘population’ exclusively for multivariate measures involving several voxels, allowing our
243  terminology to align with theories of population coding (Maet al., 2006).

244 We estimated voxel receptive fields (VRFs) using a modified version of a previously

245  described technique (Sprague and Serences, 2013). This method estimates asingle voxel’s

246  gpatial sensitivity by modeling its BOLD responses as a linear combination of discrete, smooth
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247  gpatid filterstiled evenly across the mapped portion of the visual field. These spatial filters (or
248  gpatia channels) form our modeled basis set. We then regressed the BOLD z-scores (v voxels X
249 ntrials) onto adesign matrix with predicted channel responses for each trial (C, k channelsx n
250 trials) by solving Equation 1:

251 (1) B=WC

252  for the matrix W (v voxels x k channels).

253 Each of the k channelsin the basis set was defined as a two-dimensional cosine that was

254  fixed to reach O at a set distance from the filter center:

255 (2 f(r)= ( 0.5 (cos (?) + 0.5) )7 forr <s,

256  wherer isthe distance from the filter center and sisthe size constant. Setting a zero baselinein
257  thisfunction ensured that we could estimate a stable baseline for each voxel by restricting the
258  response of the channel to a known subregion of the visual display. Since the estimated VRF size
259  depends on the size of the filters, we made thefilters fairly small (1.08° FWHM) and dense (91
260 filtersarranged in a 13 horizontal / 7 vertical grid, each spaced 0.83° apart). We then discretized
261 thefilters by sampling them in ahigh-resolution 2D grid of 135 by 101 pixels spanning 10° by
262  5°. Thediscretized filters (k filters by p pixels) were multiplied with a mask of the checkerboard
263  stimuluson every trial (p pixels by n trials) so that the design matrix C contained predictions of
264  the spatial channel responses on every trial of the mapping task.

265 To fit our estimated vRFs with a unimodal function, we used ridge regression to solve
266  Equation 1. Thisisacommon regularization method which sparsifies the regression solution by
267  penalizing the regressors with many small weights (Hoerl and Kennard, 1970; Lee et al., 2013).
268  This meant solving for an estimate of W by the following:

269 (3) WT=(cCcT+AN"'CBT,
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270  where} istheridge parameter penalty term, and | isak x Kk identity matrix. We estimated an
271  optimal A for each voxel by evaluating Equation 3 over arange of A values (0 to 750) for a

272  baanced number of runs of the attention task (e.g., an equal number of runs from each attention
273  condition). We then computed the Bayesian Information Criterion (BIC) for each of these A

274 values, estimating the degrees of freedom in the ridge regression as:

275 (4) df = trace(C (CTC + AI)71CT)

276  The with the smallest BIC was selected for each voxel. Since the attention comparisons are
277  donewithin voxels, the varying A penalty across voxels could not explain the attention effects we
278  observed.

279 To select reliable voxels for analysis, we next implemented a set of conservative

280 thresholding steps (Table 1). Wefirst needed to select voxels with reliable visual responses, so
281  weonly kept voxels with trial beta weights that predicted at least 50% of the BOLD time courses
282  in each scan session. Second, we only used voxels that could be successfully regularized with
283  ridge regression. Any voxels with the maximum X (750) were discarded, as thisindicated that the
284  ridge regression solution had not converged. Finally, we verified that the resulting regression

285 mode could predict an independent dataset, so we performed exhaustive |eave-one-run-out cross
286 validation for each attention condition. This ensured that the ) estimated across attention

287  conditions produced reliable data for each condition separately. We estimated W using data from
288  dl but onerun (Equation 3) and used thisto predict the BOLD GLM trial estimate of the |eft-out
289  run (Equation 2), separately for each condition. We then computed the mean correlation between
290 thepredicted & real BOLD GLM trial estimates across cross-validation folds for each voxel.

291 Notethat it isnot possible to calculate a coefficient of determination on regularized data, since

292  theprocess of ridge regression changes the scale of the predicted data (see supplemental


https://doi.org/10.1101/086892

bioRxiv preprint doi: https://doi.org/10.1101/086892; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spatial attention from units to populations 14

293 discussionin Huth et a., 2012). We only kept voxels where this cross-validation r > 0.25 for all
294 3 conditions.

295 To quantify each VRF, wefit the spatial RF profile of each voxel with asmooth 2D

296 function with 4 parameters: center, Size, baseline, and amplitude (Fig 1b; Equation 2). Here, we
297  define the VRF basdline as the voxd’ s response that does not reliably depend on the position of
298  the mapping stimulus (i.e., its constant offset). The VRF amplitude is defined as the spatially-
299 sdectiveincreasein avoxe’s response above this baseline. Together, these two parameters

300 index how much of the voxel’s response is due to a change in mapping stimulus position.

301 Finaly, the size and location parameters estimate the spatial selectivity and the spatial position
302 preference of the VRFs, respectively. We first downsampled the vRFs by multiplying the

303 estimated weights W for each voxel (a1 x k channel vector) by asmaller version of the spatial
304  grid that contained the basis set (68 by 51 pixel grid; 10° by 5°). This speeded up the process of
305 fitting the pixelwise surface with Eq. 2. Thisfitting process began with a coarse grid search that
306 first found the best fit in adiscrete grid of possible VRF parameters (center sampled in 1° steps
307  over the mapped portion of the visual field; size constant logarithmically sampled at 20 points
308  between FWHM of 10°0.01° and 10"1°). At each grid point, we estimated the best fit amplitude
309 and basdlineusing linear regression. The grid point fit with the smallest root mean square error
310 (RMSE) provided theinitialization seed to a continuous error function optimization algorithm
311  (fminconin MATLAB). Thisfit had several constraints: the final solution must place the center
312  within 2 grid points of the seeded fit (parameterized by position and size) and within the mapped
313  visua field; the amplitude must be between 0 and 5; the baseline must be between -5 and 5

314 BOLD z-score units. Occasionally, this nonlinear fitting algorithm did not converge and resulted

315 inalarger error than the original seed. In this case we took the best fit grid point as the final fit.
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316 To test whether VRF fit parameters changed when participants focused spatial attention at
317 different positions, we compared fits during each attend periphery condition with fits during the
318 attend fixation condition. We computed a difference score (attend peripheral — attend fixation) to
319  describe the magnitude of the attentional modulation. For example, a difference score of —2° in
320 the FWHM of the vRF would indicate that the response profile width decreased when the

321 participant attended to the peripheral target. Thisanalysis revealed a subset of voxels with very
322 large difference scores, which we determined to be due to noisy data or poor fits via manual

323  ingpection. Accordingly, we performed afinal threshholding step for al vRF-based analyses: an
324  eimination of outlier voxels with difference scores greater than three times the standard

325 deviation of the population mean, where the population consists of the parameter difference

326 scoresfor agiven ROI (Table 1). After removing these outliers, we tested whether the vRF

327  parameter difference scores differed significantly from O within avisual region of interest (ROI)
328 by bootstrapping the distribution of difference scores across participants 10,000 times.

329 To determine if these VRF changes were modulated by their position in the visual field,
330 wefirst calculated each VRF s distance from the attended location (v_dist_attn) using its position
331  during the fixation task. We then fit an nth order polynomial to the vRF difference scores as a
332  function of v_dist_attn, wheren =0, 1, or 2. This corresponds to a constant offset (0" order), a
333 linear fit (1¥ order), or aquadratic or parabolic fit (2™ order). These fits were cross-validated by
334 fitting on 50% of the VRF difference scores and calculating goodness-of-fit (residual sum of

335  squares and R?) on each of the 10,000 cross-validation iterations. These cross-validation

336 iterations also provided confidence intervals on the coefficients for each polynomial. The most
337  parsimonious fit was chosen by performing a nested F-test on the average residual sum of

338  sguaresfor each polynomia mode.
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339 We also tested whether VRF attentional modulations depended on hemisphere or visual
340 hemifield, akin to the results reported for IPSO — IPS5 in Sheremata and Silver, 2015. We sorted
341 thevoxelsin each attention condition as contralateral or ipsilateral to the attended target. We
342  then performed a series of non-parametric bootstrapped tests similar to atwo-way ANOV A with
343  attended hemifield and voxel hemisphere as factors. The VRFs were resampled with replacement
344  across subjects 10,000 times. We then evaluated the two main effects and the interaction by

345  computing a difference in the means of the groups or a difference in the slope between the group
346  means, respectively. None of the tests for the effect of hemisphere and the interaction survived
347  FDR correction, so we do not report those results here. We speculate that this null result islikely
348 duetoalack of reliable voxelsin anterior parietal cortex areas IPS1-5 in our study, where

349  previousreports have found larger laterality effects (Sheremata and Silver, 2015).

350

351 Population analysis (1): Fine spatial discriminability metric

352  To computethe spatial discriminability of a population of VRFs, we estimated the spatial

353 derivative of each VRF at every point in the mapped visual field in 0.1° steps (Fig 1C). Thiswas
354  done by taking the slope of the VRF along the x and y direction at each pixel in the image of the
355 visua field and squaring this value (Scolari and Serences, 2009, 2010). This measurement isa
356  descriptor of how well a population code can discriminate small changes in the spatial

357 arrangement of the stimulus array, which depends on the rising and falling edges of atuning

358 curve rather than the difference between the peak response and a baseline response (Regan and
359 Beverley, 1985; Pouget et al., 2003; Butts and Goldman, 2006; Naval pakkam and Itti, 2007;

360 Scolari and Serences, 2009, 2010). To restrict our measurements to the relevant area near the

361 periphera target, we computed discriminability values within 1 degree of the center of each
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362 target across both spatial dimensions (x and y). These were summed and divided by the

363  maximum discriminability value in that population to make the results comparable despite

364 changesin vRF coverage or responsiveness.

365

366 Population measurements (2): Stimulusreconstructions using an inverted spatial encoding
367 model

368 In addition to computing the discriminability metric described above, we also reconstructed an
369 image of the entire visual field on each trial using a population-level encoding model. Compared
370 tothelocal spatial discriminability index, thisisamore sensitive method of assessing the amount
371  of spatial information encoded in an entire population of voxels because it exploits the pattern of
372  response differences across voxels, rather than treating each voxel as an independent encoding
373 unit (Serences and Saproo, 2012; Sprague et al., 2015).

374 We trained the spatial encoding model using a procedure similar to the VRF estimation
375 analysisdescribed above (Fig 4a). Thisyields an estimated matrix of weights, 1, , which

376  specifies how much each voxel in aregion of interest responds to each of the spatial channels
377  (Brouwer and Heeger, 2009; Serences and Saproo, 2012; Sprague and Serences, 2013; Sprague
378 et adl., 2015). We then solved Eq. 1 using the Moore-Penrose pseudoinverse with no

379  regularization:

380 (59 W,=BcT({cTH™?

381 Cwasconstructed using a set of 54 evenly tiled spatial filters (Eq. 2; 9 horizontal / 6 vertical;
382  spaced 1.25° apart; 1.56° FWHM). W, was estimated using the data from the jittered position

383  runs. Thiswas done separately for each participant, using atraining set balanced across the
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384  conditionsof interest (e.g., an equal number of attend left and attend right runs and all attend
385 fixation runs, since fixation isthe neutral condition).

386 To reconstruct a representation of the mapped visual space, we inverted the model and
387 multiplied the pseudoinverse of the estimated weight matrix I, with atest dataset from the
388  discrete position runs (B,), yielding estimated channel activations for each trial (C,; k, channels
389 byt testtrials) (Equation 6). Thus, we refer to this analysis as the inverted encoding model

390 (IEM).

o1 (0 C=(WW) W'B,

392  Because of mathematical constraints on inverting W, (number of voxels must be greater than
393  number of channels), we included all voxelsin each ROI instead of just the subset of well-fit
394  voxedsused in the VRF analyses described above. We computed Eqg. 6 twice using different test
395 datasets, once for the discrete position attend left runs and once for the discrete position attend
396 right runs.

397 When we multiply the resulting channel activations by a grid of pixels that define the
398 gpatia channels, we obtain a spatial representation of the entire visual field on each trial. This
399 image contains a stimulus reconstruction showing where the checkerboard should have been
400 given thetrained model and the activation pattern across all voxels in the independent test set.
401  The stimulus reconstructions were then fit in the same manner asthe vRFs, using Eg. 1 to

402  estimate the center, size, amplitude, and baseline (mean fit RM SE across all ROI reconstructions
403  0.114; 95% CI [0.102, 0.312]). Here, the baseline is an estimate of the multivariate

404  reconstruction that is spatially non-selective—i.e., not significantly modulated by the position of
405  the mapping stimulus. The amplitude describes the maximal increase in that reconstruction

406  relative to baseline when the mapping stimulus is on the screen.


https://doi.org/10.1101/086892

bioRxiv preprint doi: https://doi.org/10.1101/086892; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spatial attention from unitsto populations 19

407 To assess how attention changed reconstructions of the mapping stimulus across the

408 visua field, we first computed a difference score that described the effect of attention by folding
409 thevisua field in half (i.e. collapsing across hemifield) and comparing parametersin the

410 attended vs. ignored hemifield. We excluded the reconstructions that fell along the vertical

411  meridian (3 of 51 stimulus positions). This allowed usto control for the overall effect of

412  eccentricity while remaining sensitive to other spatial patternsin stimulus reconstruction

413  modulations.

414 We then set up asingle factor repeated measures omnibus ANOV A to determine which
415 parsof ROl and parameter (e.g., V1 size, V1 amplitude, etc.) were affected by either attention or
416  Euclidean distance from the target stimuli. The attention factor had two levels (attend/ignore)
417  and the distance factor had 6 levels (6 evenly spaced distance bins from 0° to 2.54°). Based on
418 theresults of this omnibus test, we tested any significant ROI-parameter combination in a 2-way
419 repeated measures ANOVA of attention by distance. To estimate the p-values for these tests, we
420 generated empirical null distributions of the F-scores by randomizing the labels within each

421  factor 10,000 times within each participant. Reported p-values are the percentage of the

422  randomized F-scores that are greater than or equal to the real F-scores.

423

424 Population analysis (3): Layered spatial encoding model to link vRFsto multivariate

425  stimulusreconstructions

426  Inorder to test how changes in the response properties of the underlying vRFs contributed to
427  changesin thefidelity of region-level stimulus reconstructions, we generated ssimulated patterns

428  of voxel activity on every trial by predicting the response to each stimulus based on the vRF fit
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429  parameters. We then used this simulated data to estimate and invert a population-level spatial
430 encoding model, as described above (Fig 6a).

431 Note that for these simulations, we could only use well-fit voxels to generate simulated
432 BOLD timeseries. This constrained the analysis to ROIs with at least as many vRFs as spatial
433 filters used to estimate the spatial encoding model. To ensure that we could include most

434  participantsin the layered encoding model analysis, we created two large ROIs by merging the
435 smaller retinotopically defined regions described above. The occipital ROI consisted of V1, V2,
436 V3, and V4 defined for each subject. The posterior parietal ROI consisted of V3A/B and IPSO.
437 ThevRFsin the parietal ROI show distinct patterns of attentional modulations (Fig 2e),

438  suggesting that V3A/B and IPSO are both anatomically and functionally distinct from the

439  occipital regions (see aso de Haas et al, 2014). Although merging ROIs increased the number of
440 voxelsavailable for the encoding model analysis, we still did not have enough voxelsin the
441 parietal ROI to estimate the layered encoding model for 3 of the 7 participants (AL, AR, AU).
442  However, the remaining data from 4 participants were sufficient to produce stable, subject-

443  averaged results.

444 To simulate each voxel’s BOLD response on every trial that the participant completed in
445  thereal experiment, wefirst created a high-resolution set of spatial channels (21 by 11 channels
446  spaced 0.5° apart, FWHM = 0.65°) and generated weights for each channel based on the vRF fit
447  obtained from prior analysis. That is, we evaluated Eq. 2 for each channel at the VRF sfit center
448  and adjusted the response gain by multiplying this result by the fit amplitude and adding the fit
449  baseline. We then added independent Gaussian noise to each of these channel weights,

450 simulating asmall amount of variance in the voxel’ s response (¢ = 0.5). Each voxe’ s channel

451  weights were then multiplied by the idealized channel response on each tria (that is, the channel
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452  filter convolved with the stimulus mask), effectively ssmulating the BOLD response on each trial
453  for the entire population of voxels based on their measured VRFs. We added Gaussian noise to
454  thissmulated response aswell (¢ = 0.5). We then computed stimulus reconstructions using the
455  same method as described above (the IEM in Population analysis (2)), averaging resulting

456  reconstructions across participants and like positions before fitting.

457 To ensure the stability of the reconstructions that were based on smulated data, we

458  repeated the simulations 100 times and averaged across the fits of al iterations to generate the
459 plotsin Fig 6b. Then, to compare how well the layered model reproduced the attentional

460  modulations observed in stimulus reconstructions generated with real data, we calculated an

461  error metric between the layered IEM and the real data. We first calculated reconstruction

462  difference scores across attention condition (attended — ignored; see Population analysis (2)).
463  Thisyielded 24 difference scores each for both attention conditions in both the layered IEM data
464  and the empirical data. Since the empirical data did not have any repeated iterations, we

465 averaged across all 100 iterations of the layered model to match the dimensionality of the real
466  reconstructions (2 conditions x 24 difference scores x 4 parameters). We could then calculate the
467  root mean square error (RM SE) between the difference scores from the full empirical dataset (i.e.
468 thedata shown in Fig 5) and the modeled data. Thiswas used as a metric to describe the

469  goodness-of-fit of each layered IEM.

470 We then tested how different vRF attentional modulations contributed to changesin the
471  population-level stimulus reconstructions. To test how shiftsin VRF centers contributed to

472  population-level information, we modeled voxels that had the same fit center across both

473  attention conditions, smulated their BOLD responses on each trial, and generated stimulus

474  reconstructions from these data. The voxel’s VRF center was defined as the VRF center fit from
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475  theneutral attend fixation data. A similar procedure was repeated for all reported combinations
476  of parameter changes across conditions. Again, whichever parameter was held constant took its
477  value from the neutral attend fixation condition.

478 To calculate the confidence intervals on the RM SE changes in Fig 6¢, we resampled with
479  replacement across the 100 model iterations and refit the average across these 100 instances.
480  Thisresampling procedure was repeated 500 times to generate a distribution of fits to the model
481 data. We then took the difference between the RM SE of the null model, in which no parameters
482  varied between attention conditions, and the RM SE of the model which held some number of
483  VRF parameters constant across attention conditions.

484

485 RESULTS(3,709 words)

486 Modulationsof VRF propertieswith spatial attention

487  We estimated single voxel receptive fields (VRFs) for each voxel in 6 retinotopically-identified
488  visua areasfrom V1 to IPSO. The estimation of VRFs was done independently for each attention
489  condition so that we could compare asingle voxel’s spatial tuning across conditions.

490 To confirm that the fit sizes were consistent with previous results, we fit aline to the

491 estimated sizes as afunction of the VRF center eccentricity. First, we combined all vRFs across
492  participants and conditionsin each ROI. We then binned the VRF centers every 0.25° from

493 fixation and calculated the mean size (Fig 2b). We first replicated an increase in VRF size with
494  increasing eccentricity, and an increase in the slope of this relationship across visual regions
495 (Gattass et al., 2005; Dumoulin and Wandell, 2008; Amano et al., 2009; Harvey and Dumoulin,
496  2011) (Fig 2b). These observations confirm that our method produced reasonable VRF estimates

497  that were consistent with previous reports.
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501 Figure?2. Changesin voxel receptive fields (VRFS) across attention conditions. We separately
502 estimated VRFsfor every voxel in visual and posterior parietal areas, discarding poorly estimated
503 or noisy voxels (Table 1). Unless otherwise specified, figure data is averaged across subjects and
504  error bars show 95% confidence intervals computed by resampling the data distribution. (a) An
505 example VRF shows that attending covertly to the left location shifts the center of the receptive
506 field profile to the left, when compared to the neutral attend fixation condition. Voxel isfrom
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507 subject AR inareaV3A/B. (b) Our VRF estimates reproduced the canonica size-eccentricity
508 relationship (positive slopein al ROIs, p < minimum possible p-value, e.g., 1/10000 iterations)
509 andtheincrease in slope between visual regions. (c) Preferred position changes of V4 vRFs with
510 covert spatial attention. We binned each VRF by its position during the attend fixation condition.
511 Theorigin of each arrow is the center of each position bin. The end of the arrow shows the

512  average position shift of the vRFs within that position bin during the attend peripheral conditions
513  (left/right are collapsed and shown as attend |eft). The mgjority of VRFs shift toward the attended
514 location (blue-green color map vs. red-yellow). (d) Mean changesin VRF parameters (attend
515 peripheral target — attend fixation) in each visual area. (e) Attentional modulations of each VRF
516 parameter plotted by the VRF s distance from the attention target computed from its position

517  during the attend fixation task (Table 2).

518

519 Next, we examined how covert attention to the peripheral attention targets modulated
520 VRF properties, relative to the attend fixation condition. Overall, the center position of VRFs

521  shifted significantly closer to the attended location (p < 0.005 in @l ROIs, Fig 2d). Thisfinding
522  isconsistent with previous reports in humans and in monkeys for both covert attention tasks and
523  saccadetasks (Womelsdorf et al., 2006, 2008; Klein et al., 2014; Zirnsak et al., 2014).

524 While we did observe changes in the size of individual VRFs, the mean change was not
525 dgignificantly different from zero (p > 0.05in all ROISs). Size increases have been previously

526  reported in tasks that required subjects to attend to the mapping stimulus, which moved on each
527  trial (Sprague and Serences, 2013; Kay et al., 2015; Sheremata and Silver, 2015). Accordingly, if
528  attention causes the center of RFsto shift toward the attended target, these combined shiftsin
529  position would average out to form alarger RF estimate. In contrast, mapping VRFs while

530 maintaining afixed locus of attention would nullify the size increase, consistent with the results
531 weobserved (Fig 2d). Another study which also found increases in VRF size with attention

532  required subjectsto attend the fixation point while they manipulated the perceptual load, or

533 difficulty, of the attention task (de Haas et al., 2014). In our study, we intentionally kept task

534  performance constant and could not evaluate effects of difficulty on the parameters of VRFs.
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535 We also found an overall increase in vVRF amplitude with attention (p < 0.001 for all

536 tests). Since these measures were calculated relative to afixation task, these data suggest that
537 covert spatial attention to a peripheral location caused widespread position and gain modulations
538 inall vRFsacross the visual field.

539 It is unclear whether these attentional modulations are limited to areas near the attended
540 target, or whether they are uniform across the visual field. For example, VRF position shifts

541  could result in aradia convergence of RFs towards the attended target, or a uniform shift of RFs
542  aong avector extending from fixation to the attention or saccade target (Tolias et al., 2001,

543 Klenetal., 2014; Zirnsak et al., 2014). Furthermore, reports of other RF properties (such as

544  size) modulating with attention have been mixed (Connor et al., 1996, 1997; Womelsdorf et al.,
545  2008; Niebergall et al., 2011; Sprague and Serences, 2013; de Haas et al., 2014; Klein et al.,

546 2014, Kay et al., 2015; Sheremata and Silver, 2015). We therefore examined whether each of the
547  vRF parameter changes was dependent on the VRF slocation in the visual field, relative to the
548  attended location. First, we created radial distance bins centered on the l€eft or right attended

549 locations, and sorted voxels into these bins based on their preferred position during the fixation
550 condition. After this sorting procedure, data from the right condition were flipped and collapsed
551  with the left condition.

552 When we plotted VRF position changes in each bin, we found that spatial attention caused
553  VRF position shifts that converged on the attended location (two-tailed sign test on vector

554  direction, p<.001linall ROIs). That is, VRFs shifted closer to the attended location (Fig 2¢),
555  compared to when subjects attended fixation (mean shift across all vRFs and ROIs: -0.239°, 95%
556 C.l.[-0.566, -0.048], Fig 2d). Note that small eye movements toward the attended location

557  cannot explain receptive field convergence: thiswould cause all vRFsto shift in the same
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558 horizontal direction, rather than radially converging on one point. These data are consistent with
559  results from both humans (Klein et al., 2014) and macaques (Connor €t al., 1996, 1997,

560 Womelsdorf et al., 2006, 2008) that use a similar task. However, the prior study in humans

561 focused only on VRFs with preferred locations that were foveal to the attended location, and the
562  studiesin macagues only report RF position changesin V4 and MT. By contrast, our data show
563 that VRF centers converge on the attended location across all visual areas, including primary
564  visual cortex, and that this pattern of modulations includes vVRFs peripheral to the attended target.
565 These plots (Fig 2a, 2d) also suggested that vVRFs farther from the attended location

566  underwent larger position changes than VRFs near the attended location. That is, the magnitude
567  of the attentional modulation may be dependent on the distance between the vRF and the

568 attended target. To test for this, wefit a polynomial to the VRF parameter changes as a function
569 of distance from the attended location (M aterials and M ethods). We selected the most

570  parsimonious fit ranging from a mean change in VRF parameter (0" order polynomial) to a

571  parabolic change (2™ order polynomial) by conducting a nested F-test (Table 2). The best

572  polynomial fits are plotted in Fig 2e.

573 This analysis allowed us to characterize trends in vRF attentional modulations across
574  gpace. Notethat it also implicitly tests whether voxels contralateral to the attended target respond
575 differently than ipsilateral voxels. Thisis because VRFs near the attended target will mostly

576  originate from the contralateral side of visual cortex. Therefore, any fit lines with a significant
577 dopeimply there is adifference between contralateral and ipsilateral voxels (Sheremata and
578  Silver, 2015). A separate test described in Materials and M ethods confirmed that contralateral
579 voxesdiffered significantly from ipsilateral voxelsin the areas where we saw the highest fit

580 dopesin Fig 2e (FDR-corrected p < .05 for position: V1, V2; size: V3; amplitude: V3, IPS0).
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581 However, sincethefit linesillustrate how these changes occur over space, we discuss those data
582 hereinstead (Fig 2e).

583 In early visual areas V1 through V3, vRFs near the attention target were slightly repelled
584  from the target, whereas VRFs farther from the target were attracted towards the target. In later
585 visual areas, VRFswere uniformly attracted towards the attention target. We saw a similar

586 pattern of results with size modulations: early visual areas showed an increase in VRF size near
587 the attention target, and decreased size farther away. However, in areas V3A/B and IPSO, vRF
588 sizedecreased near the attention target.

589 The pattern of vRF amplitude modulations was also segregated between the early and
500 later visual areas. All vRFsincreased in amplitude with attention, but the slope of this

591 reationship inverted from early to later visual areas. In V1 —V3, the dopeif postive, such that
592  voxels~2° away from the attention target increase in amplitude more than voxelsright at the
593 target position. The amplitude increase is constant in V4 and V3A/B. Finaly, in IPS0, the Slope
594  invertsto become negative, so that voxels near the attention target increase in amplitude more
595 than voxelsfarther away. Lastly, we found an increase in VRF baseline near the attended target in
506 V1-V4, butauniform increasein baselinein IPSO. Overall, we found that the type and

597  magnitude of the attentional modulation in different visual areas changes as a function of the
598 gpatia relationship between vRFs and the attended target. Thisis consistent with findings from
599  macague neurophysiology, which had suggested that amplitude and size changes depend on

600 wherethe RFislocated in relation to the attended target (Connor et al., 1996; Niebergall et al.,
601 2011).

602 Note that these fits only describe the gain modulations with respect to the voxel’s

603  position during the attend fixation task. However, these parameter changes likely interact with
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604  oneanother, such that avoxel that shifts toward the attended location will aso increasein

605 amplitude. Hence, to determine how thejoint patterns of VRF modulations change the spatial
606 information content of a representation, in the next section we discuss two different population-
607 level measures that combine data across the population of VRFs in each ROI.

608

609 Increasesin spatial discriminability depend primarily on vRF position shifts

610 Next, we assessed how different types of RF modulations influenced the precision of
611 population-level codes for spatial position. We first computed a discriminability metric that
612  described the ability of a population of tuning curves (here, voxel receptive fields) to support fine
613  gspatia judgments (Materials and Methods). When we computed this metric based on the

614 measured VRF properties from each condition, spatial discriminability near the attended target

615 increased relative to the ignored target in the opposite visual hemifield (Fig 3a).
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619 Figure 3. Spatial discriminability increases with attention and is mediated by position changesin
620 VRFs. Error bars depict bootstrapped 95% Cls. (a) We formulated a measurement to describe the
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621  ability of apopulation of voxelsto make fine spatial discriminations around the attention target.
622  We used the properties of each voxel’s spatial tuning curve to make this measurement

623 (Materialsand Methods). Spatial discriminability increased when subjects attended the target,
624  compared to when they ignored the target in the opposite hemifield (resampled p < minimum
625 possible p-value (1/1000) for al ROIs for all ROIs). (b) The discriminability metric was

626  recomputed for vVRFs with a variety of attentional modulations. (none = VRF parameters during
627 theneural attend fixation condition; a = amplitude; s = size; p = position). Spatial

628  discriminability increased significantly when we applied position changes measured during the
629 attend L/R task to the vVRFs compared to when we applied no parameter changes (solid bar). By
630 contrast, applying size changes did not change spatial discriminability in most ROIs, although it
631 did cause asmall increasein IPSO.

632

633 We then tested how different types of VRF modulations (such as size changes or position
634  shifts) affected this spatial discriminability metric. As abaseline comparison, we first computed
635 discriminability based on VRFs estimated during the attend fixation runs for each subject. We
636 then added different sets of observed attentional modulations to the population before

637  recomputing spatial discriminability. For example, we shifted all the VRF centers to match the
638 measurements when a subject was attending to the left target and computed discriminability near
639 the attended target. Since the response baseline of a VRF does not affect the discriminability

640 metric, we excluded thistype of attentional modulation from these analyses.

641 Across al ROIs, we found that VRF position shifts played the biggest rolein increasing
642  fine spatial discriminability compared to changesin size or changes in amplitude (Fig 3b).

643  Position modulations alone led to alarge increase in spatial discriminability, while other

644  combinations of parameter modulations only had an impact if we added in position shifts (i.e. a
645 changein size and position increased discriminability, but size alone did not). The only departure
646  from these patterns was observed in IPSO, where all attentional modulation types increased

647  spatia discriminability, but position changes increased spatial discriminability the most.

648

649  Spatial attention increasesthefidelity of population-level stimulusreconstructions
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650 By design, the spatial discriminability metric we computed is only informative about
651 local spatial representations, and cannot assess how different patterns of VRF modulations might
652  result in representational changes across the visual field. To address this point, we built a

653 multivariate spatial encoding model to measure how attention changes the representations of
654  visua information in disparate parts of space. This also allowed us to further test the effects of
655 VRF modulations on the encoding properties of the population, including response baseline

656 changesthat were not captured by our discriminability metric.

657 The spatial inverted encoding model (IEM) reconstructed an image of the entire visual
658 field on each test trial. We first trained the model using the responses of each voxel on a set of
659 training trials with known mapping stimulus positions. We then created image reconstructions on
660 independent test trials by inverting the model and multiplying it by the voxel responses during
661 eachtesttrial (Fig4a; Materialsand Methods). Each image contained a representation of

662  where the mapping stimulus should have been given the pattern of voxel activations on that

663 particular trial. The IEM successfully reconstructed the task-irrelevant mapping stimuli using
664  activation patterns across voxelsin each visual areafrom V1 through IPSO (Fig 4b; grand mean
665 error between fit and actual position 2.40°, 95% CI [0.55°, 4.97]).

666
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669 Figure4. Multivariate inverted encoding model (IEM) used to reconstruct the mapping probe
670 stimuli. (@) Totrain the IEM, wefirst take the BOLD data from all voxels within avisual region
671 from asubset of training trials. Then, we solve for a set of channel weights using least squares
672  regression. To reconstruct the stimulus, we invert this weight matrix and multiply it with BOLD


https://doi.org/10.1101/086892

bioRxiv preprint doi: https://doi.org/10.1101/086892; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Spatial attention from unitsto populations 32

673 datafrom the same voxels during atest trial. Thisyields a reconstructed channel response

674  profile, which can be transformed into a reconstruction of the mapping stimulus on every trial in
675 each attention condition. Data shown are examples from participant AR for a subset of V1

676 voxels. (b) Example stimulus reconstructions for participant Al, V1. These reconstructions were
677 averaged across trials with the same position, yielding 51 reconstructions — one for each unique
678 position in the test dataset. In the |eft panel, the same averaged position reconstructions are

679  shown for each condition. The amplitude on the left is higher when attending left, and on the
680 right when attending right. (c) Average reconstruction sizes and amplitudes for each stimulus
681 position (collapsed across condition; left is attended). The diameter of the circle depicts the

682 averagefit FWHM of the reconstructions at that spatial position. Reconstruction amplitude was
683  greater in the attended hemifield compared to the ignored hemifield in areas V3A/B and V4 (p
684 <=0.005; Table3; Fig.5).

685

686 We used these stimulus reconstructions as a proxy for the quality of the spatial

687  representations encoded in a population of voxels. Thisis line with previous studies showing that
688  stimulus reconstructions change in amplitude or size as a function of cognitive demands.

689  (Brouwer and Heeger, 2013; Edter et al., 2013; Sprague and Serences, 2013; Sprague et al., 2014,
690 2015, 2016).

691 First, we compared how reconstructed representations of each mapping stimulus changed
692 assubjects shifted their spatial attention. We ran a repeated measures ANOVA of attention x
693 distance bin for each reconstruction fit parameter (M aterialsand M ethods). Here, a main effect
694  of attention would suggest that stimulus reconstructionsin the attended hemifield changed in a
695 consistent way compared to the ignored hemifield. A main effect of distance would suggest that
696  stimulus reconstruction changes had a consistent spatial pattern across both the attended and

697 ignored hemifields. Thiswould occur when a stimulus’ representation was altered with distance
698 from the attention target. For example, the stimulus reconstruction center should vary linearly
699  with the stimulus' true distance from the attention target. And lastly, an interaction effect would

700  suggest that the distance effect was dependent on whether the reconstruction belonged to the

701 attended or ignored hemifield. In our task, the reconstructed stimuli are always irrelevant to the
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702  task of the observer. We therefore predicted an interaction effect where spatial attention would
703  sdectively modulate stimulus reconstructions within the hemifield of the attended location, but
704  not the opposite hemifield (Connor et al., 1996, 1997).

705 We found that reconstruction amplitude was selectively increased near the attended

706 locationin V4, V3A/B, and IPSO (interaction effect, bootstrapped p < 0.005; Fig 5; Table 3).
707  Thiscan beinterpreted asalocal boost in SNR. Prior reports found that attending to the mapping
708  stimulus— as opposed to attending to a peripheral target in the current experiment — caused an
709 increasein the amplitude of all stimulus reconstructions (Sprague and Serences, 2013). That is,
710  representations of task-relevant stimuli increased in SNR. We find here that even representations
711  of task-irrelevant stimuli near the attended region of space increase in amplitude, cons stent with
712 theideaof an attentional ‘ spotlight’ which boosts the fidelity of spatial representations near the
713  attention target.

714
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716  Figure5. Reconstruction parameters as a function of mapping stimulus distance from the

717  covertly attended locations and attention hemifield (attended vs. ignored). See Table 3 for

718 completelist of p-values.

719

720 Although the amplitude interaction effect was present in most visual areas we tested (Fig
721 5), wefound other effects limited to V3A/B and IPSO that involved modulations in stimulus
722  representations in the ignored hemifield. In these regions, we found that stimulus reconstructions
723  intheignored hemifield shifted away from the ignored target location (interaction, bootstrapped
724  p<0.005). We aso observed ardative size increase near the ignored attention stimulus in IPSO
725  (interaction, bootstrapped p < 0.005). These results suggest that stimulus reconstructions in the
726  ignored hemifield are less spatially precise in posterior parietal cortex. Finally, there was also a
727  main effect of attention on reconstruction size and basdlinein areas V3, V4 & V3A/B

728  (bootstrapped p's <= 0.005). However, unlike the interaction effect in IPS0, these size and

729  Dbasdline changes did not vary as a function of distance between the reconstruction and the

730 attended target location.

731

732  Using alayered encoding model to explore how single voxel RFs change population-level
733  codes

734 In our final analysis, we used a layered spatial encoding model to determine how changes
735  in VRF properties affected the representations of mapping stimuli in the multivariate

736  reconstructions discussed in the previous section (Fig 1c; Fig 4a). The goal of this analysis was
737  to determine which vVRF modulations contribute the most to the observed increase in the

738 amplitude of stimulus representations around the attended location (Fig 5). This analysis thus

739  complements our analysis of the spatial discriminability metric which demonstrated that vRF
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740  position changes significantly increased the ability of the population to make fine spatia

741  discriminations near the attention target (Fig 3c).

742 The layered spatial encoding model we built links the response properties of single

743  voxelsto the encoding properties of awhole population of voxelsin aregion of visual cortex
744  (Fig6a). Inthefirst layer of the model, we used the fit VRFs to generate simulated BOLD data
745  from each voxel under different attention conditions. We then repeated the multivoxel stimulus
746  reconstruction analysis on this smulated datato model population results for the second layer of
747  the mode. This approach alowed usto perform virtual experimentsto test how changesin the
748  first layer impacted the second layer. That is, we manipulated which VRF parameters changed
749  with attention (first layer) and observed the resulting changes in the population-based stimulus
750  reconstructions (second layer). For example, we could test whether an overall increasein vVRF
751  response gain with attention would be necessary or sufficient to reproduce the amplitude

752  increases observed in the empirical stimulus reconstructions reported in Fig 5. These virtual
753  experiments also allowed us to compare the relative impact of one type of response modulation

754  (e.g. size changes) with other types of response modulations (e.g. position shifts).
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Figure 6. A layered spatial encoding model reveals how different sets of VRF changes lead to
enhancements in multivariate stimulus reconstructions. (a) Thefirst layer of the model uses the
VRF fitsto generate BOLD data from every subject’s real trial sequence. Then the BOLD data
from all voxels within one ROI is used to train amultivariate spatial encoding model and
reconstruct the mapping stimuli. (b) Change in reconstruction amplitude in the attended vs. the
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762  ignored hemifield. We only show reconstruction parameters with significant attentional

763 modulationsinthe prior IEM analysis (Fig 5, Table 3). Stimulus reconstructions computed with
764  areduced number of voxels (gray bar) largely reproduce the pattern of attentional modulations
765 observed in IEMs computed with all voxels (black bar). Furthermore, a comparison of layered
766 IEMsusing smulated data revealed that VRF position changes (blue lines) in the first layer of the
767 model are better at reproducing the amplitude modulationsin the stimulus reconstructions of the
768  parietal ROI than models which simulate changesin VRF size or amplitude (yellow & red lines).
769  (c) RMSE between each set of IEM fits and the full empirical dataset fits shown in Fig 5. The
770  null baseline model (far left) isalayered IEM where the VRF parameters are the same across al
771  attention conditions. We then added vRF attentional modulations for each parameter as shown in
772  the matrix below the plot, where all models with position changes are on the left side. * indicate
773  an FDR-corrected p-value <.05 for models that differed significantly from the null baseline

774  model. Gray asterisksindicate an increase in RM SE from the null model, whereas black asterisks
775 indicate a decrease.

776

777 Since the population-level stimulus reconstructions require many voxels from each

778  subject to produce stable and reliable results, we combined the data across several regionsin

779 eachindividual subject before estimating the IEM (see M aterialsand M ethods for alonger

780 discussion). Thisyielded one occipital region that combined data from areas V1, V2, V3 and V4,
781  and one posterior parietal region that combined datafrom V3A/B and IPSO. We repeated the
782 IEM analysis described in the previous section on these larger regions, and found that the pattern
783  of attentional modulations observed earlier was consistent in the large ROIs (Figure 5). Next, to
784  verify whether we could perform the layered IEM using a reduced number of voxels, we re-ran
785 thelEM analysis but only used the data from voxels with well-fit vVRFs. The reduced dataset with
786  fewer voxels reproduced the main pattern of results we observed in the previous section. In

787  particular, covert attention led to an increase in the amplitude of reconstructions near the locus of

788  attention (Fig 6b, black vs. gray bars).
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We then investigated the contribution of each VRF parameter to the population-level
stimulus reconstructions, in a comparison akin to the spatial discriminability analysisin Fig 3. A
model that only simulated the observed vVRF amplitude or VRF size modulations did not predict
the observed increase in reconstruction amplitude near the attention target (Fig 6b, red lines).
However, alayered model that only simulated VRF position changes did predict alarge increase
in reconstruction amplitude near the attention target in the parietal ROI (Fig 6b, blue line on
right). Thisis cong stent with the effects observed in the full dataset (Fig 5, Table 3), where we
only observed an interaction of stimulus distance and attention in the parietal ROI.

To more formally quantify each manipulation of the layered IEM, we calculated an error
metric to describe how well each model reproduced the attentional modulations in the empirical
data (using the root mean square error, or RM SE). We compared each model’sRMSE to a
baseline model, which did not simulate any vRF attentional modulations (far left in Fig 6¢). This
null baseline should have the highest error, and any good models should decrease the RM SE
between the simulated data and the empirical data. Conversely, amodel with higher RMSE is
worse at accounting for the empirical data compared to the null model. In both the occipital and
parietal ROIs, adding VRF position shifts to the layered model decreased RM SE, while
abolishing position shifts generally increased the model error (Fig 6¢). These data are consi stent
with the results from the spatial discriminability analysis. Altogether, they suggest that shiftsin
VRF position have the largest impact on population-level representations, while changesin vRF

size or gain play smaller roles in changing the fidelity of the population code.

DISCUSSION (Max 1500 wor ds; current 1500)
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By ssmultaneously measuring the response properties of both single voxels and populations of
voxels within retinotopic areas of visual cortex, we could link attentional modulations of spatial
encoding properties across scales. Our data provide an initial account of how different types of
RF modulations improve the quality of population codes for visual space. First, we show how
VRF attentional modulations depended on the distance between the VRF s preferred position and
the static attention target (Fig 2). We then found that shiftsin the preferred position of VRFs near
the attended target increased the spatial discrimination capacity of a population of voxels (Fig 3),
aswell as the amplitude of stimulus reconstructions based on response patterns across all voxels
inaROI (Fig5, 6).
Attentional modulations of spatial RFs

We provide new data on how vRF responses are modulated around a covertly attended
static target (Sprague and Serences, 2013; de Haas et al., 2014; Klein et a., 2014; Kay et al.,
2015; Sheremata and Silver, 2015). Like prior macague studies, we find that VRF position shifts
depend on the vVRF s distance from the attended target (Connor et al., 1996, 1997). However, we
also found that the pattern of attentional modulations differs across the visual hierarchy. In V4,
V3A/B, and IPSO voxels shift towards the attended target, while in earlier areas, vRFs near the
attended target are dlightly repelled from it (Fig 2e). We also found distinct patterns of size
modulations: VRF size increased near the attention target in early visual areas, but decreased in
parietal areas V3A/B and IPS0. Comparison to the existing literature suggests that patterns of RF
size modulations likely depend on the nature of the spatial attention task. In fMRI tasks where
subjects attended to the mapping stimulus, rather than a static position, researchers report
average VRF size increases with attention (Sprague and Serences, 2013; Kay et al., 2015;

Sheremata and Silver, 2015). RFs in macague area M T shrink when measured with a mapping
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probe smaller than the stimulus, but increase in size when macaques track the mapping probes as
they move across the screen (Womelsdorf et al., 2006, 2008; Anton-Erxleben et al., 2009;
Niebergall et al., 2011). This may be because the RFs shift position to track the probe, causing an
apparent increase in overall size. Lastly, manipulating perceptual load at fixation also increases
VRF sizein human visual cortex (de Haas et al., 2014). Taken together, these observations
demonstrate that the pattern of RF response modulations depends both on task demands and on
the spatial relationship between the attended target and the encoding unit’s RF.

We note that while the similarity between attentional modulations of single cell RFs and
single voxel RFsis compelling, their properties are derived from different input signals, and are
not interchangeable. fMRI voxelsin retinotopically organized regions of visual cortex sample
from a broad array of neurons with roughly the same spatial tuning preferences, so aposition
shift in a vRF could either be driven by a change in the preferred position of single neurons, or
by a change in the gain profile across neurons tuned to dlightly different locationsin the visual
field. Similarly, single neuron RFs receive input from smaller RFsin earlier visual areas, and a
position shift could arise from either mechanism described above (McAdams and Maunsell,
1999; Baruch and Y eshurun, 2014; Dhruv and Carandini, 2014). Because of thisinherent
ambiguity when measuring the encoding properties of alocally tuned unit, it is useful to compare
them with attentional modulations of population-level representations.

Attention boosts the spatial encoding fidelity of a population

We first measured the overall capacity of a population of voxels to make fine spatial
discriminationsin aregion of space. We found that attention increased spatial discriminability
near the attended target, relative to the ignored target. We then performed virtual experiments on

the VRFs contributing to the population to determine how they affected the spatial
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discriminability metric. We report that vRF position shiftsincreased spatial discriminability
significantly more than vVRF size changes or gain changes (Fig 3).

Since the spatial discriminability metric (Fig 3) isonly informative about alocal portion
of space, we performed a second population analysis to reconstruct an image of the entire visual
field on each trial using a multivariate IEM. Attention increased the amplitude of stimulus
reconstructions near the attention target, indicating an increase in representational fidelity that
accompanied theincrease in spatial discriminability. In addition, alayered spatial encoding
model revealed that shiftsin vRF position could account for these attentional enhancementsin
the population-level stimulus reconstructions, but changes in vRF size could not. Altogether, our
data demonstrate that shiftsin position of many RFs may be a dominant way that single encoding
units alter the properties of a population spatial code.

Although population-level information increased the most with changes in vRF position,
we reiterate that these position changes could arise from spatially-specific patterns of gain
modulationsin input RFs. If thisistrue, it is possible that gain modulations with attention may
exert their largest effects on the downstream population, where these patterns of gain changes
become apparent shiftsin VRF position. However, this remains an open question for future work
to address.

Our findings also underscore the fact that changes in the spatial encoding properties of
single units do not directly transate into anal ogous changes in the encoding properties of a
population of those same units. For example, an overall change in VRF size does not necessarily
change the size of the population-level representation (Sprague and Serences, 2013; Kay et al.,
2015). Although we found that single units shifted their preferred position towards the attended

target, population-level representations did not generally shift with attention. When the
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population code did shift its encoded position, we found that it was typically representations of
theignored stimulus that shifted farther from the true stimulus location (Fig 5), consistent with
more error-prone representations of irrelevant stimuli. These types of differences further

emphasi ze the need to understand the effects of cognitive state on population codes for the entire
visual scene, rather than focusing solely on single units.

Lastly, we note that our population-level data do not address the open question of
whether RF attentional modulations have perceptual consequences, sinceit is not clear how the
gpatial encoding models measured here are linked to visual perception and behavior
(Koenderink, 1990; Rose, 1999; Anton-Erxleben and Carrasco, 2013; Klein et al., 2016). Further
investigation into these topics should include task manipulations to investigate how attentional

modulations of both VRFs and population-level metrics track psychophysical performance.

Tuning shiftsand labeled lines

Historically, shiftsin the tuning of a RF have not been considered one of the main
mechanisms by which attention modulates population-level information, although recent reports
suggest that this view is being reconsidered (David et a., 2008; Anton-Erxleben and Carrasco,
2013). This may be dueto ‘labeled-line’ theories of visual information processing, which posit
that a single neuron has a consistent feature label which downstream neurons rely on to perform
computations and transmit stable information (Barlow, 1972; Doetsch, 2000; David et al., 2008).
When a spatial RF shifts position as a function of cognitive state (e.g., attention), that single
neuron’s feature label isno longer consistent. Without an accompanying shift in the downstream
neurons receiving the changing feature label, such a change could disrupt the stability of the

population code. However, our results suggest that population-level spatial representations
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remain relatively stable — and are even enhanced — when the tuning of the underlying vRFs shift
in position, size, and gain.

An alternate proposal to alabeled line code relies on the joint information encoded across
apopulation of cells (Erickson, 1982; Doetsch, 2000). This may occur at several scales—for
example, V2 could use the pattern of information from V1 inputs to form avisual representation.
Thisideais more akin to an encoder-decoder model in which the downstream decoder does not
need information about the altered representations in each of the encoder units, but instead relies
on a population readout rule (Seriés et al., 2009). The population readout rule could incorporate
knowledge about the ‘labels of the encoder units, but could perform equally well by relying on
relative changes in the pattern across units to resolve the information encoded in the population.
However, further exploration of population readout rules in visual cortex are needed to test this

hypothesis.

Conclusions

The spatial encoding properties of the visual system can be measured and modeled at
many different spatial scales. Here, we report how these properties change with attention for
single voxels and for a group of voxelsin each ROI. Notably, single vRF modulations do not
propagate directly to analogous changes in large-scale codes. Instead, we observed that
attentional modulations of VRF position play a dominant role in modulating the amplitude of
population-level representations. Future research is needed to resolve how shiftsin RF labels are
generated, how information isread out from a population, and how these multi-scale attentional

modul ations affect visual perception and behavior.
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TABLES
Table 1. VRF selection statistics, pooled across participants (N = 7)
No. of No. of No. of )
Region Total no. No. of voxels after | voxels after | voxels after | Percent that RMSE fit
of voxels after ; : error for
of localized GLM regular- Cross- removing survive al urvivin
interest voxds | thresholdin izability validation | difference | thresholds voxd Sg
9 threshold threshold | score outliers
V1 3,723 3,540 2,438 989 931 25.01% 0.1105
V2 4,154 3,970 3,115 1,405 1,339 32.23% 0.1087
V3 3,698 3,519 2,839 1,520 1,435 38.81% 0.0994
V4 1,702 1,492 1,118 361 336 19.74% 0.0783
V3A/B 1,988 1,922 1,440 443 416 20.93% 0.0893
IPSO 1,567 1,492 800 114 110 7.02% 0.0882
V1-V4| 13,277 12,521 9,510 4,275 4,041 30.44% 0.1032
VBAIB | 3555 | 3414 2,240 557 526 1480% | 0.0894
& IPSO
TOTAL | 16,832 15,935 11,750 4,832 4,567 27.13% 0.1016
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distance from the attended location (v_dist_attn)

Position Size Amplitude Basdline
Vi1 -.069, .095 -.064 -.019, .137, .135| .011, -.073, .010
V2 .015, -.133, .082 | -.064, .160 -.016, .125, .046| .011, -.066, .061
V3 .017, -.135, .033|-.073, .163 -.025, .170, .032 | .009, -.053, .054
\Z! -.162 -.181 .308 .011, -.078, .085
V3A/B |-.318 -.091, 461, -.520|.210 <.001
IPSO |-.425 -.445 -.076, .495 .073

& Number of reported coefficients in the table correspond to the polynomial order which was

52

yielded the most parsimonious fit to the data (e.g., 1 coefficient for n = 0, 2 coefficientsforn=1,

etc.).
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Table 3. 2-way ANOV A results for reconstruction parameter changes (s_dist_attn x attention
hemifield).
Vi | V2 | V3 | V4 |[V3A/B|IPSO |V1-V4 VISIé/S% &
Omnibus test
Position <.001|<.001/<.001|<.001|{<.001 |.001 |<.001 <.001
Size 216 |.565 |.019 |.428 |.006 |.121 |.001 110
Amplitude 74 1579 |.024 |<.001|<.001 |.008 |.016 <.001
Basdline .088 |.734 |.934 |<001|.001 |.937 |.015 241
Main effect of distance
Position <.001|<.001|<.001|<.001|<.001 |.192 |<.001 <.001
Size 484 .019
Amplitude 140 |.002 |.005 |.478 |.100 .002
Basdline .829 |.916 210
Main effect of attention
Position 371 | .916 |.346 |.067 |.005 |.254 |.401 343
Size .003 .005
Amplitude .069 |<.001/.005 |[.158 |.049 .004
Basdline .001 |<.001 .004
Intera_ction of distance &
attention
Position 052 |.588 |.541 |.657 |<.001 |<.001|.121 .026
Size 077 271
Amplitude .064 |<.001|/<.001 |[.004 |.224 <.001
Basdline .019 |.011 370

% bold numbers indicate that the p-val ue passed FDR-correction (q = .05, corrected across ROIs
and comparisons within each parameter).
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Table 4. RMSE (and 95% Cls) between reconstructions from the reduced dataset (only using voxels with RFs) or from different
versions of the layered IEM using the same voxels.

Reéja‘i‘;ed pisalb | plalb | pisb | Salb | pla | sa | pis D a s | none
Combined| 0133 | 0146 | 0148 | 0142 | 0194 | 0148 | 0194 | 0141 | 0143 | 0194 | 0194 | 0.193
occipital | [0.109, | [0.146, | [0.147, |[0.1410.| [0.194, | [0.148, | [0.194, | [0.141, | [0.143, | [0.194, | [0.194, | [0.193,
V1-V4 | 0170] | 0146] | 0148] | 143 | 0194] | 0.148] | 0194 | 0.141] | 0143 | 0194] | 0194] | 0.193]
Combined
parietal | 0834 | 0415 | 0426 | 0411 | 0443 | 0425 | 0451 | 0410 | 0410 | 0441 | 0447 | 0834
V3A/B & | [0.744, | [0.410, | [0.422, | [0.407, | [0.439, | [0.421, | [0.447, | [0.405, | [0.406, | [0.437, | [0.442, | [0.744,

IPSO | 0.959] | 0419] | 0431] | 0.416] | 0.447] | 0.430] | 0.456] | 0.416] | 0.414] | 0.445] | 0452] | 0.959]

®To generate Cls, the resampling of the real datais performed at the level of the fits to the reconstructions, whereas resampling

layered IEM RM SEsis described in Materialsand Methods
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SUPPLEMENTAL METHODS
Raw data and analysis code
All the data and analysis code needed to reproduce the analyses in this text are available

in an Open Science Framework repository at https://osf.io/s9vav/.

Population analysis (3): Layered spatial encoding model in smaller retinotopic ROIs

In the main text, we merge several retinotopically-defined ROIs to form a large occipital
and parietal region before estimating the layered encoding model. When we attempted to
estimate a layered IEM for the smaller ROIs, we were forced to exclude several participants
because they did not have enough voxels in that region to calculate a stable population-level
estimate of the spatial information in the mapped region. That is, the weight matrix estimated in
the training portion of the IEM was poorly conditioned, or not full rank (Eq. 4). Thisresulted in
the exclusion of 16 out of 42 possible participant-ROI pairs: V1 (AL); V3 (AL); V3A/B (AL,
AP, AR, AU); V4 (AA, AL, AR, AU); IPSO (AA, AL, AP, AR, AT, AU).

Note that the chosen level of noise did not qualitatively impact the results. For example,
rather than just adding Gaussian noise, we also created a noise model that followed the
covariance structure between al voxelsin each ROI. To estimate the covariance matrix, we
computed the residuals between the true trial-wise beta wei ghts and the predicted trial-wise beta
weights for each voxel based on its VRF model. We then calculated the pairwise covariance
between the residuals for each set of voxels. Last, we added noise that followed this covariance
structure to each voxel’s channel weights and ssimulated BOLD response. This noise was scaled
to be the same as the noise level that most accurately captured the real reconstruction data (i.e.,
mean noise is 0.5 standard units). The pattern of results between each of the model

mani pulations remained the same, so those results are not discussed here.
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Figure S1. Preferred position changes of vVRFs from each mapped visual areafor both attention conditions. Like Figure 2c, these plots show
participant averages. The majority of VRFs shift toward the attended location.
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Figure S3. A plot of the visual field coverage of all ROIs and al participants for vRFs mapped during the
attend fixation runs. Top map shows the combined coverage across all participantsin area V1. All images are
plotted on the same colorscale and only account for fit centers and sizes (e.g., no scaling by fit amplitude and
baseline). Empty cells indicate that no voxels from that participant-ROI pair survived the voxel thresholding
procedure.
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Figure $4. vRF attentional modulations by visual hemifield and voxel hemisphere. An asterisk indicatesamain
effect of attended visual hemifield (see Table S3 for p-values). Areas with a significant differencein
contralateral vs. ipsilateral difference scores are the same regions which have large slopesin Fig S2. This
simply reflects the fact that voxels near the attended location are always contralateral (e.g., voxelsin the RH
will code for locations near the attention target in the left, or contralateral, hemifield). There was no main effect
of voxel hemisphere or an interaction of the two factors.
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Figure S5. Stimulus reconstructions for each ROI, averaged across participants, and like positions across
condition. Colorscale is constant across all 48 stimulus positions within an ROI. (Reconstructions for the attend
right condition were flipped and averaged with the attend left condition.) The left hemifield is attended and the
right hemifield isignored. Stimuli that fall along the horizontal midline are excluded here.
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Figure S6. The level of noise added to the generated voxel responses was systematically manipulated (see
Supplemental Methods). We then tested whether the noise parameters affected which model best explained the
attentional modulations observed in the stimulus reconstructions. Shown on the x axis iswhich of the 4 vRF
parameters was allowed to vary between attention conditions. The pattern of results was the same across models
which used independent noise in the BOLD data simulation or noise which scaled with the voxelwise

covariance matrix.
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Table S1. Mean parameters (and 95% Cls) fit to VRF size data as a function of visual eccentricity

Basdline Slope
V1 49[.46, 53] | 1.34[1.30, 1.39]
V2 A411[.36,.47] | 1.60[1.53, 1.69]
V3 A43[.39,.47] | 1.86[1.81, 1.92]
V4 76[.67,.85] | 1.84[1.72, 1.95]
V3A/B | .55[.46, .63] | 2.20[2.10, 2.29]
IPSO 92[.69, 1.18] | 2.22[1.78, 2.58]

S10
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Table S2. Overall changes in VRF parameters with attention (attend left or right — attend fixation)

V1 V2 V3 Va V3A/B IPSO
N -108[-.228, | -.147[-.363, | -.182[-.349, | -.193[-.422, | -.303 [- 511, | -.497 [-.846,
Position -.041] -.017] -.062] -.070] -.101] -.289]
_ -.052[-.123, | -.008[-.109, | -.024[-.152, | -.168[-.262, | -.037[-.185, | -0.403[-
Size .089] .105] 103 .023] 233 534, -.049]
_ 315[.097, | .234[.077, | .262[.131, | .281[.129, | .218[.153, | .313[.239,
Amplitude | 450] 361] 382] 399 .304] 397
| -.008[-.070, | -.019[-.060, | -.013[-.043, | -.019 [-.040, | -.001 [-.040, | .058[-.012,
Baseline .029] .016] .016] .007] 048] .096]

& Bracketed numbers represent bootstrapped 95% Cls.
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Table S3. Exact p-values for the permuted tests of vVRF modulations by voxel hemisphere and attention
hemifield, associated with Fig $4.

V1| V2| V3 | V4 |V3A/B|IPSO

Main effect of attention hemifield

Position .007/.009|.397 |.491|.548 .824
Size .884/.081|.002 |.145|.505 .056
Amplitude .055].093|<.001|.274|.330 |.005
Basdline (27].642|.800 |.118|.397 .014
Main effect of voxel hemisphere
Position A435].702|.572 |.756|.77/0 |.648
Size 586(.023|.320 |.980|.640 |.569
Amplitude 513].534|.672 |.212|.263 187
Basdine .715(.892|.385 |.129|.813 |.187
Interaction of hemisphere & hemifield
Position .602|.752|.472 |.186|.7/0 |.684
Size J103|.726|.476 |.654|.874 |.571
Amplitude .710|.965|.887 |.367|.699 |.275
Baseline 125(.073|.049 |.685|.056 |.618

& bold numbers indicate that the p-value passed FDR-correction (g = .05, corrected across ROIs and
comparisons within each parameter).
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Table 4. Model RM SE (and 95% Cls) between reconstructions from the reduced dataset (only using voxels with RFs) or from different versions of

the layered IEM using the same voxels in the smaller retinotopic regions (compare to Figure S6).

Real

data p/da/b |plalb | p/sb sa/lb p/a sa p/s p a S none
0384 |0.181 |0.178 |0.178 |0.209 |0.179 |0.210 |0.173 |0.173 (0209 |0.209 |0.205
V1 [0.333, |[0.179, |[0.176, [[0.176, |[0.207, |[0.177, |[0.209, |[0.171, [[0.171, |[0.208, |[0.207, |[0.204,
0.441] |0.183] |0.180] (0.180] [0.211] |0.180] |0.211] |0.175] |0.175] |0.210] |0.211] |0.206]
0224 |0.178 |0.180 |0.176 |0.200 |0.179 |0.200 |0.178 |0.176 |0.202 |0.198 |0.195
V2 [0.183, |[0.176, |[0.178, |[0.175, [[0.199, [[0.178, [[0.199, [[0.177, |[0.174, |[0.201, |[0.197, |[0.194,
0.264] |0.180] |0.182] [0.177] |0.201] |0.180] |0.201] |0.179] |0.177] |0.203] |0.199] |0.19¢]
0258 [0.206 |0.206 [0.209 |0.247 |0.204 |0.244 |0.205 [0.205 |0.240 |0.250 |0.244
V3 [0.219, |[0.205, |[0.205, |[0.208, [[0.246, [[0.203, [[0.243, [[0.204, |[0.204, |[0.240, |[0.249, |[0.244,
0.294] |0.207] |0.207] [0.210] [0.248] |0.205] |0.245] |0.206] |0.206] |0.240] |0.251] |0.244]
0774 (0442 (0440 [0434 0433 |0432 |0426 |0429 |0423 |0420 |0426 |0.416
V4 [0.637, [[0.436, |[0.435, [[0.428, |[0.429, |[0.429, |[0.422, |[0.425, [[0.419, |[0.417, |[0.422, |[0.413,
0.911] |0.448] |0.445] |0.439] (0.437] |0.436] |0.430] |0.434] |0.427] |0.423] |0.430] |0.419]
0586 |[0.378 |0.398 [0.368 |0.388 |0.392 |0.392 |0.366 |0.381 |0.374 |0.389 |0.369
V3A/B |[0.499, |[0.375, |[0.394, |[0.364, |[0.385, |[0.388, |[0.389, |[0.363, |[0.377, |[0.372, [[0.386, [[0.367,
0.681] |0.381] |0.402] [0.373] [0.391] |0.396] |0.395] |0.369] |0.384] |0.376] |0.392] |0.371]
1166 |0473 |0475 0474 (0503 |0.493 (0499 10482 |0471 |0487 0475 0457
IPSO [0.915, |[0.464, |[0.462, [[0.465, |[0.497, |[0.481, [[0.493, |[0.473, [[0.464, |[0.481, |[0.470, |[0.452,
1.423] |0.482] |0.488] |0.483] |0.509] |0.506] |0.504] |0.493] |0.479] |0.494] |0.480] |0.462]

To generate Cls, the resampling of the real datais performed at the level of the fits to the reconstructions, whereas resampling layered IEM RM SEs
isdescribed in Materialsand M ethods
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