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ABSTRACT 26 

Selective visual attention enables organisms to enhance the representation of behaviorally 27 

relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know 28 

little about how the attentional modulations of single RFs contribute to the encoding of an entire 29 

visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous 30 

portion of visual space, (2) constructing a population-level measurement of spatial 31 

representations based on these RFs, and (3) linking how different types of RF attentional 32 

modulations change the population-level representation. To accomplish these aims, we used 33 

fMRI to characterize the responses of thousands of voxels in retinotopically organized human 34 

cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial 35 

relationship between the RF center and the visual location of the attended target. Second, we 36 

used two analyses to assess the spatial encoding quality of a population of voxels. We found that 37 

attention increased fine spatial discriminability and representational fidelity near the attended 38 

target. Third, we linked these findings by manipulating the observed vRF attentional modulations 39 

and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered 40 

that attentional enhancements of population-level representations largely depend on position 41 

shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single 42 

RFs are a principal mechanism by which attention enhances population-level representations in 43 

visual cortex. 44 

 45 

SIGNIFICANCE STATEMENT 46 

While changes in the gain and size of RFs have dominated our view of how attention modulates 47 

information codes of visual space, such hypotheses have largely relied on the extrapolation of 48 
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single-cell responses to population responses. Here we use fMRI to relate changes in single 49 

voxel receptive fields (vRFs) to changes in the precision of representations based on larger 50 

populations of voxels. We find that vRF position shifts contribute more to population-level 51 

enhancements of visual information than changes in vRF size or gain. This finding suggests that 52 

position shifts are a principal mechanism by which spatial attention enhances population codes 53 

for relevant visual information in sensory cortex. This poses challenges for labeled line theories 54 

of information processing, suggesting that downstream regions likely rely on distributed inputs 55 

rather than single neuron-to-neuron mappings. 56 

 57 

INTRODUCTION 58 

Spatial receptive fields (RFs) are a core component of visual information processing 59 

throughout the visual system. They are modified by selective visual attention to improve the 60 

fidelity of sensory representations, likely enabling more precise, accurate perception (Desimone 61 

and Duncan, 1995; Anton-Erxleben and Carrasco, 2013). Prior studies in non-human primates 62 

have found that covert spatial attention changes the position, size, and amplitude of responses in 63 

single-cell RFs in early cortical areas such as V1, V4, and MT (Moran and Desimone, 1985; 64 

Connor et al., 1996, 1997, Womelsdorf et al., 2006, 2008; Roberts et al., 2007; David et al., 65 

2008). Recent neuroimaging studies have also shown that single-voxel RFs (vRFs) undergo 66 

similar response changes with attention, shifting towards the attended target or changing in size 67 

(de Haas et al., 2014; Klein et al., 2014; Kay et al., 2015; Sheremata and Silver, 2015). Most 68 

accounts suggest that these RF modulations improve the spatial representations of the attended 69 

target, either by boosting the signal-to-noise ratio (SNR) by increasing response amplitude, or by 70 

increasing the spatial resolution by decreasing RF size (Desimone and Duncan, 1995; Anton-71 
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Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). These mechanisms are akin to turning 72 

up the volume (gain increase) or to using smaller pixels to encode a digital image (size decrease). 73 

Despite these documented modulations, it is not yet clear how different types of RF 74 

modulations are combined to facilitate robust population codes. Recent studies have only begun 75 

to explore how interactions between neurons may affect the coding properties of the population 76 

(Anton-Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). Yet analyzing these data at a 77 

population level is crucial for understanding how spatial attention changes the overall 78 

representation of an attended area. Prior fMRI studies that measured many vRFs across space 79 

were often unable to report the full pattern of response modulations with respect to the attended 80 

target because subjects attended to the mapping stimulus, rather than to a fixed point in space 81 

(Sprague and Serences, 2013; Kay et al., 2015; Sheremata and Silver, 2015). Studies which fixed 82 

the locus of attention have reported mixed results on vRF modulations (de Haas et al., 2014; 83 

Klein et al., 2014). The first aim of this study was thus to evaluate how properties of vRFs in 84 

retinotopic areas change with attention, especially near the peripheral attention target. 85 

The second aim of the study was to evaluate how different types of RF modulations 86 

contribute to population-level enhancements of an attended region of space. Single RFs in early 87 

visual areas are fundamentally local encoding models that are relatively uninformative about 88 

regions outside their immediate borders. To study their relationship to a population-level 89 

representation of space, other metrics are needed to integrate information across all local 90 

encoding units – e.g., vRFs – to evaluate how attentional modulations impact the quality of 91 

population codes.  Here, we used two different population-level metrics of spatial encoding 92 

fidelity to investigate these questions, and to determine how changes in vRF amplitude, size, or 93 

position affect the population-level representations. First, we used a measure related to Fisher 94 
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Information to evaluate the spatial discriminability of population codes. Second, we used a 95 

spatial encoding model that incorporates information across voxels to form representations of 96 

stimuli in the mapped visual field (Brouwer and Heeger, 2009; Sprague and Serences, 2013; 97 

Sprague et al., 2015). 98 

We found that vRF position shifts increase both the spatial discriminability around the 99 

attended region as well as the fidelity of stimulus reconstructions near the attended target. 100 

Surprisingly, shifts in vRF position accounted for more of the population-level enhancements 101 

with attention than changes in vRF size or gain. This finding is unexpected in the context of 102 

‘labeled-line’ models of information processing, which posit that visual representations rely on 103 

RFs that transmit consistent ‘labels’ for visual features such as spatial position. Our findings 104 

suggest that apparent shifts in the labels of RFs play an important role in the attentional 105 

enhancement of visual information. 106 

 107 

MATERIALS & METHODS 108 

Task design and participants 109 

We collected data from 9 human participants (4 female), 6 of whom had previously completed a 110 

set of retinotopic mapping scans in the lab (participants AA, AB, AC, AI, and AL in Sprague & 111 

Serences, 2013; participants AA, AC, and AI in Sprague et al., 2014; all participants in Ester et 112 

al., 2015). All participants provided written informed consent and were compensated for their 113 

time ($20/hour) as approved by the local UC San Diego Institutional Review Board. Participants 114 

practiced both the attention task and the localizer task before entering the scanner. A minimum 115 

of four hours of scanning was required to complete the entire analysis, so one participant was 116 

excluded due to insufficient data (they only completed 2 hours). Another participant was 117 
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excluded for inconsistent behavioral performance, with average task accuracy at chance (48.6%). 118 

This yielded a total of 7 participants who completed the entire experiment (3 2-hour scan 119 

sessions per participant). 120 

Participants centrally fixated a gray rectangular screen (120x90 cm) viewed via a head-121 

coil mounted mirror (~3.85 m viewing distance). They attended one of three fixed locations on 122 

the screen: the fixation point or a target to the lower left or lower right of fixation. During each 123 

2000 ms trial, subjects reported a change in the attention target. When subjects attended fixation, 124 

they reported whether a brief contrast change (100 – 400 ms, starting 300 – 1000 ms into the 125 

trial) was dimmer or brighter than the baseline contrast. The peripheral attention targets were two 126 

pentagons (0.17° radius; 50% contrast) centered 2.1º to the left and right of fixation (Fig 1a). 127 

When subjects attended a peripheral target, they reported whether it rotated clockwise or 128 

counter-clockwise (rotation duration 100 - 300 ms, starting 300 - 1600 ms into the trial). Inter 129 

trial intervals (ITIs) randomly varied between 1000 to 3000 ms in 500 ms increments (mean ITI: 130 

2000 ms). The magnitude of the contrast change or the rotation was adjusted on each run to keep 131 

task performance for each participant near 75% (mean = 75.90%, bootstrapped 95% C.I. 132 

[72.46%, 79.20%]), with no significant difference between conditions as evaluated with a one-133 

way repeated measures ANOVA randomization test (F(1,11) = 0.220, randomized p = 0.800). 134 

For four participants, we collected 6 runs on the attend periphery tasks without a change in the 135 

luminance of the fixation stimulus. Performance on the attend periphery tasks was stable across 136 

runs with and without the luminance change (repeated-measures ANOVA with run type x 137 

random participants factor; p = 0.439, null F distribution using randomized labels for 10,000 138 

iterations). Therefore, these data were collapsed across scan sessions with and without changes 139 

in fixation luminance.  140 
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 141 

 142 

Figure 1. Covert spatial attention task and hypothesized representation changes with shifts of 143 
spatial attention. (a) Subjects fixated centrally and attended to brief rotations in the pentagon 144 
stimulus on the left or right while a flickering checkerboard probe stimulus appeared at one of 51 145 
grid locations across the visual field. On control runs, subjects attended to a contrast change at 146 
fixation. fMRI data measured during this attention task is used to create visualizable estimates of 147 
voxel receptive fields (vRFs) and stimulus reconstructions. (b) A receptive field model is fit to 148 
the responses of each voxel, and can be described by its x and y position (center), its response 149 
baseline, response amplitude, and its size (full-width half maximum). (c) Given a population of 150 
voxels in a retinotopic region, such as V1, we examine two different measures of spatial 151 
information in the population. The first, a spatial discriminability metric, scales with the slope of 152 
the tuning curve at a given location in space (Materials and Methods). The second relies on a 153 
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multivariate inverted encoding model (IEM) for space. By reconstructing images of the mapping 154 
stimulus on each test trial, we can measure how population-level spatial information changes 155 
with attention. We then can model how changes in individual vRFs affect both of these 156 
population measures. 157 
 158 

On 51 of the 61 trials in each run, a full-contrast 6 Hz flickering checkerboard (0.68° 159 

radius; 1.67 cycles/deg) appeared for 2000 ms at one of 51 different locations across the screen 160 

to map the spatial sensitivity of visually responsive voxels. These mapping stimuli covered a 161 

region of the screen roughly subtending 9° horizontal and 6° vertical when their position was 162 

jittered. When one of these checkerboards overlapped with any of the static attention targets, 163 

they were partially masked with a small circular aperture the same color as the screen 164 

background (0.16°/0.25° radius aperture for fixation/pentagon, respectively) that allowed the 165 

stimulus to remain visible. Participants were instructed to ignore the task-irrelevant flickering 166 

checkerboards throughout the experiment. During the 10 null trials on each scan, the participant 167 

continued to perform the attention task but no checkerboard was presented. Null trials and 168 

mapping stimulus trials were presented in a pseudorandom interleaved order. 169 

The location of the checkerboard mapping stimulus on each trial was determined by 170 

generating an evenly spaced triangular grid (0.84° between grid points) and centering the 171 

checkerboard on one of these grid points. The location of the checkerboard mapping stimulus 172 

was then jittered a random amount from these grid points (+/- 0.42°/0.37° horizontal/vertical). 173 

When subjects attended the peripheral target, half of the runs were presented at the discrete grid 174 

positions so that we could achieve more stable stimulus reconstructions (see Population analysis 175 

(2)).  176 

Magnetic resonance imaging 177 
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We obtained all structural and functional MR images using a GE 3T MR750 scanner at 178 

University of California, San Diego. We collected all functional images (19.2 cm x 19.2 cm 179 

FOV, 64 x 64 acquisition matrix, 35 interleaved slices, 3 mm3 voxels with 0 mm slice gap, 128 180 

volumes per scan run) using a gradient echo planar pulse sequence (2000 ms TR, 30 ms TE, 90° 181 

flip angle) and a 32-channel head coil (Nova Medical, Wilmington, MA). Five dummy scans 182 

preceded each functional run. A high-resolution structural image was acquired at the end of each 183 

session using a FSPGR T1-weighted pulse sequence (25.6 cm x 25.6 cm FOV, 256 x 192 184 

acquisition matrix, 8.136/3.172 ms TR/TE, 192 slices, 9° flip angle, 1 mm3 voxels). All 185 

functional scans were co-registered to the anatomical images acquired during the same session, 186 

and this anatomical was in turn co-registered to the anatomical acquired during the retinotopy 187 

scan.  188 

EPI images were unwarped with a custom script from UCSD’s Center for Functional 189 

Magnetic Resonance Imaging using FSL and AFNI. All subsequent preprocessing was 190 

performed in BrainVoyager 2.6.1, including slice-time correction, six-parameter affine motion 191 

correction, and temporal high-pass filtering to remove slow signal drifts over the course of each 192 

run. Data were then transformed into Talairach space and resampled to have a 3x3x3 mm voxel 193 

size. Finally, the BOLD signal in each voxel was transformed into Z-scores on a scan-by-scan 194 

basis. All subsequent analyses were performed in MATLAB using custom scripts (available 195 

online on Open Science Framework: osf.io/s9vqv). 196 

 197 

Independent localizer task 198 

We constrained our analyses to visually responsive voxels in occipital and parietal cortex 199 

using a separate localizer task (3-5 runs per participant). On 14 trials, participants fixated 200 
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centrally and viewed a full-field flickering checkerboard (10 Hz, 11.0/8.3° width/height) for 201 

8000 ms. Participants detected whether a small area (2D Gaussian, σ = 0.2°) within the 202 

checkerboard dimmed in contrast. Contrast dimming occurred between 500 to 4000 ms after the 203 

start of the trial, and lasted between 2000 to 3000 ms (all uniformly sampled in 500 ms steps). 204 

This contrast change occurred infrequently (randomly on 5 out of 14 trials) at a random location 205 

within the checkerboard. The average contrast change was varied between runs to maintain 206 

consistent performance at ~75% accuracy (mean performance 78.0%). On 8 trials participants 207 

simply fixated throughout the trial without a checkerboard being presented. We then used a 208 

standard general linear model (GLM) with a canonical two-gamma hemodynamic response 209 

function (HRF, peak at 5 s, undershoot peak at 15 s, response undershoot ratio 6, response 210 

dispersion 1, undershoot dispersion 1) to estimate the response to the checkerboard stimulus in 211 

each voxel. For all subsequent analyses, only voxels in the retinotopically defined areas V1, V2, 212 

V3, V4, V3A/B and IPS0 with a significantly positive BOLD response to the localizer task (at 213 

FDR q = 0.05) were included (Benjamini and Yekutieli, 2001). 214 

 215 

Estimating single trial BOLD responses 216 

For all subsequent analyses, we used trial-wise BOLD z-scores. We estimated these by 217 

creating a boxcar model marking the duration of each checkerboard mapping stimulus and 218 

convolving it with a canonical two-gamma HRF (peak at 5 s, undershoot peak at 15 s, response 219 

undershoot ratio 6, response dispersion 1, undershoot dispersion 1). To standardize our data 220 

across runs, we z-scored the BOLD responses within each run and concatenated the z-scores 221 

across runs. We then solved a GLM to find the response to each predictor. 222 

 223 
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Statistical procedures 224 

All reported confidence intervals (CIs) are computed by resampling the data with replacement 225 

(i.e. bootstrapping). The number of iterations for each bootstrapping procedure varied 226 

(depending on available computing power and time for that procedure) and are therefore reported 227 

with each result. For tests comparing a bootstrapped distribution against zero, p-values were 228 

computed by conducting two one-tailed tests against 0 (e.g., mean(param_change < 0) & 229 

mean(param_change > 0)) and doubling the smaller p-value. All repeated tests were FDR 230 

corrected (q = 0.05). 231 

 232 

Voxel receptive field (vRF) estimation, fitting, and parameter analysis 233 

We first estimated vRFs for each attention condition to investigate (1) how vRF 234 

parameters changed when participants attended to different locations and (2) the spatial pattern 235 

of vRF changes across visual space. We note here that prior reports have referred to similar 236 

voxel RF models as population receptive fields, or pRFs, to emphasize the fact that each voxel 237 

contains a population of spatially tuned neurons (Dumoulin and Wandell, 2008; Wandell and 238 

Winawer, 2015). However, since we are comparing modulations at different scales in the present 239 

study (i.e. modulations in single voxels and in patterns of responses across many voxels), we will 240 

refer to these single voxel measurements as voxel receptive fields (vRFs), and will reserve the 241 

term ‘population’ exclusively for multivariate measures involving several voxels, allowing our 242 

terminology to align with theories of population coding (Ma et al., 2006). 243 

We estimated voxel receptive fields (vRFs) using a modified version of a previously 244 

described technique (Sprague and Serences, 2013). This method estimates a single voxel’s 245 

spatial sensitivity by modeling its BOLD responses as a linear combination of discrete, smooth 246 
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spatial filters tiled evenly across the mapped portion of the visual field. These spatial filters (or 247 

spatial channels) form our modeled basis set. We then regressed the BOLD z-scores (v voxels x 248 

n trials) onto a design matrix with predicted channel responses for each trial (�, k channels x n 249 

trials) by solving Equation 1: 250 

(1) � � �� 251 

for the matrix � (v voxels x k channels). 252 

Each of the k channels in the basis set was defined as a two-dimensional cosine that was 253 

fixed to reach 0 at a set distance from the filter center:  254 

(2) ���� � 	 0.5 	cos 	��
�

� � 0.5� �
�

 ��� � � �,  255 

where r is the distance from the filter center and s is the size constant. Setting a zero baseline in 256 

this function ensured that we could estimate a stable baseline for each voxel by restricting the 257 

response of the channel to a known subregion of the visual display. Since the estimated vRF size 258 

depends on the size of the filters, we made the filters fairly small (1.08° FWHM) and dense (91 259 

filters arranged in a 13 horizontal / 7 vertical grid, each spaced 0.83° apart). We then discretized 260 

the filters by sampling them in a high-resolution 2D grid of 135 by 101 pixels spanning 10° by 261 

5°. The discretized filters (k filters by p pixels) were multiplied with a mask of the checkerboard 262 

stimulus on every trial (p pixels by n trials) so that the design matrix C contained predictions of 263 

the spatial channel responses on every trial of the mapping task. 264 

 To fit our estimated vRFs with a unimodal function, we used ridge regression to solve 265 

Equation 1. This is a common regularization method which sparsifies the regression solution by 266 

penalizing the regressors with many small weights (Hoerl and Kennard, 1970; Lee et al., 2013). 267 

This meant solving for an estimate of W by the following: 268 

(3) �� � � ���� � ��������, 269 
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where λ is the ridge parameter penalty term, and I is a k × k identity matrix. We estimated an 270 

optimal λ for each voxel by evaluating Equation 3 over a range of λ values (0 to 750) for a 271 

balanced number of runs of the attention task (e.g., an equal number of runs from each attention 272 

condition). We then computed the Bayesian Information Criterion (BIC) for each of these λ 273 

values, estimating the degrees of freedom in the ridge regression as: 274 

(4)  �� � ������� ���� � ��������  275 

The λ with the smallest BIC was selected for each voxel. Since the attention comparisons are 276 

done within voxels, the varying λ penalty across voxels could not explain the attention effects we 277 

observed. 278 

To select reliable voxels for analysis, we next implemented a set of conservative 279 

thresholding steps (Table 1). We first needed to select voxels with reliable visual responses, so 280 

we only kept voxels with trial beta weights that predicted at least 50% of the BOLD time courses 281 

in each scan session. Second, we only used voxels that could be successfully regularized with 282 

ridge regression. Any voxels with the maximum λ (750) were discarded, as this indicated that the 283 

ridge regression solution had not converged. Finally, we verified that the resulting regression 284 

model could predict an independent dataset, so we performed exhaustive leave-one-run-out cross 285 

validation for each attention condition. This ensured that the λ estimated across attention 286 

conditions produced reliable data for each condition separately. We estimated W using data from 287 

all but one run (Equation 3) and used this to predict the BOLD GLM trial estimate of the left-out 288 

run (Equation 2), separately for each condition. We then computed the mean correlation between 289 

the predicted & real BOLD GLM trial estimates across cross-validation folds for each voxel. 290 

Note that it is not possible to calculate a coefficient of determination on regularized data, since 291 

the process of ridge regression changes the scale of the predicted data (see supplemental 292 
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discussion in Huth et al., 2012). We only kept voxels where this cross-validation r > 0.25 for all 293 

3 conditions. 294 

 To quantify each vRF, we fit the spatial RF profile of each voxel with a smooth 2D 295 

function with 4 parameters: center, size, baseline, and amplitude (Fig 1b; Equation 2). Here, we 296 

define the vRF baseline as the voxel’s response that does not reliably depend on the position of 297 

the mapping stimulus (i.e., its constant offset). The vRF amplitude is defined as the spatially-298 

selective increase in a voxel’s response above this baseline. Together, these two parameters 299 

index how much of the voxel’s response is due to a change in mapping stimulus position. 300 

Finally, the size and location parameters estimate the spatial selectivity and the spatial position 301 

preference of the vRFs, respectively. We first downsampled the vRFs by multiplying the 302 

estimated weights ��  for each voxel (a 1 × k channel vector) by a smaller version of the spatial 303 

grid that contained the basis set (68 by 51 pixel grid; 10° by 5°). This speeded up the process of 304 

fitting the pixelwise surface with Eq. 2. This fitting process began with a coarse grid search that 305 

first found the best fit in a discrete grid of possible vRF parameters (center sampled in 1° steps 306 

over the mapped portion of the visual field; size constant logarithmically sampled at 20 points 307 

between FWHM of 10^0.01° and 10^1°). At each grid point, we estimated the best fit amplitude 308 

and baseline using linear regression. The grid point fit with the smallest root mean square error 309 

(RMSE) provided the initialization seed to a continuous error function optimization algorithm 310 

(fmincon in MATLAB). This fit had several constraints: the final solution must place the center 311 

within 2 grid points of the seeded fit (parameterized by position and size) and within the mapped 312 

visual field; the amplitude must be between 0 and 5; the baseline must be between -5 and 5 313 

BOLD z-score units. Occasionally, this nonlinear fitting algorithm did not converge and resulted 314 

in a larger error than the original seed. In this case we took the best fit grid point as the final fit.  315 
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To test whether vRF fit parameters changed when participants focused spatial attention at 316 

different positions, we compared fits during each attend periphery condition with fits during the 317 

attend fixation condition. We computed a difference score (attend peripheral – attend fixation) to 318 

describe the magnitude of the attentional modulation. For example, a difference score of –2° in 319 

the FWHM of the vRF would indicate that the response profile width decreased when the 320 

participant attended to the peripheral target. This analysis revealed a subset of voxels with very 321 

large difference scores, which we determined to be due to noisy data or poor fits via manual 322 

inspection. Accordingly, we performed a final threshholding step for all vRF-based analyses: an 323 

elimination of outlier voxels with difference scores greater than three times the standard 324 

deviation of the population mean, where the population consists of the parameter difference 325 

scores for a given ROI (Table 1). After removing these outliers, we tested whether the vRF 326 

parameter difference scores differed significantly from 0 within a visual region of interest (ROI) 327 

by bootstrapping the distribution of difference scores across participants 10,000 times. 328 

To determine if these vRF changes were modulated by their position in the visual field, 329 

we first calculated each vRF’s distance from the attended location (v_dist_attn) using its position 330 

during the fixation task. We then fit an nth order polynomial to the vRF difference scores as a 331 

function of v_dist_attn, where n = 0, 1, or 2. This corresponds to a constant offset (0th order), a 332 

linear fit (1st order), or a quadratic or parabolic fit (2nd order). These fits were cross-validated by 333 

fitting on 50% of the vRF difference scores and calculating goodness-of-fit (residual sum of 334 

squares and R2) on each of the 10,000 cross-validation iterations. These cross-validation 335 

iterations also provided confidence intervals on the coefficients for each polynomial. The most 336 

parsimonious fit was chosen by performing a nested F-test on the average residual sum of 337 

squares for each polynomial model.  338 
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We also tested whether vRF attentional modulations depended on hemisphere or visual 339 

hemifield, akin to the results reported for IPS0 – IPS5 in Sheremata and Silver, 2015. We sorted 340 

the voxels in each attention condition as contralateral or ipsilateral to the attended target. We 341 

then performed a series of non-parametric bootstrapped tests similar to a two-way ANOVA with 342 

attended hemifield and voxel hemisphere as factors. The vRFs were resampled with replacement 343 

across subjects 10,000 times. We then evaluated the two main effects and the interaction by 344 

computing a difference in the means of the groups or a difference in the slope between the group 345 

means, respectively. None of the tests for the effect of hemisphere and the interaction survived 346 

FDR correction, so we do not report those results here. We speculate that this null result is likely 347 

due to a lack of reliable voxels in anterior parietal cortex areas IPS1-5 in our study, where 348 

previous reports have found larger laterality effects (Sheremata and Silver, 2015). 349 

 350 

Population analysis (1): Fine spatial discriminability metric 351 

To compute the spatial discriminability of a population of vRFs, we estimated the spatial 352 

derivative of each vRF at every point in the mapped visual field in 0.1° steps (Fig 1C). This was 353 

done by taking the slope of the vRF along the x and y direction at each pixel in the image of the 354 

visual field and squaring this value (Scolari and Serences, 2009, 2010). This measurement is a 355 

descriptor of how well a population code can discriminate small changes in the spatial 356 

arrangement of the stimulus array, which depends on the rising and falling edges of a tuning 357 

curve rather than the difference between the peak response and a baseline response (Regan and 358 

Beverley, 1985; Pouget et al., 2003; Butts and Goldman, 2006; Navalpakkam and Itti, 2007; 359 

Scolari and Serences, 2009, 2010). To restrict our measurements to the relevant area near the 360 

peripheral target, we computed discriminability values within 1 degree of the center of each 361 
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target across both spatial dimensions (x and y). These were summed and divided by the 362 

maximum discriminability value in that population to make the results comparable despite 363 

changes in vRF coverage or responsiveness. 364 

 365 

Population measurements (2): Stimulus reconstructions using an inverted spatial encoding 366 

model 367 

In addition to computing the discriminability metric described above, we also reconstructed an 368 

image of the entire visual field on each trial using a population-level encoding model. Compared 369 

to the local spatial discriminability index, this is a more sensitive method of assessing the amount 370 

of spatial information encoded in an entire population of voxels because it exploits the pattern of 371 

response differences across voxels, rather than treating each voxel as an independent encoding 372 

unit (Serences and Saproo, 2012; Sprague et al., 2015). 373 

We trained the spatial encoding model using a procedure similar to the vRF estimation 374 

analysis described above (Fig 4a). This yields an estimated matrix of weights, ��
�  , which 375 

specifies how much each voxel in a region of interest responds to each of the spatial channels 376 

(Brouwer and Heeger, 2009; Serences and Saproo, 2012; Sprague and Serences, 2013; Sprague 377 

et al., 2015). We then solved Eq. 1 using the Moore-Penrose pseudoinverse with no 378 

regularization: 379 

(5) ��
� � ���������� 380 

C was constructed using a set of 54 evenly tiled spatial filters (Eq. 2; 9 horizontal / 6 vertical; 381 

spaced 1.25° apart; 1.56° FWHM). ��
�  was estimated using the data from the jittered position 382 

runs. This was done separately for each participant, using a training set balanced across the 383 
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conditions of interest (e.g., an equal number of attend left and attend right runs and all attend 384 

fixation runs, since fixation is the neutral condition).  385 

To reconstruct a representation of the mapped visual space, we inverted the model and 386 

multiplied the pseudoinverse of the estimated weight matrix ��
�  with a test dataset from the 387 

discrete position runs (��), yielding estimated channel activations for each trial (C2; k2 channels 388 

by t test trials) (Equation 6). Thus, we refer to this analysis as the inverted encoding model 389 

(IEM). 390 

(6)  ��� � 	��
� ���

� �
��

��
� ���  391 

Because of mathematical constraints on inverting �� (number of voxels must be greater than 392 

number of channels), we included all voxels in each ROI instead of just the subset of well-fit 393 

voxels used in the vRF analyses described above. We computed Eq. 6 twice using different test 394 

datasets, once for the discrete position attend left runs and once for the discrete position attend 395 

right runs. 396 

When we multiply the resulting channel activations by a grid of pixels that define the 397 

spatial channels, we obtain a spatial representation of the entire visual field on each trial. This 398 

image contains a stimulus reconstruction showing where the checkerboard should have been 399 

given the trained model and the activation pattern across all voxels in the independent test set. 400 

The stimulus reconstructions were then fit in the same manner as the vRFs, using Eq. 1 to 401 

estimate the center, size, amplitude, and baseline (mean fit RMSE across all ROI reconstructions 402 

0.114; 95% CI [0.102, 0.312]). Here, the baseline is an estimate of the multivariate 403 

reconstruction that is spatially non-selective—i.e., not significantly modulated by the position of 404 

the mapping stimulus. The amplitude describes the maximal increase in that reconstruction 405 

relative to baseline when the mapping stimulus is on the screen. 406 
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 To assess how attention changed reconstructions of the mapping stimulus across the 407 

visual field, we first computed a difference score that described the effect of attention by folding 408 

the visual field in half (i.e. collapsing across hemifield) and comparing parameters in the 409 

attended vs. ignored hemifield. We excluded the reconstructions that fell along the vertical 410 

meridian (3 of 51 stimulus positions). This allowed us to control for the overall effect of 411 

eccentricity while remaining sensitive to other spatial patterns in stimulus reconstruction 412 

modulations. 413 

We then set up a single factor repeated measures omnibus ANOVA to determine which 414 

pairs of ROI and parameter (e.g., V1 size, V1 amplitude, etc.) were affected by either attention or 415 

Euclidean distance from the target stimuli. The attention factor had two levels (attend/ignore) 416 

and the distance factor had 6 levels (6 evenly spaced distance bins from 0° to 2.54°). Based on 417 

the results of this omnibus test, we tested any significant ROI-parameter combination in a 2-way 418 

repeated measures ANOVA of attention by distance. To estimate the p-values for these tests, we 419 

generated empirical null distributions of the F-scores by randomizing the labels within each 420 

factor 10,000 times within each participant. Reported p-values are the percentage of the 421 

randomized F-scores that are greater than or equal to the real F-scores. 422 

 423 

Population analysis (3): Layered spatial encoding model to link vRFs to multivariate 424 

stimulus reconstructions 425 

In order to test how changes in the response properties of the underlying vRFs contributed to 426 

changes in the fidelity of region-level stimulus reconstructions, we generated simulated patterns 427 

of voxel activity on every trial by predicting the response to each stimulus based on the vRF fit 428 
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parameters. We then used this simulated data to estimate and invert a population-level spatial 429 

encoding model, as described above (Fig 6a).  430 

Note that for these simulations, we could only use well-fit voxels to generate simulated 431 

BOLD timeseries. This constrained the analysis to ROIs with at least as many vRFs as spatial 432 

filters used to estimate the spatial encoding model. To ensure that we could include most 433 

participants in the layered encoding model analysis, we created two large ROIs by merging the 434 

smaller retinotopically defined regions described above. The occipital ROI consisted of V1, V2, 435 

V3, and V4 defined for each subject. The posterior parietal ROI consisted of V3A/B and IPS0. 436 

The vRFs in the parietal ROI show distinct patterns of attentional modulations (Fig 2e), 437 

suggesting that V3A/B and IPS0 are both anatomically and functionally distinct from the 438 

occipital regions (see also de Haas et al, 2014). Although merging ROIs increased the number of 439 

voxels available for the encoding model analysis, we still did not have enough voxels in the 440 

parietal ROI to estimate the layered encoding model for 3 of the 7 participants (AL, AR, AU). 441 

However, the remaining data from 4 participants were sufficient to produce stable, subject-442 

averaged results. 443 

To simulate each voxel’s BOLD response on every trial that the participant completed in 444 

the real experiment, we first created a high-resolution set of spatial channels (21 by 11 channels 445 

spaced 0.5° apart, FWHM = 0.65°) and generated weights for each channel based on the vRF fit 446 

obtained from prior analysis. That is, we evaluated Eq. 2 for each channel at the vRF’s fit center 447 

and adjusted the response gain by multiplying this result by the fit amplitude and adding the fit 448 

baseline. We then added independent Gaussian noise to each of these channel weights, 449 

simulating a small amount of variance in the voxel’s response (σ = 0.5). Each voxel’s channel 450 

weights were then multiplied by the idealized channel response on each trial (that is, the channel 451 
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filter convolved with the stimulus mask), effectively simulating the BOLD response on each trial 452 

for the entire population of voxels based on their measured vRFs. We added Gaussian noise to 453 

this simulated response as well (σ = 0.5). We then computed stimulus reconstructions using the 454 

same method as described above (the IEM in Population analysis (2)), averaging resulting 455 

reconstructions across participants and like positions before fitting. 456 

To ensure the stability of the reconstructions that were based on simulated data, we 457 

repeated the simulations 100 times and averaged across the fits of all iterations to generate the 458 

plots in Fig 6b. Then, to compare how well the layered model reproduced the attentional 459 

modulations observed in stimulus reconstructions generated with real data, we calculated an 460 

error metric between the layered IEM and the real data. We first calculated reconstruction 461 

difference scores across attention condition (attended – ignored; see Population analysis (2)). 462 

This yielded 24 difference scores each for both attention conditions in both the layered IEM data 463 

and the empirical data. Since the empirical data did not have any repeated iterations, we 464 

averaged across all 100 iterations of the layered model to match the dimensionality of the real 465 

reconstructions (2 conditions x 24 difference scores x 4 parameters). We could then calculate the 466 

root mean square error (RMSE) between the difference scores from the full empirical dataset (i.e. 467 

the data shown in Fig 5) and the modeled data. This was used as a metric to describe the 468 

goodness-of-fit of each layered IEM. 469 

We then tested how different vRF attentional modulations contributed to changes in the 470 

population-level stimulus reconstructions. To test how shifts in vRF centers contributed to 471 

population-level information, we modeled voxels that had the same fit center across both 472 

attention conditions, simulated their BOLD responses on each trial, and generated stimulus 473 

reconstructions from these data. The voxel’s vRF center was defined as the vRF center fit from 474 
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the neutral attend fixation data. A similar procedure was repeated for all reported combinations 475 

of parameter changes across conditions. Again, whichever parameter was held constant took its 476 

value from the neutral attend fixation condition. 477 

To calculate the confidence intervals on the RMSE changes in Fig 6c, we resampled with 478 

replacement across the 100 model iterations and refit the average across these 100 instances. 479 

This resampling procedure was repeated 500 times to generate a distribution of fits to the model 480 

data. We then took the difference between the RMSE of the null model, in which no parameters 481 

varied between attention conditions, and the RMSE of the model which held some number of 482 

vRF parameters constant across attention conditions.  483 

 484 

RESULTS (3,709 words)  485 

Modulations of vRF properties with spatial attention 486 

We estimated single voxel receptive fields (vRFs) for each voxel in 6 retinotopically-identified 487 

visual areas from V1 to IPS0. The estimation of vRFs was done independently for each attention 488 

condition so that we could compare a single voxel’s spatial tuning across conditions.  489 

To confirm that the fit sizes were consistent with previous results, we fit a line to the 490 

estimated sizes as a function of the vRF center eccentricity. First, we combined all vRFs across 491 

participants and conditions in each ROI. We then binned the vRF centers every 0.25° from 492 

fixation and calculated the mean size (Fig 2b). We first replicated an increase in vRF size with 493 

increasing eccentricity, and an increase in the slope of this relationship across visual regions 494 

(Gattass et al., 2005; Dumoulin and Wandell, 2008; Amano et al., 2009; Harvey and Dumoulin, 495 

2011) (Fig 2b). These observations confirm that our method produced reasonable vRF estimates 496 

that were consistent with previous reports. 497 
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 498 

 499 
 500 
Figure 2. Changes in voxel receptive fields (vRFs) across attention conditions. We separately 501 
estimated vRFs for every voxel in visual and posterior parietal areas, discarding poorly estimated 502 
or noisy voxels (Table 1). Unless otherwise specified, figure data is averaged across subjects and 503 
error bars show 95% confidence intervals computed by resampling the data distribution. (a) An 504 
example vRF shows that attending covertly to the left location shifts the center of the receptive 505 
field profile to the left, when compared to the neutral attend fixation condition. Voxel is from 506 
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subject AR in area V3A/B. (b) Our vRF estimates reproduced the canonical size-eccentricity 507 
relationship (positive slope in all ROIs, p < minimum possible p-value, e.g., 1/10000 iterations) 508 
and the increase in slope between visual regions. (c) Preferred position changes of V4 vRFs with 509 
covert spatial attention. We binned each vRF by its position during the attend fixation condition. 510 
The origin of each arrow is the center of each position bin. The end of the arrow shows the 511 
average position shift of the vRFs within that position bin during the attend peripheral conditions 512 
(left/right are collapsed and shown as attend left). The majority of vRFs shift toward the attended 513 
location (blue-green color map vs. red-yellow). (d) Mean changes in vRF parameters (attend 514 
peripheral target – attend fixation) in each visual area. (e) Attentional modulations of each vRF 515 
parameter plotted by the vRF’s distance from the attention target computed from its position 516 
during the attend fixation task (Table 2). 517 

 518 

Next, we examined how covert attention to the peripheral attention targets modulated 519 

vRF properties, relative to the attend fixation condition. Overall, the center position of vRFs 520 

shifted significantly closer to the attended location (p < 0.005 in all ROIs, Fig 2d). This finding 521 

is consistent with previous reports in humans and in monkeys for both covert attention tasks and 522 

saccade tasks (Womelsdorf et al., 2006, 2008; Klein et al., 2014; Zirnsak et al., 2014). 523 

While we did observe changes in the size of individual vRFs, the mean change was not 524 

significantly different from zero (p > 0.05 in all ROIs). Size increases have been previously 525 

reported in tasks that required subjects to attend to the mapping stimulus, which moved on each 526 

trial (Sprague and Serences, 2013; Kay et al., 2015; Sheremata and Silver, 2015). Accordingly, if 527 

attention causes the center of RFs to shift toward the attended target, these combined shifts in 528 

position would average out to form a larger RF estimate. In contrast, mapping vRFs while 529 

maintaining a fixed locus of attention would nullify the size increase, consistent with the results 530 

we observed (Fig 2d). Another study which also found increases in vRF size with attention 531 

required subjects to attend the fixation point while they manipulated the perceptual load, or 532 

difficulty, of the attention task (de Haas et al., 2014). In our study, we intentionally kept task 533 

performance constant and could not evaluate effects of difficulty on the parameters of vRFs. 534 
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We also found an overall increase in vRF amplitude with attention (p < 0.001 for all 535 

tests). Since these measures were calculated relative to a fixation task, these data suggest that 536 

covert spatial attention to a peripheral location caused widespread position and gain modulations 537 

in all vRFs across the visual field.  538 

It is unclear whether these attentional modulations are limited to areas near the attended 539 

target, or whether they are uniform across the visual field. For example, vRF position shifts 540 

could result in a radial convergence of RFs towards the attended target, or a uniform shift of RFs 541 

along a vector extending from fixation to the attention or saccade target (Tolias et al., 2001; 542 

Klein et al., 2014; Zirnsak et al., 2014). Furthermore, reports of other RF properties (such as 543 

size) modulating with attention have been mixed (Connor et al., 1996, 1997; Womelsdorf et al., 544 

2008; Niebergall et al., 2011; Sprague and Serences, 2013; de Haas et al., 2014; Klein et al., 545 

2014; Kay et al., 2015; Sheremata and Silver, 2015). We therefore examined whether each of the 546 

vRF parameter changes was dependent on the vRF’s location in the visual field, relative to the 547 

attended location. First, we created radial distance bins centered on the left or right attended 548 

locations, and sorted voxels into these bins based on their preferred position during the fixation 549 

condition. After this sorting procedure, data from the right condition were flipped and collapsed 550 

with the left condition. 551 

When we plotted vRF position changes in each bin, we found that spatial attention caused 552 

vRF position shifts that converged on the attended location (two-tailed sign test on vector 553 

direction, p < .001 in all ROIs). That is, vRFs shifted closer to the attended location (Fig 2c), 554 

compared to when subjects attended fixation (mean shift across all vRFs and ROIs: -0.239°, 95% 555 

C.I. [-0.566, -0.048], Fig 2d). Note that small eye movements toward the attended location 556 

cannot explain receptive field convergence: this would cause all vRFs to shift in the same 557 
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horizontal direction, rather than radially converging on one point. These data are consistent with 558 

results from both humans (Klein et al., 2014) and macaques (Connor et al., 1996, 1997, 559 

Womelsdorf et al., 2006, 2008) that use a similar task. However, the prior study in humans 560 

focused only on vRFs with preferred locations that were foveal to the attended location, and the 561 

studies in macaques only report RF position changes in V4 and MT. By contrast, our data show 562 

that vRF centers converge on the attended location across all visual areas, including primary 563 

visual cortex, and that this pattern of modulations includes vRFs peripheral to the attended target.  564 

These plots (Fig 2a, 2d) also suggested that vRFs farther from the attended location 565 

underwent larger position changes than vRFs near the attended location. That is, the magnitude 566 

of the attentional modulation may be dependent on the distance between the vRF and the 567 

attended target. To test for this, we fit a polynomial to the vRF parameter changes as a function 568 

of distance from the attended location (Materials and Methods). We selected the most 569 

parsimonious fit ranging from a mean change in vRF parameter (0th order polynomial) to a 570 

parabolic change (2nd order polynomial) by conducting a nested F-test (Table 2). The best 571 

polynomial fits are plotted in Fig 2e.  572 

This analysis allowed us to characterize trends in vRF attentional modulations across 573 

space. Note that it also implicitly tests whether voxels contralateral to the attended target respond 574 

differently than ipsilateral voxels. This is because vRFs near the attended target will mostly 575 

originate from the contralateral side of visual cortex. Therefore, any fit lines with a significant 576 

slope imply there is a difference between contralateral and ipsilateral voxels (Sheremata and 577 

Silver, 2015). A separate test described in Materials and Methods confirmed that contralateral 578 

voxels differed significantly from ipsilateral voxels in the areas where we saw the highest fit 579 

slopes in Fig 2e (FDR-corrected p < .05 for position: V1, V2; size: V3; amplitude: V3, IPS0). 580 
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However, since the fit lines illustrate how these changes occur over space, we discuss those data 581 

here instead (Fig 2e). 582 

In early visual areas V1 through V3, vRFs near the attention target were slightly repelled 583 

from the target, whereas vRFs farther from the target were attracted towards the target. In later 584 

visual areas, vRFs were uniformly attracted towards the attention target. We saw a similar 585 

pattern of results with size modulations: early visual areas showed an increase in vRF size near 586 

the attention target, and decreased size farther away. However, in areas V3A/B and IPS0, vRF 587 

size decreased near the attention target. 588 

The pattern of vRF amplitude modulations was also segregated between the early and 589 

later visual areas. All vRFs increased in amplitude with attention, but the slope of this 590 

relationship inverted from early to later visual areas. In V1 – V3, the slope if positive, such that 591 

voxels ~2° away from the attention target increase in amplitude more than voxels right at the 592 

target position. The amplitude increase is constant in V4 and V3A/B. Finally, in IPS0, the slope 593 

inverts to become negative, so that voxels near the attention target increase in amplitude more 594 

than voxels farther away. Lastly, we found an increase in vRF baseline near the attended target in 595 

V1 – V4, but a uniform increase in baseline in IPS0. Overall, we found that the type and 596 

magnitude of the attentional modulation in different visual areas changes as a function of the 597 

spatial relationship between vRFs and the attended target. This is consistent with findings from 598 

macaque neurophysiology, which had suggested that amplitude and size changes depend on 599 

where the RF is located in relation to the attended target (Connor et al., 1996; Niebergall et al., 600 

2011).  601 

Note that these fits only describe the gain modulations with respect to the voxel’s 602 

position during the attend fixation task. However, these parameter changes likely interact with 603 
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one another, such that a voxel that shifts toward the attended location will also increase in 604 

amplitude. Hence, to determine how the joint patterns of vRF modulations change the spatial 605 

information content of a representation, in the next section we discuss two different population-606 

level measures that combine data across the population of vRFs in each ROI. 607 

 608 

Increases in spatial discriminability depend primarily on vRF position shifts 609 

Next, we assessed how different types of RF modulations influenced the precision of 610 

population-level codes for spatial position. We first computed a discriminability metric that 611 

described the ability of a population of tuning curves (here, voxel receptive fields) to support fine 612 

spatial judgments (Materials and Methods). When we computed this metric based on the 613 

measured vRF properties from each condition, spatial discriminability near the attended target 614 

increased relative to the ignored target in the opposite visual hemifield (Fig 3a). 615 

 616 

 617 
 618 
Figure 3. Spatial discriminability increases with attention and is mediated by position changes in 619 
vRFs. Error bars depict bootstrapped 95% CIs. (a) We formulated a measurement to describe the 620 
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ability of a population of voxels to make fine spatial discriminations around the attention target. 621 
We used the properties of each voxel’s spatial tuning curve to make this measurement 622 
(Materials and Methods). Spatial discriminability increased when subjects attended the target, 623 
compared to when they ignored the target in the opposite hemifield (resampled p < minimum 624 
possible p-value (1/1000) for all ROIs for all ROIs). (b) The discriminability metric was 625 
recomputed for vRFs with a variety of attentional modulations. (none = vRF parameters during 626 
the neural attend fixation condition; a = amplitude; s = size; p = position). Spatial 627 
discriminability increased significantly when we applied position changes measured during the 628 
attend L/R task to the vRFs compared to when we applied no parameter changes (solid bar). By 629 
contrast, applying size changes did not change spatial discriminability in most ROIs, although it 630 
did cause a small increase in IPS0.  631 

 632 

We then tested how different types of vRF modulations (such as size changes or position 633 

shifts) affected this spatial discriminability metric. As a baseline comparison, we first computed 634 

discriminability based on vRFs estimated during the attend fixation runs for each subject. We 635 

then added different sets of observed attentional modulations to the population before 636 

recomputing spatial discriminability. For example, we shifted all the vRF centers to match the 637 

measurements when a subject was attending to the left target and computed discriminability near 638 

the attended target. Since the response baseline of a vRF does not affect the discriminability 639 

metric, we excluded this type of attentional modulation from these analyses. 640 

Across all ROIs, we found that vRF position shifts played the biggest role in increasing 641 

fine spatial discriminability compared to changes in size or changes in amplitude (Fig 3b). 642 

Position modulations alone led to a large increase in spatial discriminability, while other 643 

combinations of parameter modulations only had an impact if we added in position shifts (i.e. a 644 

change in size and position increased discriminability, but size alone did not). The only departure 645 

from these patterns was observed in IPS0, where all attentional modulation types increased 646 

spatial discriminability, but position changes increased spatial discriminability the most. 647 

 648 

Spatial attention increases the fidelity of population-level stimulus reconstructions 649 
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By design, the spatial discriminability metric we computed is only informative about 650 

local spatial representations, and cannot assess how different patterns of vRF modulations might 651 

result in representational changes across the visual field. To address this point, we built a 652 

multivariate spatial encoding model to measure how attention changes the representations of 653 

visual information in disparate parts of space. This also allowed us to further test the effects of 654 

vRF modulations on the encoding properties of the population, including response baseline 655 

changes that were not captured by our discriminability metric. 656 

The spatial inverted encoding model (IEM) reconstructed an image of the entire visual 657 

field on each test trial. We first trained the model using the responses of each voxel on a set of 658 

training trials with known mapping stimulus positions. We then created image reconstructions on 659 

independent test trials by inverting the model and multiplying it by the voxel responses during 660 

each test trial (Fig 4a; Materials and Methods). Each image contained a representation of 661 

where the mapping stimulus should have been given the pattern of voxel activations on that 662 

particular trial. The IEM successfully reconstructed the task-irrelevant mapping stimuli using 663 

activation patterns across voxels in each visual area from V1 through IPS0 (Fig 4b; grand mean 664 

error between fit and actual position 2.40°, 95% CI [0.55°, 4.97]). 665 

 666 
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 667 
 668 
Figure 4. Multivariate inverted encoding model (IEM) used to reconstruct the mapping probe 669 
stimuli. (a) To train the IEM, we first take the BOLD data from all voxels within a visual region 670 
from a subset of training trials. Then, we solve for a set of channel weights using least squares 671 
regression. To reconstruct the stimulus, we invert this weight matrix and multiply it with BOLD 672 
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data from the same voxels during a test trial. This yields a reconstructed channel response 673 
profile, which can be transformed into a reconstruction of the mapping stimulus on every trial in 674 
each attention condition. Data shown are examples from participant AR for a subset of V1 675 
voxels. (b) Example stimulus reconstructions for participant AI, V1. These reconstructions were 676 
averaged across trials with the same position, yielding 51 reconstructions – one for each unique 677 
position in the test dataset. In the left panel, the same averaged position reconstructions are 678 
shown for each condition. The amplitude on the left is higher when attending left, and on the 679 
right when attending right. (c) Average reconstruction sizes and amplitudes for each stimulus 680 
position (collapsed across condition; left is attended). The diameter of the circle depicts the 681 
average fit FWHM of the reconstructions at that spatial position. Reconstruction amplitude was 682 
greater in the attended hemifield compared to the ignored hemifield in areas V3A/B and V4 (p 683 
<= 0.005; Table 3; Fig. 5). 684 
 685 

We used these stimulus reconstructions as a proxy for the quality of the spatial 686 

representations encoded in a population of voxels. This is line with previous studies showing that 687 

stimulus reconstructions change in amplitude or size as a function of cognitive demands. 688 

(Brouwer and Heeger, 2013; Ester et al., 2013; Sprague and Serences, 2013; Sprague et al., 2014, 689 

2015, 2016). 690 

First, we compared how reconstructed representations of each mapping stimulus changed 691 

as subjects shifted their spatial attention. We ran a repeated measures ANOVA of attention x 692 

distance bin for each reconstruction fit parameter (Materials and Methods). Here, a main effect 693 

of attention would suggest that stimulus reconstructions in the attended hemifield changed in a 694 

consistent way compared to the ignored hemifield. A main effect of distance would suggest that 695 

stimulus reconstruction changes had a consistent spatial pattern across both the attended and 696 

ignored hemifields. This would occur when a stimulus’ representation was altered with distance 697 

from the attention target. For example, the stimulus reconstruction center should vary linearly 698 

with the stimulus’ true distance from the attention target. And lastly, an interaction effect would 699 

suggest that the distance effect was dependent on whether the reconstruction belonged to the 700 

attended or ignored hemifield. In our task, the reconstructed stimuli are always irrelevant to the 701 
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task of the observer. We therefore predicted an interaction effect where spatial attention would 702 

selectively modulate stimulus reconstructions within the hemifield of the attended location, but 703 

not the opposite hemifield (Connor et al., 1996, 1997). 704 

We found that reconstruction amplitude was selectively increased near the attended 705 

location in V4, V3A/B, and IPS0 (interaction effect, bootstrapped p < 0.005; Fig 5; Table 3). 706 

This can be interpreted as a local boost in SNR. Prior reports found that attending to the mapping 707 

stimulus – as opposed to attending to a peripheral target in the current experiment – caused an 708 

increase in the amplitude of all stimulus reconstructions (Sprague and Serences, 2013). That is, 709 

representations of task-relevant stimuli increased in SNR. We find here that even representations 710 

of task-irrelevant stimuli near the attended region of space increase in amplitude, consistent with 711 

the idea of an attentional ‘spotlight’ which boosts the fidelity of spatial representations near the 712 

attention target. 713 

 714 

715 
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Figure 5. Reconstruction parameters as a function of mapping stimulus distance from the 716 
covertly attended locations and attention hemifield (attended vs. ignored). See Table 3 for 717 
complete list of p-values. 718 
 719 

Although the amplitude interaction effect was present in most visual areas we tested (Fig 720 

5), we found other effects limited to V3A/B and IPS0 that involved modulations in stimulus 721 

representations in the ignored hemifield. In these regions, we found that stimulus reconstructions 722 

in the ignored hemifield shifted away from the ignored target location (interaction, bootstrapped 723 

p < 0.005). We also observed a relative size increase near the ignored attention stimulus in IPS0 724 

(interaction, bootstrapped p < 0.005). These results suggest that stimulus reconstructions in the 725 

ignored hemifield are less spatially precise in posterior parietal cortex. Finally, there was also a 726 

main effect of attention on reconstruction size and baseline in areas V3, V4 & V3A/B 727 

(bootstrapped p’s <= 0.005). However, unlike the interaction effect in IPS0, these size and 728 

baseline changes did not vary as a function of distance between the reconstruction and the 729 

attended target location. 730 

 731 

Using a layered encoding model to explore how single voxel RFs change population-level 732 

codes 733 

 In our final analysis, we used a layered spatial encoding model to determine how changes 734 

in vRF properties affected the representations of mapping stimuli in the multivariate 735 

reconstructions discussed in the previous section (Fig 1c; Fig 4a). The goal of this analysis was 736 

to determine which vRF modulations contribute the most to the observed increase in the 737 

amplitude of stimulus representations around the attended location (Fig 5). This analysis thus 738 

complements our analysis of the spatial discriminability metric which demonstrated that vRF 739 
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position changes significantly increased the ability of the population to make fine spatial 740 

discriminations near the attention target (Fig 3c). 741 

The layered spatial encoding model we built links the response properties of single 742 

voxels to the encoding properties of a whole population of voxels in a region of visual cortex 743 

(Fig 6a). In the first layer of the model, we used the fit vRFs to generate simulated BOLD data 744 

from each voxel under different attention conditions. We then repeated the multivoxel stimulus 745 

reconstruction analysis on this simulated data to model population results for the second layer of 746 

the model. This approach allowed us to perform virtual experiments to test how changes in the 747 

first layer impacted the second layer. That is, we manipulated which vRF parameters changed 748 

with attention (first layer) and observed the resulting changes in the population-based stimulus 749 

reconstructions (second layer). For example, we could test whether an overall increase in vRF 750 

response gain with attention would be necessary or sufficient to reproduce the amplitude 751 

increases observed in the empirical stimulus reconstructions reported in Fig 5. These virtual 752 

experiments also allowed us to compare the relative impact of one type of response modulation 753 

(e.g. size changes) with other types of response modulations (e.g. position shifts). 754 
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 755 
 756 
Figure 6. A layered spatial encoding model reveals how different sets of vRF changes lead to 757 
enhancements in multivariate stimulus reconstructions. (a) The first layer of the model uses the 758 
vRF fits to generate BOLD data from every subject’s real trial sequence. Then the BOLD data 759 
from all voxels within one ROI is used to train a multivariate spatial encoding model and 760 
reconstruct the mapping stimuli. (b) Change in reconstruction amplitude in the attended vs. the 761 
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ignored hemifield. We only show reconstruction parameters with significant attentional 762 
modulations in the prior IEM analysis (Fig 5, Table 3). Stimulus reconstructions computed with 763 
a reduced number of voxels (gray bar) largely reproduce the pattern of attentional modulations 764 
observed in IEMs computed with all voxels (black bar). Furthermore, a comparison of layered 765 
IEMs using simulated data revealed that vRF position changes (blue lines) in the first layer of the 766 
model are better at reproducing the amplitude modulations in the stimulus reconstructions of the 767 
parietal ROI than models which simulate changes in vRF size or amplitude (yellow & red lines). 768 
(c) RMSE between each set of IEM fits and the full empirical dataset fits shown in Fig 5. The 769 
null baseline model (far left) is a layered IEM where the vRF parameters are the same across all 770 
attention conditions. We then added vRF attentional modulations for each parameter as shown in 771 
the matrix below the plot, where all models with position changes are on the left side. * indicate 772 
an FDR-corrected p-value <.05 for models that differed significantly from the null baseline 773 
model. Gray asterisks indicate an increase in RMSE from the null model, whereas black asterisks 774 
indicate a decrease.  775 

 776 

Since the population-level stimulus reconstructions require many voxels from each 777 

subject to produce stable and reliable results, we combined the data across several regions in 778 

each individual subject before estimating the IEM (see Materials and Methods for a longer 779 

discussion). This yielded one occipital region that combined data from areas V1, V2, V3 and V4, 780 

and one posterior parietal region that combined data from V3A/B and IPS0. We repeated the 781 

IEM analysis described in the previous section on these larger regions, and found that the pattern 782 

of attentional modulations observed earlier was consistent in the large ROIs (Figure 5). Next, to 783 

verify whether we could perform the layered IEM using a reduced number of voxels, we re-ran 784 

the IEM analysis but only used the data from voxels with well-fit vRFs. The reduced dataset with 785 

fewer voxels reproduced the main pattern of results we observed in the previous section. In 786 

particular, covert attention led to an increase in the amplitude of reconstructions near the locus of 787 

attention (Fig 6b, black vs. gray bars). 788 
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We then investigated the contribution of each vRF parameter to the population-level 

stimulus reconstructions, in a comparison akin to the spatial discriminability analysis in Fig 3. A 

model that only simulated the observed vRF amplitude or vRF size modulations did not predict 

the observed increase in reconstruction amplitude near the attention target (Fig 6b, red lines). 

However, a layered model that only simulated vRF position changes did predict a large increase 

in reconstruction amplitude near the attention target in the parietal ROI (Fig 6b, blue line on 

right). This is consistent with the effects observed in the full dataset (Fig 5, Table 3), where we 

only observed an interaction of stimulus distance and attention in the parietal ROI.  

To more formally quantify each manipulation of the layered IEM, we calculated an error 

metric to describe how well each model reproduced the attentional modulations in the empirical 

data (using the root mean square error, or RMSE). We compared each model’s RMSE to a 

baseline model, which did not simulate any vRF attentional modulations (far left in Fig 6c). This 

null baseline should have the highest error, and any good models should decrease the RMSE 

between the simulated data and the empirical data. Conversely, a model with higher RMSE is 

worse at accounting for the empirical data compared to the null model. In both the occipital and 

parietal ROIs, adding vRF position shifts to the layered model decreased RMSE, while 

abolishing position shifts generally increased the model error (Fig 6c).  These data are consistent 

with the results from the spatial discriminability analysis. Altogether, they suggest that shifts in 

vRF position have the largest impact on population-level representations, while changes in vRF 

size or gain play smaller roles in changing the fidelity of the population code. 

 

DISCUSSION (Max 1500 words; current 1500) 
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By simultaneously measuring the response properties of both single voxels and populations of 

voxels within retinotopic areas of visual cortex, we could link attentional modulations of spatial 

encoding properties across scales. Our data provide an initial account of how different types of 

RF modulations improve the quality of population codes for visual space. First, we show how 

vRF attentional modulations depended on the distance between the vRF’s preferred position and 

the static attention target (Fig 2). We then found that shifts in the preferred position of vRFs near 

the attended target increased the spatial discrimination capacity of a population of voxels (Fig 3), 

as well as the amplitude of stimulus reconstructions based on response patterns across all voxels 

in a ROI (Fig 5, 6).  

Attentional modulations of spatial RFs 

 We provide new data on how vRF responses are modulated around a covertly attended 

static target (Sprague and Serences, 2013; de Haas et al., 2014; Klein et al., 2014; Kay et al., 

2015; Sheremata and Silver, 2015). Like prior macaque studies, we find that vRF position shifts 

depend on the vRF’s distance from the attended target (Connor et al., 1996, 1997). However, we 

also found that the pattern of attentional modulations differs across the visual hierarchy. In V4, 

V3A/B, and IPS0 voxels shift towards the attended target, while in earlier areas, vRFs near the 

attended target are slightly repelled from it (Fig 2e). We also found distinct patterns of size 

modulations: vRF size increased near the attention target in early visual areas, but decreased in 

parietal areas V3A/B and IPS0. Comparison to the existing literature suggests that patterns of RF 

size modulations likely depend on the nature of the spatial attention task. In fMRI tasks where 

subjects attended to the mapping stimulus, rather than a static position, researchers report 

average vRF size increases with attention (Sprague and Serences, 2013; Kay et al., 2015; 

Sheremata and Silver, 2015). RFs in macaque area MT shrink when measured with a mapping 
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probe smaller than the stimulus, but increase in size when macaques track the mapping probes as 

they move across the screen (Womelsdorf et al., 2006, 2008; Anton-Erxleben et al., 2009; 

Niebergall et al., 2011). This may be because the RFs shift position to track the probe, causing an 

apparent increase in overall size. Lastly, manipulating perceptual load at fixation also increases 

vRF size in human visual cortex (de Haas et al., 2014). Taken together, these observations 

demonstrate that the pattern of RF response modulations depends both on task demands and on 

the spatial relationship between the attended target and the encoding unit’s RF. 

 We note that while the similarity between attentional modulations of single cell RFs and 

single voxel RFs is compelling, their properties are derived from different input signals, and are 

not interchangeable. fMRI voxels in retinotopically organized regions of visual cortex sample 

from a broad array of neurons with roughly the same spatial tuning preferences, so a position 

shift in a vRF could either be driven by a change in the preferred position of single neurons, or 

by a change in the gain profile across neurons tuned to slightly different locations in the visual 

field. Similarly, single neuron RFs receive input from smaller RFs in earlier visual areas, and a 

position shift could arise from either mechanism described above (McAdams and Maunsell, 

1999; Baruch and Yeshurun, 2014; Dhruv and Carandini, 2014). Because of this inherent 

ambiguity when measuring the encoding properties of a locally tuned unit, it is useful to compare 

them with attentional modulations of population-level representations. 

Attention boosts the spatial encoding fidelity of a population 

We first measured the overall capacity of a population of voxels to make fine spatial 

discriminations in a region of space. We found that attention increased spatial discriminability 

near the attended target, relative to the ignored target. We then performed virtual experiments on 

the vRFs contributing to the population to determine how they affected the spatial 
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discriminability metric. We report that vRF position shifts increased spatial discriminability 

significantly more than vRF size changes or gain changes (Fig 3).  

Since the spatial discriminability metric (Fig 3) is only informative about a local portion 

of space, we performed a second population analysis to reconstruct an image of the entire visual 

field on each trial using a multivariate IEM. Attention increased the amplitude of stimulus 

reconstructions near the attention target, indicating an increase in representational fidelity that 

accompanied the increase in spatial discriminability. In addition, a layered spatial encoding 

model revealed that shifts in vRF position could account for these attentional enhancements in 

the population-level stimulus reconstructions, but changes in vRF size could not. Altogether, our 

data demonstrate that shifts in position of many RFs may be a dominant way that single encoding 

units alter the properties of a population spatial code. 

Although population-level information increased the most with changes in vRF position, 

we reiterate that these position changes could arise from spatially-specific patterns of gain 

modulations in input RFs. If this is true, it is possible that gain modulations with attention may 

exert their largest effects on the downstream population, where these patterns of gain changes 

become apparent shifts in vRF position. However, this remains an open question for future work 

to address.   

Our findings also underscore the fact that changes in the spatial encoding properties of 

single units do not directly translate into analogous changes in the encoding properties of a 

population of those same units. For example, an overall change in vRF size does not necessarily 

change the size of the population-level representation (Sprague and Serences, 2013; Kay et al., 

2015). Although we found that single units shifted their preferred position towards the attended 

target, population-level representations did not generally shift with attention. When the 
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population code did shift its encoded position, we found that it was typically representations of 

the ignored stimulus that shifted farther from the true stimulus location (Fig 5), consistent with 

more error-prone representations of irrelevant stimuli. These types of differences further 

emphasize the need to understand the effects of cognitive state on population codes for the entire 

visual scene, rather than focusing solely on single units. 

Lastly, we note that our population-level data do not address the open question of 

whether RF attentional modulations have perceptual consequences, since it is not clear how the 

spatial encoding models measured here are linked to visual perception and behavior 

(Koenderink, 1990; Rose, 1999; Anton-Erxleben and Carrasco, 2013; Klein et al., 2016). Further 

investigation into these topics should include task manipulations to investigate how attentional 

modulations of both vRFs and population-level metrics track psychophysical performance. 

 

Tuning shifts and labeled lines 

Historically, shifts in the tuning of a RF have not been considered one of the main 

mechanisms by which attention modulates population-level information, although recent reports 

suggest that this view is being reconsidered (David et al., 2008; Anton-Erxleben and Carrasco, 

2013). This may be due to ‘labeled-line’ theories of visual information processing, which posit 

that a single neuron has a consistent feature label which downstream neurons rely on to perform 

computations and transmit stable information  (Barlow, 1972; Doetsch, 2000; David et al., 2008). 

When a spatial RF shifts position as a function of cognitive state (e.g., attention), that single 

neuron’s feature label is no longer consistent. Without an accompanying shift in the downstream 

neurons receiving the changing feature label, such a change could disrupt the stability of the 

population code. However, our results suggest that population-level spatial representations 
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remain relatively stable – and are even enhanced – when the tuning of the underlying vRFs shift 

in position, size, and gain. 

An alternate proposal to a labeled line code relies on the joint information encoded across 

a population of cells (Erickson, 1982; Doetsch, 2000). This may occur at several scales–for 

example, V2 could use the pattern of information from V1 inputs to form a visual representation. 

This idea is more akin to an encoder-decoder model in which the downstream decoder does not 

need information about the altered representations in each of the encoder units, but instead relies 

on a population readout rule (Seriès et al., 2009). The population readout rule could incorporate 

knowledge about the ‘labels’ of the encoder units, but could perform equally well by relying on 

relative changes in the pattern across units to resolve the information encoded in the population.  

However, further exploration of population readout rules in visual cortex are needed to test this 

hypothesis.  

  

Conclusions 

The spatial encoding properties of the visual system can be measured and modeled at 

many different spatial scales. Here, we report how these properties change with attention for 

single voxels and for a group of voxels in each ROI. Notably, single vRF modulations do not 

propagate directly to analogous changes in large-scale codes. Instead, we observed that 

attentional modulations of vRF position play a dominant role in modulating the amplitude of 

population-level representations. Future research is needed to resolve how shifts in RF labels are 

generated, how information is read out from a population, and how these multi-scale attentional 

modulations affect visual perception and behavior. 
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TABLES  

Table 1. vRF selection statistics, pooled across participants (N = 7) 
 

Region 
of 

interest 

Total no. 
of 

localized 
voxels 

No. of 
voxels after 

GLM 
thresholding 

No. of 
voxels after 

regular-
izability 
threshold 

No. of 
voxels after 

cross-
validation 
threshold 

No. of 
voxels after 
removing 
difference 

score outliers 

Percent that 
survive all 
thresholds 

RMSE fit 
error for 
surviving 

voxels 

V1 3,723 3,540 2,438 989 931 25.01% 0.1105 

V2 4,154 3,970 3,115 1,405 1,339 32.23% 0.1087 

V3 3,698 3,519 2,839 1,520 1,435 38.81% 0.0994 

V4 1,702 1,492 1,118 361 336 19.74% 0.0783 

V3A/B 1,988 1,922 1,440 443 416 20.93% 0.0893 

IPS0 1,567 1,492 800 114 110 7.02% 0.0882 

V1 – V4 13,277 12,521 9,510 4,275 4,041 30.44% 0.1032 

V3A/B 
& IPS0 

3,555 3,414 2,240 557 526 14.80% 0.0894 

TOTAL 16,832 15,935 11,750 4,832 4,567 27.13% 0.1016 
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Table 2. Mean coefficients for polynomial fits of how vRF parameter change is modulated by 
distance from the attended location (v_dist_attn) 

 Position Size Amplitude Baseline 

V1 -.069, .095 -.064 -.019, .137, .135 .011, -.073, .010 

V2 .015, -.133, .082 -.064, .160 -.016, .125, .046 .011, -.066, .061 

V3 .017, -.135, .033 -.073, .163 -.025, .170, .032 .009, -.053, .054 

V4 -.162 -.181 .308 .011, -.078, .085 

V3A/B -.318 -.091, .461, -.520 .210 <.001 

IPS0 -.425 -.445 -.076, .495 .073 
 

a Number of reported coefficients in the table correspond to the polynomial order which was 
yielded the most parsimonious fit to the data (e.g., 1 coefficient for n = 0, 2 coefficients for n = 1, 
etc.).  
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Table 3. 2-way ANOVA results for reconstruction parameter changes (s_dist_attn x attention 
hemifield). 
 

 V1 V2 V3 V4 V3A/B IPS0 V1 – V4 
V3A/B & 

IPS0 

Omnibus test         

Position <.001 <.001 <.001 <.001 <.001 .001 <.001 <.001 

Size .216 .565 .019 .428 .006 .121 .001 .110 

Amplitude .174 .579 .024 <.001 <.001 .008 .016 <.001 

Baseline .088 .734 .934 <.001 .001 .937 .015 .241 

Main effect of distance         

Position <.001 <.001 <.001 <.001 <.001 .192 <.001 <.001 

Size     .484  .019  

Amplitude   .140 .002 .005 .478 .100 .002 

Baseline    .829 .916  .210  

Main effect of attention         

Position .371 .916 .346 .067 .005 .254 .401 .343 

Size     .003  .005  

Amplitude   .069 <.001 .005 .158 .049 .004 

Baseline    .001 <.001  .004  

Interaction of distance & 
attention 

      
  

Position .052 .588 .541 .657 <.001 <.001 .121 .026 

Size     .077  .271  

Amplitude   .064 <.001 <.001 .004 .224 <.001 

Baseline    .019 .011  .370  
 

a bold numbers indicate that the p-value passed FDR-correction (q = .05, corrected across ROIs 
and comparisons within each parameter). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/086892doi: bioRxiv preprint 

https://doi.org/10.1101/086892


54 
 

Table 4. RMSE (and 95% CIs) between reconstructions from the reduced dataset (only using voxels with RFs) or from different 
versions of the layered IEM using the same voxels. 
 

 Reduced 
data p/s/a/b p/a/b p/s/b s/a/b p/a s/a p/s p a s none 

Combined 
occipital 
V1 – V4 

0.133 
[0.109, 
0.170] 

0.146 
[0.146, 
0.146] 

0.148 
[0.147, 
0.148] 

0.142 
[0.141,0.

143] 

0.194 
[0.194, 
0.194] 

0.148 
[0.148, 
0.148] 

0.194 
[0.194, 
0.194] 

0.141 
[0.141, 
0.141] 

0.143 
[0.143, 
0.143] 

0.194 
[0.194, 
0.194] 

0.194 
[0.194, 
0.194] 

0.193 
[0.193, 
0.193] 

Combined 
parietal 

V3A/B & 
IPS0 

0.834 
[0.744, 
0.959] 

0.415 
[0.410, 
0.419] 

0.426 
[0.422, 
0.431] 

0.411 
[0.407, 
0.416] 

0.443 
[0.439, 
0.447] 

0.425 
[0.421, 
0.430] 

0.451 
[0.447, 
0.456] 

0.410 
[0.405, 
0.416] 

0.410 
[0.406, 
0.414] 

0.441 
[0.437, 
0.445] 

0.447 
[0.442, 
0.452] 

0.834 
[0.744, 
0.959] 

 

a To generate CIs, the resampling of the real data is performed at the level of the fits to the reconstructions, whereas resampling 
layered IEM RMSEs is described in Materials and Methods 
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SUPPLEMENTAL METHODS 

Raw data and analysis code 

 All the data and analysis code needed to reproduce the analyses in this text are available 

in an Open Science Framework repository at https://osf.io/s9vqv/.  

Population analysis (3): Layered spatial encoding model in smaller retinotopic ROIs 

 In the main text, we merge several retinotopically-defined ROIs to form a large occipital 

and parietal region before estimating the layered encoding model. When we attempted to 

estimate a layered IEM for the smaller ROIs, we were forced to exclude several participants 

because they did not have enough voxels in that region to calculate a stable population-level 

estimate of the spatial information in the mapped region. That is, the weight matrix estimated in 

the training portion of the IEM was poorly conditioned, or not full rank (Eq. 4). This resulted in 

the exclusion of 16 out of 42 possible participant-ROI pairs: V1 (AL); V3 (AL); V3A/B (AL, 

AP, AR, AU); V4 (AA, AL, AR, AU); IPS0 (AA, AL, AP, AR, AT, AU). 

 Note that the chosen level of noise did not qualitatively impact the results. For example, 

rather than just adding Gaussian noise, we also created a noise model that followed the 

covariance structure between all voxels in each ROI. To estimate the covariance matrix, we 

computed the residuals between the true trial-wise beta weights and the predicted trial-wise beta 

weights for each voxel based on its vRF model. We then calculated the pairwise covariance 

between the residuals for each set of voxels. Last, we added noise that followed this covariance 

structure to each voxel’s channel weights and simulated BOLD response. This noise was scaled 

to be the same as the noise level that most accurately captured the real reconstruction data (i.e., 

mean noise is 0.5 standard units). The pattern of results between each of the model 

manipulations remained the same, so those results are not discussed here.  
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SUPPLEMENTAL TABLES AND FIGURES 

 
 
Figure S1. Preferred position changes of vRFs from each mapped visual area for both attention conditions. Like Figure 2c, these plots show 
participant averages. The majority of vRFs shift toward the attended location.
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Figure S2. Related to Table 2. vRF attentional modulations as a function of distance from the attend location. All vRFs across participants are 
plotted here, overlaid with the best bootstrapped polynomial fit for every VOI-parameter pair.
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Figure S3. A plot of the visual field coverage of all ROIs and all participants for vRFs mapped during the
attend fixation runs. Top map shows the combined coverage across all participants in area V1. All images
plotted on the same colorscale and only account for fit centers and sizes (e.g., no scaling by fit amplitude
baseline). Empty cells indicate that no voxels from that participant-ROI pair survived the voxel threshold
procedure.  
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Figure S4. vRF attentional modulations by visual hemifield and voxel hemisphere. An asterisk indicates a main 
effect of attended visual hemifield (see Table S3 for p-values). Areas with a significant difference in 
contralateral vs. ipsilateral difference scores are the same regions which have large slopes in Fig S2. This 
simply reflects the fact that voxels near the attended location are always contralateral (e.g., voxels in the RH 
will code for locations near the attention target in the left, or contralateral, hemifield). There was no main effect 
of voxel hemisphere or an interaction of the two factors. 
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Figure S5. Stimulus reconstructions for each ROI, averaged across participants, and like positions across 
condition. Colorscale is constant across all 48 stimulus positions within an ROI. (Reconstructions for the attend 
right condition were flipped and averaged with the attend left condition.) The left hemifield is attended and the 
right hemifield is ignored. Stimuli that fall along the horizontal midline are excluded here. 
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Figure S6. The level of noise added to the generated voxel responses was systematically manipulated (se
Supplemental Methods). We then tested whether the noise parameters affected which model best explai
attentional modulations observed in the stimulus reconstructions. Shown on the x axis is which of the 4 v
parameters was allowed to vary between attention conditions. The pattern of results was the same across 
which used independent noise in the BOLD data simulation or noise which scaled with the voxelwise 
covariance matrix. 
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Table S1. Mean parameters (and 95% CIs) fit to vRF size data as a function of visual eccentricity 
 
 Baseline Slope 
V1 .49 [.46, .53] 1.34 [1.30, 1.39] 
V2 .41 [.36, .47] 1.60 [1.53, 1.69] 
V3 .43 [.39, .47] 1.86 [1.81, 1.92] 
V4 .76 [.67, .85] 1.84 [1.72, 1.95] 
V3A/B .55 [.46, .63] 2.20 [2.10, 2.29] 
IPS0 .92 [.69, 1.18] 2.22 [1.78, 2.58] 
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Table S2. Overall changes in vRF parameters with attention (attend left or right – attend fixation) 
 

 
V1 V2 V3 V4 V3A/B IPS0 

Position 
-.108 [-.228, 

-.041] 
-.147 [-.363, 

-.017] 
-.182 [-.349, 

-.062] 
-.193 [-.422, 

-.070] 
-.303 [-.511, 

-.101] 
-.497 [-.846, 

-.289] 

Size 
-.052 [-.123, 

.089] 
-.008 [-.109, 

.105] 
-.024 [-.152, 

.103] 
-.168 [-.262, 

.023] 
-.037 [-.185, 

.233]  
-0.403 [-

.534, -.049] 

Amplitude 
.315 [.097, 

.450] 
.234 [.077, 

.361] 
.262 [.131, 

.382] 
.281 [.129, 

.399] 
.218 [.153, 

.304] 
.313 [.239, 

.397] 

Baseline 
-.008 [-.070, 

.029] 
-.019 [-.060, 

.016] 
-.013 [-.043, 

.016] 
-.019 [-.040, 

.007] 
-.001 [-.040, 

.048] 
.058 [-.012, 

.096] 

  
a Bracketed numbers represent bootstrapped 95% CIs. 
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Table S3. Exact p-values for the permuted tests of vRF modulations by voxel hemisphere and attention 
hemifield, associated with Fig S4. 
 

 V1 V2 V3 V4 V3A/B IPS0 

Main effect of attention hemifield       

Position .007 .009 .397 .491 .548 .824 

Size .884 .081 .002 .145 .505 .056 

Amplitude .055 .093 <.001 .274 .330 .005 

Baseline .727 .642 .800 .118 .397 .014 

Main effect of voxel hemisphere       

Position .435 .702 .572 .756 .770 .648 

Size .586 .023 .320 .980 .640 .569 

Amplitude .513 .534 .672 .212 .263 .187 

Baseline .715 .892 .385 .129 .813 .187 

Interaction of hemisphere & hemifield       

Position .602 .752 .472 .186 .770 .684 

Size .103 .726 .476 .654 .874 .571 

Amplitude .710 .965 .887 .367 .699 .275 

Baseline .125 .073 .049 .685 .056 .618 

 
a bold numbers indicate that the p-value passed FDR-correction (q = .05, corrected across ROIs and 
comparisons within each parameter). 
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Table S4. Model RMSE (and 95% CIs) between reconstructions from the reduced dataset (only using voxels with RFs) or from different versions of 
the layered IEM using the same voxels in the smaller retinotopic regions (compare to Figure S6). 

 
Real 
data p/s/a/b p/a/b p/s/b s/a/b p/a s/a p/s p a s none 

V1 
0.384 
[0.333, 
0.441] 

0.181 
[0.179, 
0.183] 

0.178 
[0.176, 
0.180] 

0.178 
[0.176, 
0.180] 

0.209 
[0.207, 
0.211] 

0.179 
[0.177, 
0.180] 

0.210 
[0.209, 
0.211] 

0.173 
[0.171, 
0.175] 

0.173 
[0.171, 
0.175] 

0.209 
[0.208, 
0.210] 

0.209 
[0.207, 
0.211] 

0.205 
[0.204, 
0.206] 

V2 
0.224 
[0.183, 
0.264] 

0.178 
[0.176, 
0.180] 

0.180 
[0.178, 
0.182] 

0.176 
[0.175, 
0.177] 

0.200 
[0.199, 
0.201] 

0.179 
[0.178, 
0.180] 

0.200 
[0.199, 
0.201] 

0.178 
[0.177, 
0.179] 

0.176 
[0.174, 
0.177] 

0.202 
[0.201, 
0.203] 

0.198 
[0.197, 
0.199] 

0.195 
[0.194, 
0.196] 

V3 
0.258 
[0.219, 
0.294] 

0.206 
[0.205, 
0.207] 

0.206 
[0.205, 
0.207] 

0.209 
[0.208, 
0.210] 

0.247 
[0.246, 
0.248] 

0.204 
[0.203, 
0.205] 

0.244 
[0.243, 
0.245] 

0.205 
[0.204, 
0.206] 

0.205 
[0.204, 
0.206] 

0.240 
[0.240, 
0.240] 

0.250 
[0.249, 
0.251] 

0.244 
[0.244, 
0.244] 

V4 
0.774 
[0.637, 
0.911] 

0.442 
[0.436, 
0.448] 

0.440 
[0.435, 
0.445] 

0.434 
[0.428, 
0.439] 

0.433 
[0.429, 
0.437] 

0.432 
[0.429, 
0.436] 

0.426 
[0.422, 
0.430] 

0.429 
[0.425, 
0.434] 

0.423 
[0.419, 
0.427] 

0.420 
[0.417, 
0.423] 

0.426 
[0.422, 
0.430] 

0.416 
[0.413, 
0.419] 

V3A/B 
0.586 
[0.499, 
0.681] 

0.378 
[0.375, 
0.381] 

0.398 
[0.394, 
0.402] 

0.368 
[0.364, 
0.373] 

0.388 
[0.385, 
0.391] 

0.392 
[0.388, 
0.396] 

0.392 
[0.389, 
0.395] 

0.366 
[0.363, 
0.369] 

0.381 
[0.377, 
0.384] 

0.374 
[0.372, 
0.376] 

0.389 
[0.386, 
0.392] 

0.369 
[0.367, 
0.371] 

IPS0 
1.166 
[0.915, 
1.423] 

0.473 
[0.464, 
0.482] 

0.475 
[0.462, 
0.488] 

0.474 
[0.465, 
0.483] 

0.503 
[0.497, 
0.509] 

0.493 
[0.481, 
0.506] 

0.499 
[0.493, 
0.504] 

0.482 
[0.473, 
0.493] 

0.471 
[0.464, 
0.479] 

0.487 
[0.481, 
0.494] 

0.475 
[0.470, 
0.480] 

0.457 
[0.452, 
0.462] 

 

a To generate CIs, the resampling of the real data is performed at the level of the fits to the reconstructions, whereas resampling layered IEM RMSEs 
is described in Materials and Methods 
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