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ABSTRACT 25 

Selective visual attention enables organisms to enhance the representation of behaviorally 26 

relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know 27 

little about how the attentional modulations of single RFs contribute to the encoding of an entire 28 

visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous 29 

portion of visual space, (2) constructing a population-level measurement of spatial 30 

representations based on these RFs, and (3) linking how different types of RF attentional 31 

modulations change the population-level representation. To accomplish these aims, we used 32 

fMRI to characterize the responses of thousands of voxels in retinotopically organized human 33 

cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial 34 

relationship between the RF center and the visual location of the attended target. Second, we 35 

used two analyses to assess the spatial encoding quality of a population of voxels. We found that 36 

attention increased fine spatial discriminability and representational fidelity near the attended 37 

target. Third, we linked these findings by manipulating the observed vRF attentional modulations 38 

and recomputing our population measures. Surprisingly, we discovered that attentional 39 

enhancements of population-level representations largely depend on position shifts of vRFs, 40 

rather than changes in size or gain. Our data suggest that position shifts of single RFs are a 41 

principal mechanism by which attention enhances population-level representations in visual 42 

cortex. 43 

 44 

INTRODUCTION 45 

Spatial receptive fields (RFs) are the basis of information processing throughout the visual 46 

system. They are directly modified by selective visual attention to improve the fidelity of sensory 47 
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representations, which likely enables more precise and accurate behavioral choices (Desimone 48 

and Duncan, 1995; Anton-Erxleben and Carrasco, 2013). Prior macaque studies have found that 49 

covert spatial attention changes the position, size, and amplitude of responses from single-cell 50 

RFs in early cortical areas such as V1, V4, and MT by (Moran and Desimone, 1985; Connor et 51 

al., 1996, 1997, Womelsdorf et al., 2006, 2008; Roberts et al., 2007; David et al., 2008). Recent 52 

neuroimaging studies have also shown that single voxel RFs (vRFs) undergo similar response 53 

changes with attention, shifting towards the attended target or changing in size (Klein et al., 54 

2014; Kay et al., 2015; Sheremata and Silver, 2015). Most accounts suggest that these RF 55 

changes improve the spatial representations of the attended target, either by boosting the signal-56 

to-noise ratio (SNR) by increasing response amplitude, or by increasing the spatial resolution of 57 

the target representation by decreasing the size or tuning width (Desimone and Duncan, 1995; 58 

Anton-Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). These mechanisms are akin to 59 

turning up the volume knob (gain increase) or to using smaller pixels to encode a digital image 60 

(size decrease). 61 

Despite all of these documented modulations, it is not yet clear how these different types 62 

of RF modulations are combined to support more robust population codes. Recent studies have 63 

only begun to explore how interactions between neurons may affect the coding properties of the 64 

population (Anton-Erxleben and Carrasco, 2013; Cohen and Maunsell, 2014). Yet analyzing 65 

these data at a population level is crucial for understanding how spatial attention changes the 66 

representation of an entire visual scene. Prior fMRI studies that measured many vRFs across 67 

space do not report the full pattern of response modulations across space, such as changes in the 68 

amplitude or size of vRFs with respect to the attended target (Sprague and Serences, 2013; Klein 69 

et al., 2014; Kay et al., 2015). The first aim of this study was to evaluate how all of these 70 
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properties jointly change across space with spatial attention, in retinotopic regions from V1 71 

through posterior IPS. 72 

The second aim of the study was to evaluate how different types of RF modulations 73 

contribute to population-level enhancements of an attended region of space. Single RFs in early 74 

visual areas are fundamentally local encoding models that are relatively uninformative about 75 

spatial regions outside their immediate borders. To study their relationship to a population-level 76 

representation of space, we also need a larger-scale spatial encoding model which can 77 

incorporate information from many underlying, spatially selective RFs to form a representation 78 

of the entire visual scene.  Here, we used two different population-level metrics of spatial 79 

encoding fidelity to investigate these questions. Specifically, we tested how changes in vRF 80 

amplitude, size, or position affect two measurements of population-level representations: (1) the 81 

spatial discriminability of population codes and (2) stimulus reconstructions based on a 82 

multivariate inverted encoding model. 83 

We found that vRF position shifts increase both the spatial discriminability of the 84 

attended region as well as the fidelity of stimulus reconstructions near the attended target. 85 

Surprisingly, shifts in vRF position captured more of the population-level enhancements with 86 

attention than changes in vRF size or gain. This poses problems for traditional ‘labeled-line’ 87 

models of information processing, which posit that each RF in the visual pathway relies on 88 

consistently ‘labeled’ inputs from RFs in an earlier visual area. Our findings suggest that these 89 

shifts in the ‘labels’ of RFs play an important role in the attentional enhancement of visual 90 

information, and that labeled-line models may need to be reformulated to accommodate these 91 

data. 92 

 93 
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MATERIALS & METHODS 94 

Task design and participants 95 

We collected data from 9 human participants (4 female), 6 of whom had previously completed a 96 

set of retinotopic mapping scans in the lab (participants AA, AB, AC, AI, and AL in Sprague & 97 

Serences, 2013; participants AA, AC, and AI in (Sprague et al., 2014); all participants in (Ester 98 

et al., 2015). All participants provided written informed consent and were compensated for their 99 

time ($20/hour) as approved by the local UC San Diego Institutional Review Board. Participants 100 

practiced both the attention task and the localizer task before entering the scanner. A minimum 101 

of four hours of scanning was required to complete the entire analysis, so one participant was 102 

excluded due to insufficient data (they only completed 2 hours). Another participant was 103 

excluded for inconsistent behavioral performance, with average task accuracy at chance (48.6%). 104 

This yielded a total of 7 participants who completed the entire experiment (3 2-hour scan 105 

sessions per participant). 106 

Participants centrally fixated a gray rectangular screen (120x90 cm) viewed via a head-107 

coil mounted mirror (~3.85 m viewing distance). They attended one of three fixed locations on 108 

the screen: the fixation point or a target to the left or right. During each 2000 ms trial, subjects 109 

reported a change in the attention target. When subjects attended fixation, they reported whether 110 

a brief contrast change (100 – 400 ms, starting 300 – 1000 ms into the trial) was dimmer or 111 

brighter than the baseline contrast. The peripheral attention targets were two pentagons (0.17° 112 

radius; 50% contrast) centered 2.1º to the left and right of fixation (Fig 1A). When subjects 113 

attended a peripheral target, they reported whether it rotated clockwise or counter-clockwise 114 

(rotation duration 100 - 300 ms, starting 300 - 1600 ms into the trial). Inter trial intervals (ITIs) 115 

randomly varied between 1000 to 3000 ms in 500 ms increments (mean ITI: 2000 ms). The 116 
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magnitude of the contrast change or the rotation was adjusted on each run to keep task 117 

performance for each participant near 75% (mean = 75.90%, bootstrapped 95% C.I. [72.46%, 118 

79.20%]), with no significant difference between conditions as evaluated with a one-way 119 

repeated measures ANOVA randomization test (F(1,11) = 0.220, randomized p = 0.802). For 120 

four participants, we collected 6 runs on the attend periphery tasks without a change in the 121 

luminance of the fixation stimulus. Performance on the attend periphery tasks was stable across 122 

runs with and without the luminance change (repeated-measures ANOVA with run type x 123 

random participants factor; p = 0.439, null F distribution using randomized labels for 10,000 124 

iterations). Therefore, these data were collapsed across scan sessions with and without changes 125 

in fixation luminance.  126 

On 51 of the 61 trials in each run, a full-contrast 6 Hz flickering checkerboard (0.68° 127 

radius; 1.67 cycles/deg) appeared for 2000 ms at one of 51 different locations across the screen 128 

to map the spatial sensitivity of visually responsive voxels. When one of these checkerboards 129 

overlapped with any of the static attention targets, they were partially masked with a small 130 

circular aperture the same color as the screen background (0.16°/0.25° radius aperture for 131 

fixation/pentagon, respectively) that allowed the stimulus to remain seen. Participants were 132 

instructed to ignore the task-irrelevant flickering checkerboards throughout the experiment. 133 

During the 10 null trials, the participant continued to perform the attention task but no 134 

checkerboard was presented. Null trials and mapping stimulus trials were presented in a 135 

psuedorandom interleaved order. 136 

The location of the checkerboard mapping stimulus on each trial was determined by 137 

generating an evenly spaced triangular grid (0.84° between grid points) and centering the 138 

checkerboard on one of these grid points. The location of the checkerboard mapping stimulus 139 
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was then jittered a random amount from these grid points (+/- 0.42°/0.37° horizontal/vertical). 140 

When subjects attended the peripheral target, half of the runs were presented at the discrete grid 141 

positions so that we could achieve more stable stimulus reconstructions (see Population analysis 142 

(2)).  143 

Magnetic resonance imaging 144 

We obtained all structural and functional MR images from participants using a GE 3T MR750 145 

scanner at University of California, San Diego. We collected all functional images (19.2 cm2 146 

FOV, 64 x 64 acquisition matrix, 35 interleaved slices, 3 mm3 voxels with 0 mm slice gap, 128 147 

volumes per scan run) using a gradient echo planar pulse sequence (2000 ms TR, 30 ms TE, 90° 148 

flip angle) and a 32-channel head coil (Nova Medical, Wilmington, MA). Five dummy scans 149 

preceded each functional run. A high-resolution structural image was acquired at the end of each 150 

session using a FSPGR T1-weighted pulse sequence (25.6 cm2 FOV, 256 x 192 acquisition 151 

matrix, 8.136/3.172 ms TR/TE, 172 slices, 9° flip angle, 1 mm3 voxels, 192 volumes). All 152 

functional scans were co-registered to the anatomical images acquired during the same session, 153 

and this anatomical was in turn co-registered to the anatomical acquired during the retinotopy 154 

scan.  155 

EPI images were unwarped with a custom script from UCSD’s Center for Functional 156 

Magnetic Resonance Imaging using FSL and AFNI. All subsequent preprocessing was 157 

performed in BrainVoyager 2.6.1, including slice-time correction, affine motion correction, and 158 

temporal high-pass filtering to remove slow signal drifts over the course of each session. Data 159 

were then transformed into Talairach space and resampled to 3x3x3 mm voxel size. Finally, the 160 

BOLD signal in each voxel was transformed into Z-scores on a scan-by-scan basis. All 161 
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subsequent analyses were performed in MATLAB using custom scripts (to be available online 162 

upon acceptance). 163 

We constrained our analyses to visually responsive voxels in occipital and parietal cortex 164 

using a separate localizer task (3-5 runs per participant). On 14 trials, participants fixated 165 

centrally and viewed a full-field flickering checkerboard (10 Hz, 11.0/8.3° width/height) for 166 

8000 ms. Participants detected whether a small area (2D Gaussian, σ = 0.2°) within the 167 

checkerboard dimmed in contrast. Contrast dimming occurred between 500 to 4000 ms after the 168 

start of the trial, and lasted between 2000 to 3000 ms (all uniformly sampled in 500 ms steps). 169 

This contrast change occurred infrequently (randomly on 5 out of 14 trials) at a random location 170 

within the checkerboard. The average contrast change was varied between runs to maintain 171 

consistent performance at ~75% accuracy (mean performance 78.0%). On 8 trials participants 172 

simply fixated throughout the trial without a checkerboard being presented. For all subsequent 173 

analyses, only voxels in the retinotopically defined areas V1, V2, V3, V4, V3A/B and IPS0 with 174 

a significantly positive BOLD response to the localizer task (at FDR q = 0.05) were included 175 

(Benjamini and Yekutieli, 2001). 176 

For all subsequent analyses, we used trial-wise BOLD z-scores. We estimated these by 177 

creating an event predictor for each checkerboard mapping stimulus and convolving it with a 178 

canonical two-gamma HRF (peak at 5 s, undershoot peak at 15 s, response undershoot ratio 6, 179 

response dispersion 1, undershoot dispersion 1). We then solved a general linear model (GLM) 180 

to find the response to each predictor. To standardize our data across runs, we z-scored the 181 

BOLD responses within each run and concatenated the z-scores across runs. 182 

Statistical procedures 183 
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All reported confidence intervals (CIs) are computed by resampling the data with replacement 184 

(i.e. bootstrapping). The number of iterations for each bootstrapping procedure varied 185 

(depending on available computing power and time for that procedure) and are therefore reported 186 

with each result. For tests comparing a bootstrapped distribution against zero, p-values were 187 

computed by conducting two one-tailed tests against 0 (e.g., mean(param_change < 0) & 188 

mean(param_change > 0)) and doubling the smaller p-value. All repeated tests were FDR 189 

corrected (q = 0.05). 190 

 191 

Voxel receptive field (vRF) estimation, fitting, and parameter analysis 192 

We first estimated vRFs for each attention condition to investigate (1) how vRF 193 

parameters changed when participants attended to different locations and (2) the spatial pattern 194 

of vRF changes across visual space. We note here that prior reports have referred to similar 195 

voxel RF models as population receptive fields, or pRFs, to emphasize the fact that each voxel 196 

contains a population of spatially tuned neurons (Dumoulin and Wandell, 2008; Wandell and 197 

Winawer, 2015). However, since we are comparing modulations at different scales in the present 198 

study (i.e. modulations in single voxels and in patterns of responses across many voxels), we will 199 

refer to these single voxel measurements as voxel receptive fields (vRFs), and will reserve the 200 

term ‘population’ exclusively for multivariate measures involving several voxels, allowing our 201 

terminology to align with theories of population coding. 202 

We estimated voxel receptive fields (vRFs) using a modified version of a previously 203 

described technique (Sprague and Serences, 2013). This method estimates a single voxel’s 204 

spatial sensitivity by modeling its BOLD responses as a linear combination of discrete, smooth 205 

spatial filters tiled evenly across the mapped portion of the visual field. These spatial filters (or 206 
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spatial channels) form our modeled basis set. We then regressed the BOLD z-scores (v voxels x 207 

n trials) onto a design matrix with predicted channel responses for each trial (𝐶𝐶, k channels x n 208 

trials) by solving Equation 1: 209 

(1) 𝐵𝐵 = 𝑊𝑊𝐶𝐶 210 

for the matrix 𝑊𝑊 (v voxels x k channels). 211 

Each of the k channels in the basis set was defined as a two-dimensional cosine that was 212 

fixed to reach 0 at a set distance from the filter center:  213 

(2) 𝑓𝑓(𝑟𝑟) = � 0.5 �cos �𝑟𝑟𝑟𝑟
𝑠𝑠
�+ 0.5� �

7
 𝑓𝑓𝑓𝑓𝑟𝑟 𝑟𝑟 < 𝑠𝑠,  214 

where r is the distance from the filter center and s is the size constant. Setting a zero baseline in 215 

this function ensured that we could estimate a stable baseline for each voxel by restricting the 216 

response of the channel to a known subregion of the visual display. Since the estimated vRF size 217 

depends on the size of the filters, we made the filters fairly small (1.08° FWHM) and dense (91 218 

filters arranged in a 13 horizontal / 7 vertical grid, each spaced 0.83° apart). We then discretized 219 

the filters by sampling them in a high-resolution 2D grid of 135 by 101 pixels spanning 10° by 220 

5°. The discretized filters (k filters by p pixels) were multiplied with a mask of the checkerboard 221 

stimulus on every trial (p pixels by n trials) so that the design matrix C contained predictions of 222 

the spatial channel responses on every trial of the mapping task. 223 

 In order to fit our estimated vRFs with a unimodal function, we used ridge regression to 224 

solve Equation 1. This is a common regularization method which sparsifies the regression 225 

solution by penalizing the regressors with many small weights (Lee et al., 2013). This meant 226 

solving for an estimate of W by the following: 227 

(3) 𝑊𝑊� 𝑇𝑇 = (𝐶𝐶𝐶𝐶𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1𝐶𝐶𝐵𝐵𝑇𝑇, 228 
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where λ is the ridge parameter penalty term, and I is a k x k identity matrix. We estimated an 229 

optimal λ for each voxel by evaluating Equation 3 over a range of λ values (0 to 750) for all runs 230 

of the attention task (e.g., concatenating all attention conditions together). We then computed the 231 

Bayesian Information Criterion (BIC) for each of these λ values, estimating the degrees of 232 

freedom in the ridge regression as 𝑑𝑑𝑓𝑓 = 𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶 (𝐶𝐶𝑇𝑇𝐶𝐶 + 𝜆𝜆𝜆𝜆)−1𝐶𝐶𝑇𝑇). The λ with the smallest BIC 233 

was selected for each voxel. Since the attention comparisons are done within voxels, the varying 234 

λ penalty across voxels could not explain the attention effects we observed. 235 

To select reliable voxels for analysis, we next implemented a set of conservative 236 

thresholding steps (Table 1). We first needed to select voxels with reliable visual responses, so 237 

we only kept voxels with trial beta weights that predicted at least 50% of the BOLD time courses 238 

in each scan session. Second, we only used voxels that could be successfully regularized with 239 

ridge regression. Any voxels with the maximum λ (750) were discarded, as this indicated that the 240 

ridge regression solution had not converged. Finally, we verified that the resulting regression 241 

model could predict an independent dataset, so we performed exhaustive leave-one-run-out cross 242 

validation for each attention condition. This ensured that the λ estimated across attention 243 

conditions produced reliable data for each condition separately. We estimated W using data from 244 

all but one run (Equation 3) and used this to predict the BOLD GLM trial estimate of the left-out 245 

run (Equation 2), again all done separately for each condition. We then computed the mean 246 

correlation between the predicted & real BOLD GLM trial estimates across cross-validation 247 

folds for each voxel. Note that it is not possible to calculate a coefficient of determination on 248 

regularized data, since the process of ridge regression changes the scale of the predicted data (see 249 

Huth et al., 2012 for more). We only kept voxels where this cross-validation r > 0.25 for all 3 250 

conditions.  251 
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 To quantify each vRF, we fit each voxel with a smooth 2D function with 4 parameters: 252 

center, size, baseline, and amplitude (Fig 1b; Equation 2). Here, we define the vRF baseline as 253 

the voxel’s typical response that does not depend on the position of the mapping stimulus. The 254 

vRF amplitude is defined as the spatially-selective increase in a voxel’s response above this 255 

baseline. Together, these two parameters index how much of the voxel’s response is due to a 256 

change in mapping stimulus position. Finally, the size and location parameters estimate the 257 

spatial selectivity and the spatial position preference of the vRFs, respectively. We first 258 

downsampled the vRFs by multiplying the estimated weights 𝑊𝑊�  for each voxel (a 1 x k channel 259 

vector) by a smaller version of the spatial grid that contained the basis set (68 by 51 pixel grid; 260 

10° by 5°). This speeded up the process of fitting the pixelwise surface with Eq. 2. This fitting 261 

process began with a coarse grid search that first found the best fit in a discrete grid of possible 262 

vRF parameters (center sampled in 1° steps over the mapped portion of the visual field; size 263 

constant logarithmically sampled at 20 points between 2.3 and 38.5, which gives FWHMs 264 

between 0.9° and 15.3°). We then estimated the best fit amplitude and baseline for each of the 265 

grid points using linear regression. The grid point fit with the smallest root mean square error 266 

(RMSE) provided the initialization seed to a continuous error function optimization algorithm 267 

(fmincon in MATLAB). This fit had several constraints: the final solution must place the center 268 

within 2 grid points of the seeded fit (parameterized by position and size) and within the mapped 269 

visual field; the amplitude must be between 0 and 5; the baseline must be between -5 and 5 270 

BOLD z-score units. Occasionally, this nonlinear fitting algorithm did not converge and resulted 271 

in a larger error than the original seed. In this case we took the best fit grid point as the final fit.  272 

To test whether vRF fit parameters changed when participants focused spatial attention at 273 

different positions, we compared fits during each attend periphery condition with fits during the 274 
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attend fixation condition. We computed a difference score (attend peripheral – attend fixation) to 275 

describe the magnitude of the attentional modulation. For example, a difference score of –2° in 276 

the FWHM of the vRF would indicate that the response profile width decreased when the 277 

participant attended to the peripheral target. We then tested whether the vRF parameter 278 

difference scores differed significantly from 0 within a visual region of interest (ROI) by 279 

bootstrapping the distribution of difference scores across participants 10,000 times. 280 

To test whether these vRF changes were modulated by their position in the visual field, 281 

we first calculated each vRF’s distance from the attended location (v_dist_attn) using its position 282 

during the fixation task. These were sorted into distance bins (0° to 2.5°, in 0.25° steps) and all 283 

vRF difference scores in that bin were averaged across participants. We then fit an nth order 284 

polynomial to the binned vRF difference scores as a function of v_dist_attn, where n = 0, 1, or 2. 285 

This corresponds to a constant offset (0th order), a linear fit (1st order), or a quadratic or parabolic 286 

fit (2nd order). The most parsimonious fit was chosen using a nested F-test. Fit coefficient CIs 287 

were generated by bootstrapping the data across participants 5,000 times before repeating the 288 

binning, averaging, and fitting procedure. 289 

 290 

Population analysis (1): Fine spatial discriminability metric 291 

To compute the spatial discriminability of a population of vRFs, we estimated the spatial 292 

derivative of each vRF at every point in the mapped visual field in 0.1° steps (Fig 1C). This was 293 

done by taking the slope of the vRF along the x and y direction at each pixel in the image of the 294 

visual field and squaring this value (Scolari and Serences, 2009, 2010). This measurement is a 295 

good descriptor of how well a population code can discriminate small changes in the spatial 296 

arrangement of the stimulus array, which depends on the rising and falling edges of a tuning 297 
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curve rather than the difference between the peak response and a baseline response (Regan and 298 

Beverley, 1985; Pouget et al., 2003; Butts and Goldman, 2006; Navalpakkam and Itti, 2007; 299 

Scolari and Serences, 2009, 2010). In order to restrict our measurements to the relevant area near 300 

the peripheral target, we computed discriminability values within 1 degree of the center of each 301 

target across both spatial dimensions (x and y). These were summed and divided by the 302 

maximum discriminability value in that population in order to make the results comparable 303 

despite changes in vRF coverage or responsiveness. 304 

 305 

Population measurements (2): Stimulus reconstructions using an inverted spatial encoding 306 

model 307 

In addition to computing the discriminability metric described above, we also reconstructed an 308 

image of the entire visual field on each trial using a population-level encoding model. Compared 309 

to the local spatial discriminability index, this is a more sensitive method of assessing the amount 310 

of spatial information encoded in a population of voxels because it exploits the pattern of 311 

response differences across voxels, rather than treating each voxel as an independent encoding 312 

unit (Serences and Saproo, 2012; Sprague et al., 2015). 313 

We train the spatial encoding model using a procedure similar to the vRF estimation 314 

analysis described above (Fig 4a). This yields an estimated matrix of weights, 𝑊𝑊2�  , which 315 

specifies how much each voxel in a region of interest responds to each of the spatial channels 316 

(Brouwer and Heeger, 2009; Serences and Saproo, 2012; Sprague and Serences, 2013; Sprague 317 

et al., 2015). We then solve Eq. 1 using the Moore-Penrose pseudoinverse with no regularization: 318 

(4) 𝑊𝑊2� = 𝐵𝐵𝐶𝐶𝑇𝑇(𝐶𝐶𝐶𝐶𝑇𝑇)−1 319 
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C was constructed using a set of 48 evenly tiled spatial filters (Eq. 2; 8 horizontal / 6 vertical; 320 

spaced 1.43° apart; 1.78° FWHM). 𝑊𝑊2�  was estimated using the data from the jittered position 321 

runs. This was done separately for each participant, using a balanced training set that contained 322 

an equal number of attend left, attend right, and attend fixation runs. 323 

To reconstruct a representation of the mapped visual space, we inverted the model and 324 

multiplied the pseudoinverse of the estimated weight matrix 𝑊𝑊2�  with a test dataset from the 325 

discrete position runs (𝐵𝐵2), yielding estimated channel activations for each trial (C2; k2 channels 326 

by t test trials) (Equation 5). Thus, we refer to this analysis as the inverted encoding model 327 

(IEM). 328 

(5)  �̂�𝐶2 = �𝑊𝑊2�
𝑇𝑇𝑊𝑊2��

−1
𝑊𝑊2�

𝑇𝑇𝐵𝐵2  329 

Because of mathematical constraints on inverting 𝑊𝑊2 (number of voxels must be greater than 330 

number of channels), we included all voxels in each ROI instead of just the subset of well-fit 331 

voxels used in the vRF analyses described above. We performed this inverting procedure twice 332 

using different test datasets, once for the discrete position attend left runs and once for the 333 

discrete position attend right runs.   334 

When we multiply the resulting channel activations by a grid of pixels that define the 335 

spatial channels, we obtain a spatial representation of the entire visual field on each trial. This 336 

image contains a stimulus reconstruction showing where the checkerboard should have been 337 

given the trained model and the activation pattern across all voxels in the independent test set. 338 

The stimulus reconstructions were then fit in the same manner as the vRFs, using Eq. 1 to 339 

estimate the center, size, amplitude, and baseline (mean fit RMSE across all ROI reconstructions 340 

0.173; 95% CI [0.102, 0.312]). Here, the baseline is an estimate of the multivariate 341 

reconstruction that is spatially non-selective—i.e., not significantly modulated by the position of 342 
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the mapping stimulus. The amplitude describes the maximal increase in that reconstruction 343 

relative to baseline when the mapping stimulus is on the screen. 344 

 To assess how attention changed reconstructions of the mapping stimulus across the 345 

visual field, we first computed a difference score that described the effect of attention by folding 346 

the visual field in half (i.e. collapsing across hemifield) and comparing parameters in the 347 

attended vs. ignored hemifield. We excluded the reconstructions that fell along the vertical 348 

meridian (3 of 51 stimulus positions). This allowed us to control for the overall effect of 349 

eccentricity while remaining sensitive to other spatial patterns in stimulus reconstruction 350 

modulations. 351 

We then set up a single factor repeated measures omnibus ANOVA to determine which 352 

pairs of ROI and parameter (e.g., V1 size, V1 amplitude, etc.) were affected by either attention or 353 

Euclidean distance from the target stimuli. The attention factor had two levels (attend/ignore) 354 

and the distance factor had 6 levels (6 evenly spaced distance bins from 0° to 2.54°). Based on 355 

the results of this omnibus test, we tested any significant ROI-parameter combination in a 2-way 356 

repeated measures ANOVA of attention by distance. To estimate the p-values for these tests, we 357 

generated empirical null distributions of the F-scores by randomizing the labels within each 358 

factor 10,000 times within each participant. Reported p-values are the percentage of the 359 

randomized F-scores that are greater than or equal to the real F-scores. 360 

 361 

Population analysis (3): Layered spatial encoding model to link vRFs to multivariate 362 

stimulus reconstructions 363 

In order to test how changes in the response properties of the underlying vRFs contributed to 364 

changes in the fidelity of region-level stimulus reconstructions, we generated simulated patterns 365 
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of voxel activity on every trial by predicting the response to each stimulus based on the vRF fit 366 

parameters. We then used this simulated data to estimate and invert a population-level spatial 367 

encoding model, as described above (Fig 6A). Note that for these simulations, we could only use 368 

well-fit voxels to generate simulated BOLD timeseries. Therefore, we could not accurately 369 

estimate reconstructions for some participant-ROI pairs that had an insufficient number of 370 

voxels. Pairs that indicated a poorly conditioned matrix (e.g., number of voxels is fewer than the 371 

number of channels) were excluded (total 10 out of 35 pairs; V3 (AI, AP); V3A/B (AL, AP, AT); 372 

V4 (AA, AT); IPS0 (AA, AR, AU)). 373 

To simulate each voxel’s BOLD response on every trial that the participant completed in 374 

the real experiment, we first created a high-resolution set of spatial channels (21 by 11 channels 375 

spaced 0.5° apart, FWHM = 0.65°) and generated weights for each channel based on the vRF fit 376 

obtained from prior analysis. That is, we evaluated Eq. 2 for each channel at the vRF’s fit center 377 

and adjusted the response gain by multiplying this result by the fit amplitude and adding the fit 378 

baseline. We then added independent Gaussian noise to each of these channel weights, 379 

simulating a small amount of variance in the voxel’s response (σ = 0.5). Each voxel’s channel 380 

weights were then multiplied by the idealized channel response on each trial (that is, the channel 381 

filter convolved with the stimulus mask), effectively simulating the BOLD response on each trial 382 

for the entire population of voxels according to their measured vRFs. We added Gaussian noise 383 

to this simulated response as well (σ = 0.5). We then computed stimulus reconstructions using 384 

the same method as described above (the IEM in Population analysis (2)), averaging resulting 385 

reconstructions across participants and like positions before fitting. 386 

To assess the stability of the reconstructions that were based on simulated data, we 387 

repeated the simulations 100 times and averaged across the fits of all iterations to generate the 388 
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plots in Fig 6. Note also that the chosen level of noise did not qualitatively impact the results. 389 

For example, rather than just adding Gaussian noise, we also created a noise model that followed 390 

the covariance structure between all voxels in each ROI. To estimate the covariance matrix, we 391 

computed the residuals between the true trial-wise beta weights and the predicted trial-wise beta 392 

weights for each voxel based on its vRF model. We then calculated the pairwise covariance 393 

between the residuals for each set of voxels. Last, we added noise that followed this covariance 394 

structure to each voxel’s channel weights and simulated BOLD response. This noise was scaled 395 

to be the same as the noise level that most accurately captured the real reconstruction data (i.e., 396 

mean noise is 0.5 standard units). The pattern of results between each of the model 397 

manipulations remained the same, so those results are not discussed here. 398 

 To compare whether the results of the layered model differed significantly from the 399 

reconstructions generated with real data, we first calculated difference scores across attention 400 

condition (attended – ignored; see Population analysis (2)). This yielded 24 difference scores 401 

each for both attention conditions. Since the real data did not have any repeated iterations, we 402 

averaged across all 100 iterations of the model to match the dimensionality of the real 403 

reconstructions (2 conditions x 24 difference scores x 4 parameters). We then calculated the error 404 

between the difference scores from the full empirical dataset (as the data shown in Fig 5) and the 405 

modeled data to obtain the root mean square error (RMSE). 406 

To test how shifts in vRF centers contributed to changes in the stimulus reconstructions, 407 

we also generated reconstructions from modeled voxels that had the same fit center across both 408 

attention conditions. We defined each voxel’s vRF center as the fit center obtained from that 409 

voxel during the neutral attend fixation condition. We then repeated the stimulus reconstruction, 410 

reconstruction fitting, and statistical testing as described above. A similar procedure was 411 
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repeated for all reported combinations of parameter changes across conditions. Again, whichever 412 

parameter was held constant took its value from the neutral attend fixation condition. 413 

To calculate the confidence intervals on the RMSE changes in Fig 6C, we resampled 414 

with replacement across the 100 model iterations and took the difference between the RMSE of 415 

the null model, in which no parameters varied between attention conditions, and the RMSE of 416 

the model which held some number of vRF parameters constant across attention conditions. This 417 

procedure was repeated 500 times. 418 

 419 

RESULTS 420 

Modulations of vRF properties with spatial attention 421 

We estimated single voxel receptive fields (vRFs) for each voxel in 6 retinotopically-identified 422 

visual areas from V1 to IPS0. The estimation of vRFs was done independently for each attention 423 

condition so that we could compare a single voxel’s spatial tuning across conditions.  424 

To confirm that the fit sizes were consistent with previous results, we fit a line to the 425 

estimated sizes as a function of the vRF center eccentricity. First, we combined all vRFs across 426 

participants and conditions in each ROI. We then binned the vRF centers every 0.25° from 427 

fixation and calculated the mean size (Fig 2b). We first replicated an increase in vRF size with 428 

increasing eccentricity, and an increase in the slope of this relationship across visual regions 429 

(Gattass et al., 2005; Dumoulin and Wandell, 2008; Amano et al., 2009; Harvey and Dumoulin, 430 

2011) (Fig 2b). These observations confirm that our method produced reasonable vRF estimates 431 

that were consistent with previous reports.  432 

Covert attention to either the left or the right position modulated vRF properties by 433 

shifting vRFs significantly closer to the attended location compared to the attend fixation 434 
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condition (p < 0.005 in all ROIs). While we did observe size changes in individual voxels, the 435 

mean change was not significantly different from zero (p > 0.05 in all ROIs). Size increases have 436 

been previously reported in tasks that required subjects to attend to the mapping stimulus rather 437 

than to ignore it, as in the present study (Sprague and Serences, 2013; Kay et al., 2015; 438 

Sheremata and Silver, 2015). In these previous studies, the locus of attention changes on each 439 

trial. Accordingly, if attention attracts RFs as our data suggest, these combined shifts might 440 

average out to form a larger RF estimate. Here, we fixed the locus of attention so we could more 441 

finely characterize the effects of focal attention and found no net change in vRF size. However, 442 

we did find a general increase in vRF response gain, such that amplitude increased while mean 443 

baseline decreased (p < 0.001 for all tests). Since all of these measures were calculated relative to 444 

a fixation task, these data suggest that covert spatial attention to a peripheral location caused 445 

widespread position and gain modulations in all vRFs across the visual field.  446 

Previous reports in humans and monkeys have suggested that the preferred position of 447 

RFs shift when subjects covertly attend to an area in the visual field (Womelsdorf et al., 2006, 448 

2008; Klein et al., 2014) and when they make visually-guided saccades to an attended location 449 

(Zirnsak et al., 2014). It is unclear, however, whether these position shifts all radially converge 450 

towards the attended target or whether the RFs shift uniformly along a vector extending from 451 

fixation to the attention or saccade target (Tolias et al., 2001; Klein et al., 2014; Zirnsak et al., 452 

2014). Furthermore, reports of other RF properties (such as size) modulating with attention have 453 

been mixed (Connor et al., 1996, 1997; Womelsdorf et al., 2008; Niebergall et al., 2011; Sprague 454 

and Serences, 2013; Klein et al., 2014; Kay et al., 2015; Sheremata and Silver, 2015). We 455 

therefore examined whether each of the vRF parameter changes was dependent on the vRF’s 456 

location in the visual field, relative to the attended location. First, we created radial distance bins 457 
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centered on the left or right attended locations, and sorted voxels into these bins based on their 458 

preferred position during the fixation condition. After this sorting procedure, data from the right 459 

condition were flipped and collapsed with the left condition. 460 

When we plotted vRF position changes in each bin, we found that spatial attention caused 461 

vRF position shifts that converged on the attended location (two-tailed sign test on vector 462 

direction, p < .001 in all ROIs). That is, vRFs shifted closer to the attended location (Fig 2c), 463 

compared to when subjects attended fixation (mean shift across all vRFs and ROIs: -0.244, 464 

bootstrapped 95% C.I. [-0.607, -0.038], Fig 2d). Note that small eye movements toward the 465 

attended location cannot explain receptive field convergence: this would cause all vRFs to shift 466 

in the same horizontal direction, rather than radially converging on one point. These data are 467 

consistent with results from both humans (Klein et al., 2014) and macaques (Connor et al., 1996, 468 

1997, Womelsdorf et al., 2006, 2008). However, the prior study in humans focused only on vRFs 469 

with preferred locations that were foveal to the attended location, and the studies in macaques 470 

only report RF position changes in V4 and MT. By contrast, we show that vRF centers converge 471 

on the attended location across all visual areas, including primary visual cortex, as well as in 472 

vRFs with centers peripheral to the attended location. 473 

These plots (Fig 2a, 2d) also suggested that vRFs farther from the attended location 474 

underwent larger position changes with covert shifts of spatial attention. The size of the 475 

attentional modulation may be dependent on the distance between the vRF center and the 476 

attended target. To test for this, we fit a polynomial to the vRF parameter changes as a function 477 

of distance from the attended location (Materials and Methods). We selected the most 478 

parsimonious fit ranging from a mean change in vRF parameter (0th order polynomial) to a 479 
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parabolic change (2nd order polynomial) by conducting a nested F-test (Table 2). The significant 480 

polynomials of order n > 0 are plotted in Fig 2e. 481 

Position changes with attention were significantly modulated by the initial vRF position 482 

(relative to the locus of attention) in higher visual areas such as V4, as indicated by a significant 483 

slope coefficient from a linear fit. While all size changes were best described by a quadratic 484 

function, only area V2 showed a significant modulation: we observed size increases in V2 vRFs 485 

near the attended location, size decreases about 1 degree away from the attended location, and 486 

size increases again for vRFs farther away. Amplitude changes with attention were significant in 487 

visual areas higher up in the visual hierarchy, namely V3A/B and IPS0. In these visual areas, 488 

amplitude increased for vRFs farther from the attended location. This was paired with a large 489 

mean decrease in baseline (Fig 2d). These tests suggest that the spatial relationship between the 490 

vRF and the attended target changes the type and magnitude of the attentional modulation in 491 

different visual areas, consistent with findings from macaque neurophysiology (Connor et al., 492 

1996; Niebergall et al., 2011). 493 

Increases in spatial discriminability depend primarily on vRF position shifts 494 

Next, we assessed how different types of RF modulations influenced the precision of 495 

population-level codes for spatial position. We first computed a discriminability metric that 496 

described the ability of a population of tuning curves to make fine spatial judgments (Materials 497 

and Methods). Spatial discriminability near the attended target increased relative to the ignored 498 

target in the opposite visual hemifield (Fig 3a). 499 

We then tested how different types of vRF modulations (such as size changes or position 500 

shifts) affected this spatial discriminability metric. As a baseline comparison, we first computed 501 

discriminability based on vRFs estimated during the attend fixation runs for each subject. We 502 
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then added different sets of observed attentional modulations to the population before 503 

recomputing spatial discriminability. For example, we shifted all the vRF centers to match the 504 

measurements when a subject was attending to the left target and computed discriminability near 505 

the attended target. Since the response baseline of a vRF does not affect the discriminability 506 

metric, we excluded this type of attentional modulation from these analyses. 507 

Across all ROIs, we found that vRF position shifts played the biggest role in increasing 508 

fine spatial discriminability compared to changes in size or changes in amplitude (Fig 3b). 509 

Position modulations alone led to a large increase in spatial discriminability, while other 510 

combinations of parameter modulations only had an impact if we added in position shifts (i.e. a 511 

change in size and position increased discriminability, but size alone did not). The only departure 512 

from these patterns was observed in IPS0, where a combination of amplitude and size produced 513 

an increase in discriminability even in the absence of changes in vRF position.   514 

Spatial attention increases the fidelity of population-level stimulus reconstructions 515 

By design, the spatial discriminability metric we computed is only informative about 516 

local spatial representations, and cannot assess how different patterns of vRF modulations might 517 

result in representational changes across the visual field. To address this point, we built a 518 

multivariate spatial encoding model to measure how attention changes the representations of 519 

visual information in disparate parts of space. This also allowed us to further test the effects of 520 

vRF modulations on the encoding properties of the population, including response baseline 521 

changes that were not captured by our discriminability metric. 522 

The spatial inverted encoding model (IEM) reconstructed an image of the entire visual 523 

field on each test trial. We first trained the model using the responses of each voxel on a set of 524 

training trials with known mapping stimulus positions. We then created image reconstructions on 525 
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independent test trials by inverting the model and multiplying it by the voxel responses during 526 

each test trial (Fig 4a; Materials and Methods). Each image contained a representation of 527 

where the mapping stimulus should have been given the pattern of voxel activations on that 528 

particular trial. The IEM successfully reconstructed the task-irrelevant mapping stimuli using 529 

activation patterns across voxels in each visual area from V1 through IPS0 (Fig 4b; grand mean 530 

error between fit and actual position 2.36°, 95% CI [0.56°, 4.89]). 531 

We used these stimulus reconstructions as a proxy for the quality of the spatial 532 

representations encoded in a population of voxels. This is line with previous studies showing that 533 

stimulus reconstructions have change in amplitude or size as a function of cognitive demands. 534 

(Brouwer and Heeger, 2013; Ester et al., 2013; Sprague and Serences, 2013; Sprague et al., 2014, 535 

2015, 2016). 536 

First, we compared how reconstructed representations of each mapping stimulus changed 537 

as subjects shifted their spatial attention. We ran a repeated measures ANOVA of attention x 538 

distance bin for each reconstruction fit parameter (Materials and Methods). Here, a main effect 539 

of attention would suggest that stimulus reconstructions in the attended hemifield changed in a 540 

consistent way compared to the ignored hemifield. A main effect of distance would suggest that 541 

stimulus reconstruction changes had a consistent spatial pattern across both the attended and 542 

ignored hemifields. This would occur when a stimulus’ representation was altered with distance 543 

from the attention target. For example, the stimulus reconstruction center should vary linearly 544 

with the stimulus’ true distance from the attention target. And lastly, an interaction effect would 545 

suggest that the distance effect was dependent on whether the reconstruction belonged to the 546 

attended or ignored hemifield. In our task, the reconstructed stimuli are always irrelevant to the 547 

task of the observer. We therefore predicted an interaction effect where spatial attention would 548 
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selectively modulate stimulus reconstructions around the attended location (Connor et al., 1996, 549 

1997). 550 

We found that reconstruction amplitude was selectively increased near the attended 551 

location in V3, V4, V3A/B, and IPS0 (interaction effect, bootstrapped p < 0.005; Fig 5; Table 552 

3). This can be interpreted as a local boost in SNR. Prior reports found that attending to the 553 

mapping stimulus – as opposed to attending to a peripheral target as in the current experiment – 554 

caused an increase in the amplitude of all stimulus reconstructions (Sprague and Serences, 2013). 555 

That is, representations of task-relevant stimuli increased in SNR. We find here that even 556 

representations of task-irrelevant stimuli near the attended region of space increase in amplitude, 557 

consistent with the idea of an attentional ‘spotlight’ which boosts the fidelity of spatial 558 

representations near the attention target. 559 

Although the amplitude interaction effect was present in most visual areas we tested (Fig 560 

5), we found other effects limited to V3A/B and IPS0 that involved modulations in stimulus 561 

representations in the ignored hemifield. In these regions, we found that stimulus reconstructions 562 

in the ignored hemifield shifted away from the ignored target location (interaction, bootstrapped 563 

p < 0.005). We also observed a relative size increase near the ignored attention stimulus in IPS0 564 

(interaction, bootstrapped p = 0.005). These results suggest that stimulus reconstructions in the 565 

ignored hemifield are less spatially precise in posterior parietal cortex. Finally, there was also a 566 

main effect of attention on reconstruction size and baseline in areas V4 & V3A/B (bootstrapped 567 

p’s <= 0.005). However, unlike the interaction effect in IPS0, size changes in V4 and V3A/B did 568 

not vary as a function of distance between the reconstruction and the attended target location. 569 

Using a layered encoding model to explore how single voxel RFs change population-level 570 

codes 571 
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 In our final analysis, we used a layered spatial encoding model to determine how changes 572 

in vRF properties affected the representations of mapping stimuli in the multivariate 573 

reconstructions discussed in the previous section (Fig 1c; Fig 4a). The goal of this analysis was 574 

to determine which vRF modulations contribute the most to the observed increase in the 575 

amplitude of stimulus representations around the attended location (Fig 5). This analysis thus 576 

complements our analysis of the spatial discriminability metric which demonstrated that vRF 577 

position changes significantly increased the ability of the population to make fine spatial 578 

discriminations near the attention target (Fig 3c). 579 

The layered spatial encoding model we built links the response properties of single 580 

voxels to the encoding properties of a whole population of voxels in a region of visual cortex 581 

(Fig 6a). In the first layer of the model, we used the fit vRFs to generate simulated BOLD data 582 

from each voxel under different attention conditions. We then repeated the multivoxel stimulus 583 

reconstruction analysis on this simulated data to model population results for the second layer of 584 

the model. This approach allowed us to perform virtual experiments to test how changes in the 585 

first layer impacted the second layer. That is, we manipulated which vRF parameters changed 586 

with attention (first layer) and observed the resulting changes in the population-based stimulus 587 

reconstructions (second layer). For example, we could test whether an overall increase in vRF 588 

response gain with attention would be necessary or sufficient to reproduce the amplitude 589 

increases observed in the empirical stimulus reconstructions reported above. These virtual 590 

experiments also allowed us to compare the relative impact of one type of response modulation 591 

(e.g. size changes) with other types of response modulations (e.g. position shifts). 592 

We first validated our layered model to ensure that it produced results that matched the 593 

empirical data. Since our procedure only allowed us to use voxels with reliable vRF fits, we 594 
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compared the results of the layered model to stimulus reconstructions in the full empirical dataset 595 

reported above. Table 4 reports the RMSE between the fits to the layered IEM reconstructions 596 

and the full empirical IEM reconstructions. Our model reproduced the main pattern of results we 597 

observed in the previous section. In particular, covert attention led to an increase in the 598 

amplitude of reconstructions near the locus of attention, suggesting that our simulated data sets 599 

accurately captured the main modulation observed in the real data (Fig 6b, gray bars). 600 

We then compared two basic manipulations of the layered IEM to see how they 601 

contributed to the amplitude increase that we observed in the stimulus reconstructions. When we 602 

abolished the position shift between attention conditions in the first layer of the model, we 603 

observed a decrease in stimulus reconstruction amplitude (Fig 6b). This suggests that spatial 604 

position shifts at the single voxel level are necessary for amplitude changes in stimulus 605 

reconstructions. When we held vRF sizes constant across attention conditions, there was little 606 

change in the amplitude effect in most ROIs, suggesting that size changes in vRFs were not 607 

necessary for changes in stimulus reconstruction amplitude.  608 

To more formally compare each manipulation of the layered IEM, we compared each 609 

model to a baseline in which no vRFs changed with attention (far left in Fig 6c). This baseline 610 

should have the highest RMSE, and any additional attentional modulations to the underlying 611 

vRFs should decrease the error between the simulated data and the empirical data. Conversely, a 612 

model with higher RMSE is worse at accounting for the empirical data. In all ROIs, a model that 613 

abolished position shifts had a higher RMSE than a model which abolished size shifts (Fig 6c, 614 

light red and green bars). In fact, just modeling vRF position shifts was sufficient to significantly 615 

decrease RMSE in all ROIs except V4. However, this is likely because the layered IEM was a 616 
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poor model for the attention effects in V4. This is evidenced by the fact that the baseline model 617 

did not have the highest RMSE (Fig 6c). 618 

The overall pattern of results across ROIs is consistent with the interpretation that shifts 619 

in the position of vRFs have the largest impact on the population-level representations, while 620 

changes in vRF size or gain play smaller roles in changing the fidelity of the population code. 621 

 622 

DISCUSSION (Max 1500 words; current 1437) 623 

By simultaneously measuring the response properties of both single voxels and populations of 624 

voxels within retinotopic areas of visual cortex, we were able to link attentional modulations of 625 

spatial encoding properties across scales. Our data provide an initial account of how different 626 

types of RF modulations improve the quality of spatial population codes. We first report how 627 

different types of vRF modulations depended on the distance between the vRF’s preferred 628 

position and the static attention target (Fig 2). We then found that shifts in the preferred position 629 

of vRFs near the attended target increased the spatial discriminability of a population (Fig 3), as 630 

well as the amplitude of stimulus reconstructions based on populations of vRF responses (Fig 5).  631 

Attentional modulations of spatial RFs 632 

 While our study is not the first to simultaneously measure a population of RFs tiling a 633 

continuous portion of visual space, we provide new data on how vRF responses are modulated 634 

around a covertly attended static target (Sprague and Serences, 2013; Klein et al., 2014; Kay et 635 

al., 2015; Sheremata and Silver, 2015). Like prior macaque studies, we find that the spatial 636 

pattern of attentional modulations is widely variable, but that position shifts in RFs depend 637 

heavily on the distance from the attended target (Connor et al., 1996, 1997). We also found that 638 

vRF size modulations weakly depended on the RF’s spatial relationship to the attended target, 639 
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even though population-averaged size changes remained at a constant level across voxels (Fig 640 

2d-e). Comparison to the existing literature suggests that patterns of RF size modulations likely 641 

depend on the nature of the spatial attention task. In fMRI tasks where subjects attended to the 642 

mapping stimulus itself, researchers report average vRF size increases with attention (Sprague 643 

and Serences, 2013; Kay et al., 2015; Sheremata and Silver, 2015). Furthermore, the relative size 644 

of the attention target and mapping stimulus likely play a key role as well. In macaques, RFs in 645 

area MT shrink when measured with a mapping probe smaller than the stimulus, but increase in 646 

size when macaques track the mapping probes as they move across the screen (Womelsdorf et 647 

al., 2006, 2008; Anton-Erxleben et al., 2009; Niebergall et al., 2011). Taken together, these 648 

observations demonstrate that the pattern of response modulations in single cells and in single 649 

voxels depends on the spatial relationship between the attended target and the spatial extent of 650 

the encoding unit. 651 

 We note that while the similarity between attentional modulations of single cell RFs and 652 

single voxel RFs is compelling, they are not interchangeable. Given that fMRI voxels in 653 

retinotopically organized regions of visual cortex sample from a broad array of neurons with 654 

roughly the same spatial tuning preferences, a position shift in a vRF could be driven by either a 655 

change in the preferred position of single neurons, or by a change in the gain profile across 656 

neurons tuned to slightly different locations in the visual field. This principle also holds true of 657 

position shifts in single neuron RFs, since cortical neurons typically receive input from those 658 

with smaller RFs in earlier visual areas (McAdams and Maunsell, 1999; Baruch and Yeshurun, 659 

2014; Dhruv and Carandini, 2014). However, our population-level analyses do demonstrate how 660 

the properties of local encoding units–both single-cell and single-voxel RFs–might contribute to 661 

population-level representations of space. 662 
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Attention boosts the spatial encoding fidelity of a population 663 

We first measured the overall capacity of a population of voxels to make fine spatial 664 

discriminations in a region of space. We found that attention increased spatial discriminability 665 

near the attended target, relative to the ignored target. We then performed virtual experiments on 666 

the underlying vRFs contributing to the population to determine how they affected the spatial 667 

discriminability metric. We report that vRF position shifts increased spatial discriminability 668 

significantly more than vRF size changes or even gain changes (Fig 3). As above, we note that 669 

spatially-specific patterns of gain changes in input RFs could produce these position shifts in 670 

downstream neural populations. This observation suggests that gain modulations with attention 671 

may exert their largest effects on the downstream population, where these patterns of gain 672 

changes become apparent shifts in vRF position. Our data are consistent with the interpretation 673 

that a neural population only begins to encode the attended area with higher fidelity after input 674 

gain changes are transformed into apparent shifts in spatial tuning in the encoding units of that 675 

population. 676 

Since the spatial discriminability metric is only informative about a local portion of 677 

space, we performed a second population analysis to reconstruct an image of the entire visual 678 

field on each trial using a multivariate IEM. Attention increased the amplitude of stimulus 679 

reconstructions near the attention target, indicating an increase in representational fidelity that 680 

accompanies the change in spatial discriminability. In addition, the layered spatial encoding 681 

model revealed that shifts in vRF position could sufficiently account for these attentional 682 

enhancements in the population-level stimulus reconstructions, but changes in vRF size could 683 

not. Altogether, our data demonstrate that spatial tuning shifts in a group of RFs may be the 684 

dominant way that single encoding units alter the properties of a population spatial code. 685 
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Our findings also underscore the fact that changes in the spatial encoding properties of 686 

single units do not directly translate into analogous changes in the encoding properties of a 687 

population of those same units. This is particularly true when considering the effects of spatial 688 

attention on representations of the entire visual scene. Although we found that single units 689 

shifted their preferred position towards the attended target, population-level representations did 690 

not generally shift with attention. When the population code did shift its encoded position for a 691 

given stimulus, we found that it was typically representations of the ignored stimulus that shifted 692 

farther from the true stimulus location (Fig 5), consistent with a tendency towards more error-693 

prone representations of stimuli far from the relevant portion of the screen. These types of 694 

differences further emphasize the need to understand the effects of cognitive state and task 695 

demands on population codes for the entire visual scene, rather than focusing solely on single 696 

units encoding largely local visual information. 697 

Tuning shifts and labeled lines 698 

Historically, shifts in the tuning of a RF have not been considered one of the main 699 

mechanisms by which attention modulates population-level information, although a handful of 700 

recent papers suggest that this view is being reconsidered (David et al., 2008; Anton-Erxleben 701 

and Carrasco, 2013). This is largely due to ‘labeled-line’ theories of visual information 702 

processing, which posits that a single neuron has a consistent feature label which downstream 703 

neurons rely on to perform computations and transmit stable information  (Barlow, 1972; 704 

Doetsch, 2000; David et al., 2008). When a spatial RF shifts position as a function of cognitive 705 

state (e.g., attention), that single neuron’s feature label is no longer consistent. Without an 706 

accompanying shift in the downstream neurons receiving the changing feature label, such a 707 

change could disrupt the stability of the population code. However, our results suggest that 708 
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population-level spatial representations remain stable even as the tuning of the underlying vRFs 709 

is shifting. In fact, spatial representations are even enhanced as a result of RF shifts. 710 

An alternate proposal to a labeled line code relies on the joint information encoded across 711 

a population of cells (Erickson, 1982; Doetsch, 2000). This may occur at several scales–for 712 

example, V2 could use the pattern of information from V1 inputs to form a visual representation. 713 

This idea is more akin to an encoder-decoder model in which the downstream decoder does not 714 

need information about the altered representations in each of the encoder units, but instead relies 715 

on a population readout rule (Seriès et al., 2009). The population readout rule could incorporate 716 

knowledge about the ‘labels’ of the encoder units, but could perform equally well by relying on 717 

relative changes in the pattern across units to resolve the information encoded in the population. 718 

This may be a more parsimonious account of the attentional data reported so far. However, 719 

further exploration of population readout rules in visual cortex are needed to test this hypothesis. 720 

  721 

Conclusions 722 

The spatial encoding properties of the visual system can be measured and modeled at 723 

many different spatial scales. Here, we report these properties and how they change with 724 

attention for single voxels and for a group of voxels in a retinotopic region. Future lines of 725 

research into how attention modifies the specific inputs or outputs to a single encoding unit or a 726 

population of encoding units may help resolve the question of how shifts in RF labels are 727 

generated. Moreover, further investigation into population code readout rules may help 728 

adjudicate theories of sensory information processing beyond simple ‘labeled line’ coding 729 

schemes. 730 

 731 
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LEGENDS 835 

Figure 1. Covert spatial attention task and hypothesized representation changes with shifts of 836 

spatial attention. (a) Subjects fixated centrally and attended to brief rotations in the pentagon 837 

stimulus on the left or right while a flickering checkerboard probe stimulus appeared at one of 51 838 

grid locations across the visual field. On control runs, subjects attended to a contrast change at 839 

fixation. fMRI data measured during this attention task is used to create visualizable estimates of 840 

voxel receptive fields (vRFs) and stimulus reconstructions. (b) A receptive field model is fit to 841 

the responses of each voxel, and can be described by its x and y position (center), its response 842 

baseline, response amplitude, and its size (full-width half maximum). (c) Given a population of 843 

voxels in a retinotopic region, such as V1, we examine two different measures of spatial 844 

information in the population. The first, a spatial discriminability metric, scales with the slope of 845 

the tuning curve at a given location in space (Materials and Methods). The second relies on a 846 

multivariate inverted encoding model (IEM) for space. By reconstructing images of the mapping 847 

stimulus on each test trial, we can measure how population-level spatial information changes 848 

with attention. We then can model how changes in individual vRFs affect both of these 849 

population measures. 850 

 851 

Figure 2. Changes in voxel receptive fields (vRFs) across attention conditions. We separately 852 

estimated vRFs for every voxel in visual and posterior parietal areas, discarding poorly estimated 853 

or noisy voxels (Table 1). Unless otherwise specified, figure data is averaged across subjects and 854 

error bars show 95% confidence intervals computed with resampling the data distribution. (a) An 855 

example vRF shows that attending covertly to the left location shifts the center of the receptive 856 

field profile to the left, when compared to the neutral attend fixation condition. Voxel is from 857 
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subject AR in area V3A/B. (b) Our vRF estimates reproduced the canonical size-eccentricity 858 

relationship (positive slope in all ROIs, p < minimum possible p-value, e.g., 1/1000 iterations) 859 

and the increase in slope between visual regions. (c) Preferred position changes of V4 vRFs with 860 

covert spatial attention. We binned each vRF by its position during the attend fixation condition. 861 

The origin of each arrow is the center of each position bin. The end of the arrow shows the 862 

average position shift of the vRFs within that position bin during the attend peripheral conditions 863 

(left/right are collapsed and shown as attend left). The majority of vRFs shift toward the attended 864 

location (blue-green color map vs. red-yellow). (d) Mean changes in vRF parameters (attend 865 

peripheral target – attend fixation) in each visual area. (e) Attentional modulations of each vRF 866 

parameter plotted by the vRF’s distance from the attention target. We only show areas where 867 

these data are significantly described by a polynomial of order n > 0 (Table 2). 868 

 869 

Figure 3. Spatial discriminability increases with attention and is mediated by position changes in 870 

vRFs. Error bars depict bootstrapped 95% CIs. (a) We formulated a measurement to describe the 871 

ability of a population of voxels to make fine spatial discriminations around the attention target. 872 

We used the properties of each voxel’s spatial tuning curve to make this measurement 873 

(Materials and Methods). Spatial discriminability increased when subjects attended the target, 874 

compared to when they ignored the target in the opposite hemifield (resampled p < minimum 875 

possible p-value (1/1000) for all ROIs for all ROIs). (b) The discriminability metric was 876 

recomputed for vRFs with a variety of attentional modulations. (none = vRF parameters during 877 

the neural attend fixation condition; a = amplitude; s = size; p = position). Spatial 878 

discriminability increased significantly when we applied position changes measured during the 879 

attend L/R task to the vRFs compared to when we applied no parameter changes (solid bar). By 880 
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contrast, applying size changes either did not change spatial discriminability (V3A/B, V4, IPS0) 881 

or even decreased it from the no change condition (V1-V3). 882 

 883 

Figure 4. Multivariate inverted encoding model (IEM) used to reconstruct the mapping probe 884 

stimuli. (a) To train the IEM, we first take the BOLD data from all voxels within a visual region 885 

from a subset of training trials. Then, we solve for a set of channel weights using least squares 886 

regression. To reconstruct the stimulus, we invert this weight matrix and multiply it with BOLD 887 

data from the same voxels during a test trial. This yields a reconstructed channel response 888 

profile, which can be transformed into a reconstruction of the mapping stimulus on every trial in 889 

each attention condition. Data shown are examples from participant AR for a subset of V1 890 

voxels. (b) Example stimulus reconstructions for participant AI, V1. These reconstructions were 891 

averaged across trials with the same position, yielding 51 reconstructions – one for each unique 892 

position in the test dataset. In the left panel, the same averaged position reconstructions are 893 

shown for each condition. The amplitude on the left is higher when attending left, and on the 894 

right when attending right. (c) Average reconstruction sizes and amplitudes for each stimulus 895 

position (collapsed across condition; left is attended). The diameter of the circle depicts the 896 

average fit FWHM of the reconstructions at that spatial position. Reconstruction amplitude was 897 

greater in the attended hemifield compared to the ignored hemifield in areas V3, V4, V3A/B, and 898 

IPS0, p < 0.005). 899 

 900 

Figure 5. Reconstruction parameters as a function of mapping stimulus distance from the 901 

covertly attended locations (s_dist_attn) and attention hemifield (attended vs. ignored). See 902 

Table 3 for complete list of p-values.  903 
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Figure 6. A layered spatial encoding model reveals how different sets of vRF changes lead to 904 

enhancements in multivariate stimulus reconstructions. (a) The first layer of the model uses the 905 

vRF fits to generate BOLD data from every subject’s real trial sequence. Then the BOLD data 906 

from all voxels within one ROI is used to train a multivariate spatial encoding model and 907 

reconstruct the mapping stimuli. (b) Change in reconstruction amplitude in the attended vs. the 908 

ignored hemifield. Simulated reconstructions (black) qualitatively reproduce changes in 909 

reconstructions using real BOLD data from the same reduced set of voxels (gray bars). 910 

Furthermore, while position shifts in vRFs are necessary to observe increases in reconstruction 911 

amplitude near the attended location (blue), size changes are not (red). The results for the best 912 

model in each visual area is shown in yellow. (c) RMSE between each set of IEM fits and the 913 

full empirical dataset fits shown in Fig 5. The null baseline model (far left) is a layered IEM 914 

where the vRF parameters are the same across all attention conditions. We then added vRF 915 

attentional modulations for each parameter as shown in the matrix, with the full model on the far 916 

right. * indicate an FDR-corrected p-value <.05 for models that differed significantly from the 917 

null baseline model. The red bar highlights that a size change model generally performed 918 

significantly worse than the null. The green bar highlights that a position change model generally 919 

performed significantly better than the null.  920 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/086892doi: bioRxiv preprint 

https://doi.org/10.1101/086892


Spatial attention from units to populations  42 
 

FIGURES 921 
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Figure 2 925 
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Figure 3 928 
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Figure 4 930 
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Figure 5 933 
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Figure 6 937 
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TABLES 940 

Table 1. vRF selection statistics, pooled across participants (N = 7) 941 

Region 
of 

interest 

Total 
number of 
localized 
voxels 

Number of 
voxels after 

GLM 
thresholding 

Number of 
voxels after 

regular-
izability 
threshold 

Number of 
voxels after 

cross-
validation 
threshold 

Percent that 
survive all 
thresholds 

RMSE fit 
error for 
surviving 

voxels 

V1 3,723 3,286 2,148 969 26.03% 0.1231 

V2 4,154 3,685 2,895 1,355 32.62% 0.1228 

V3 3,698 3,246 2,600 1,460 39.48% 0.1191 

V3A/B 1,988 1,796 1,278 446 22.43% 0.1063 

V4 1,702 1,308 954 349 20.51% 0.1060 

IPS0 1,430 1,250 680 114 7.97% 0.0985 

TOTAL 16,695 14,571 10,555 4,693 28.11% 0.1126 
  942 
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Table 2. Mean coefficients for polynomial fits of how vRF parameter change is modulated by 943 

distance from the attended location (v_dist_attn) 944 

 Position Size Amplitude Baseline 

V1 .003 -.005, .032, -.023 -.015, -.003 .039, -.065 

V2 -.022 .109, -.247, .075 -.031, .076, -.043 -.143, .328, -.123 

V3 -.103 .007, -.015, -.025 .011, -.037 .128, -.221 

V3A/B -.332 -.012, -.017, .063 .067, -.061 -.122 

V4 -.168, .028 -.056, .138, -.043 .002 -.039, .105, -.181 

IPS0 -.151, -.146 -.080, .291, -.192 .131, -.094 -.269 
 945 

a bold numbers indicate that the p-value passed FDR-correction (q = 0.05) across ROIs and 946 

coefficients within each parameter; italicized numbers are p < .05, uncorrected. Number of 947 

reported coefficients in the table correspond to the polynomial order which was yielded the most 948 

parsimonious fit to the data (e.g., 1 coefficient for n = 0, 2 coefficients for n = 1, etc.). 949 

 950 

  951 
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Table 3. 2-way ANOVA results for reconstruction parameter changes (s_dist_attn x attention 952 

hemifield). 953 

 V1 V2 V3 V3A/B V4 IPS0 

Omnibus test       

Position <.001 <.001 <.001 <.001 <.001 .007 

Size .917 .097 .001 .001 .017 .016 

Amplitude .207 .220 .003 <.001 <.001 <.001 

Baseline .024 .257 .485 .002 .004 .925 

Main effect of distance       

Position <.001 <.001 <.001 <.001 <.001 .084 

Size   .001 .233 .169 .679 

Amplitude   .269 <.001 .008 .007 

Baseline    .864 .336  

Main effect of attention       

Position .573 .920 .399 .022 .189 .235 

Size   .163 .001 .005 .509 

Amplitude   .047 .005 .002 .028 

Baseline    <.001 .001  

Interaction of distance & attention       

Position .188 .892 .354 .001 .679 .004 

Size   .157 .099 .582 .005 

Amplitude   .003 <.001 <.001 .002 

Baseline    .210 .202  
 954 

a bold numbers indicate that the p-value passed FDR-correction (q = .05, corrected across ROIs 955 

and comparisons within each parameter). 956 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/086892doi: bioRxiv preprint 

https://doi.org/10.1101/086892


Spatial attention from units to populations  51 
 

Table 4. RMSE (and 95% CIs) between reconstructions from the reduced dataset (only using voxels with RFs) or from different 957 

versions of the layered IEM using the same voxels. 958 

 Real 
data p/s/a/b p/a/b p/s/b s/a/b p/a s/a p/s p a s none 

V1 
0.773 
[0.640, 
0.913] 

0.184 
[0.181, 
0.187] 

0.183 
[0.180, 
0.186] 

0.181 
[0.177, 
0.185] 

0.225 
[0.222, 
0.228] 

0.186 
[0.183, 
0.189] 

0.221 
[0.218, 
0.224] 

0.181 
[0.177, 
0.185] 

0.182 
[0.178, 
0.186] 

0.221 
[0.218, 
0.224] 

0.225 
[0.221, 
0.229] 

0.219 
[0.216, 
0.223] 

V2 
0.394 
[0.326, 
0.461] 

0.185 
[0.183, 
0.187] 

0.184 
[0.182, 
0.185] 

0.185 
[0.182, 
0.187] 

0.227 
[0.226, 
0.229] 

0.181 
[0.180, 
0.183] 

0.228 
[0.226, 
0.229] 

0.179 
[0.177, 
0.182] 

0.180 
[0.178, 
0.182] 

0.225 
[0.223, 
0.226] 

0.225 
[0.223, 
0.227] 

0.222 
[0.221, 
0.224] 

V3 
0.368 
[0.280, 
0.480] 

0.180 
[0.179, 
0.181] 

0.177 
[0.176, 
0.179] 

0.196 
[0.194, 
0.198] 

0.247 
[0.246, 
0.249] 

0.177 
[0.176, 
0.178] 

0.241 
[0.239, 
0.242] 

0.184 
[0.183, 
0.186] 

0.182 
[0.181, 
0.184] 

0.239 
[0.238, 
0.241] 

0.247 
[0.246, 
0.249] 

0.241 
[0.240, 
0.243] 

V3A/B 
0.745 
[0.522, 
0.978] 

0.336 
[0.331, 
0.342] 

0.340 
[0.333, 
0.348] 

0.320 
[0.314, 
0.326] 

0.354 
[0.348, 
0.362] 

0.338 
[0.334, 
0.343] 

0.359 
[0.352, 
0.365] 

0.331 
[0.325, 
0.337] 

0.335 
[0.329, 
0.342] 

0.352 
[0.345, 
0.359] 

0.369 
[0.362, 
0.376] 

0.357 
[0.350, 
0.363] 

V4 
0.729 
[0.617, 
0.843] 

0.393 
[0.389, 
0.398] 

0.390 
[0.386, 
0.394] 

0.381 
[0.376, 
0.387] 

0.398 
[0.393, 
0.402] 

0.383 
[0.378, 
0.388] 

0.402 
[0.397, 
0.407] 

0.388 
[0.384, 
0.393] 

0.381 
[0.376, 
0.385] 

0.395 
[0.391, 
0.399] 

0.394 
[0.389, 
0.399] 

0.382 
[0.378, 
0.387] 

IPS0 
0.879 
[0.764, 
1.006] 

0.491 
[0.483, 
0.499] 

0.489 
[0.480, 
0.498] 

0.489 
[0.481, 
0.496] 

0.521 
[0.514, 
0.529] 

0.480 
[0.473, 
0.488] 

0.510 
[0.504, 
0.517] 

0.486 
[0.479, 
0.493] 

0.474 
[0.466, 
0.483] 

0.506 
[0.500, 
0.513] 

0.503 
[0.495, 
0.512] 

0.498 
[0.491, 
0.506] 

 959 

a To generate CIs, the resampling of the real data is performed at the level of the fits to the reconstructions, whereas resampling 960 

layered IEM RMSEs is described in Materials and Methods 961 
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