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The fast blood stream of animals is associated with large shear
stresses. Consequently, blood cells have evolved a special morphol-
ogy and a specific internal architecture allowing them to maintain
their integrity over several weeks. For instance, non-mammalian red
blood cells, mammalian erythroblasts and platelets have a peripheral
ring of microtubules, called the marginal band, that flattens the over-
all cell morphology by pushing on the cell cortex. In this article, we
model how the shape of these cells stems from the balance between
marginal band elasticity and cortical tension. We predict that the
diameter of the cell scales with the total microtubule polymer, and
verify the predicted law across a wide range of species. Our analysis
also shows that the combination of the marginal band rigidity and
cortical tension increases the ability of the cell to withstand forces
without deformation. Finally, we model the marginal band coiling that
occurs during the disc-to-sphere transition observed for instance at
the onset of blood platelet activation. We show that when cortical
tension increases faster than crosslinkers can unbind, the marginal
band will coil, whereas if the tension increases slower, the marginal
band may shorten as microtubules slide relative to each other.
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The shape of animal cells is determined by the cytoskele-
ton, including microtubules (MTs), contractile networks

of actin filaments, intermediate filaments and other mechanical
elements. The 3D geometry of most cells in a multi-cellular
organism is also largely determined by their adhesion to neigh-
bouring cells or to the extra-cellular matrix [1]. This is not
however the case for blood cells as they circulate freely within
the fluid environment of the blood plasma. Red blood cells
(RBC) and thrombocytes in non-mammalian animals [2, 3],
platelets and erythroblasts in mammals [4, 5] adopt a simple
ellipsoidal shape (Fig. 1A). This shape is determined by two
components: a ring of MTs, called the marginal band (MB),
and a protein cortex at the cell periphery.

In the case of platelets and non-mammalian red blood
cells, both components are relatively well characterized (Fig.
1). The cortex is a composite structure made of spectrin,
actin and intermediate filaments (Fig. 1B), and its complex
architecture is likely to be dynamic [11–13]. It is a thin
network under tension [14], that on its own would lead to a
spherical morphology [15]. This effect is counterbalanced by
the MB, a ring made of multiple dynamic MTs, held together
by crosslinkers and molecular motors into a closed circular
bundle [4, 16] (Fig. 1C). The MB is essential to maintain the
flat morphology, and treatment with a MT destabilising agent
causes platelets to round up [17]. It was also reported that
when the cell is activated, the MB is often seen to buckle [3].
This phenomenon is reminiscent of the buckling of a closed

elastic ring [18], but the MB is not a continuous structure of
constant length.

Indeed, an important feature of the MB is that is it made
of multiple MTs, connected by dynamic crosslinkers. The
rearrangement of connectors could allow MTs to slide relative
to one another, and thus would allow the length of the MB
to change. Secondly, MT growth or depolymerisation would
also induce reorganisation. However, in the absence of sliding,
elongation or shortening of single MTs would principally affect
the thickness of the MB (i.e. the number of MT in the cross-
section) rather than its length. It was also suggested that
molecular motors may drive the elongation of the MB [19], but
this possibility remains mechanistically unclear. These aspects
have received little attention so far, and much remains to be
done before we can understand how the original architecture
of these cells is adapted to their unusual environment, and to
the mechanical constraints associated with it [7].

We argue here that despite the potential complexity of the
system, the equilibrium between MB elasticity and cortical
tension can be understood in simple mechanical terms. We
first predict that the main cell radius should scale with the
total length of MT polymer and inversely with the cortical
tension, and test the predicted relationship using data from
a wide range of species. We then simulate the shape changes
observed during platelets activation [20], discussing that a
rapid increase of tension leads to MB coiling accompanied
by a shortening of the ring, while a slow increase of tension
leads to a shortening of the ring without coiling. Finally, by
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Fig. 1. A) Scanning electron micrographs of Platelets and Erythrocytes shown at the same scale [6–8], scale bar 1μm. B) The actin/spectrin cortex of platelets, EM from [9],
scale bar 0.5μm. C) The MB of platelets is made of multiple MTs bundled by motors and crosslinkers [10], EM from [6]. D) In our model, the shape of the cell is determined by
the balance of two forces. Because of microtubule stiffness κ, the MB pushes against the tense cortex, which resists by virtue of its surface tension σ.

computing the buckling force of a ring confined within an
ellipsoid, we find that the resistance of the cell to external
forces is dramatically increased compared to the resistance of
the ring alone.

Results

Cell size is controlled by total microtubule polymer and corti-
cal tension. We first apply scaling arguments to explore how
cell shape is determined by the mechanical equilibrium be-
tween MB elasticity and cortical tension. In their resting state,
the cells are flat ellipsoids and the MB is contained in a plane
that is orthogonal to the minor cell axis. Assuming that the
cell is discoid for simplicity (R1 = R2 = R) the major radius R
is also approximately the radius of the MB (Fig 1D), and thus
the MTs bundled together in the MB have a curvature ∼ 1/R.
We first consider timescales larger than the dynamics of MT
crosslinker binding and unbinding (about 10 seconds [21]), for
which we can ignore the mechanical contribution of crosslink-
ers [10]. Using the measured flexural rigidity κ = 22 pNμm2

of MTs [22], and defining L as the sum of all MTs length, the
elastic energy of the MB is EB = κ

2 L/R2. At time scales larger
than a few seconds, the cortex can reorganize and therefore we
do not have to consider its rigidity [23]. Its effect can then be
modeled by a surface energy associated with a surface tension
σ (Fig 1D). The surface area is S = 2πR2[1 + O( r

R
)], in which

2r is the thickness of the cell. Assuming the cell to be flat
enough, its surface area is therefore approximately 2πR2 and
the energy is ET ∼ 2πσR2. The equilibrium of the system
corresponds to ∂R(EB + ET ) = 0, leading to :

R4 = κL
4πσ

. [1]

All other things constant, we thus expect R ∝ L1/4. To verify
this relationship, we compiled data from 25 species available
from the literature [2], computing L by multiplying the number

of microtubules in a cross-section by the length of the marginal
band. The scaling is remarkably respected, over more than
two orders of magnitudes (Fig. 2A). Using equation 1, the fit
provides an estimate of the tension of σ ∼ 0.1pN/μm, which is
low compared to the tension σ ∼ 100pN/μm of the actomyosin
cortex of blebbing cell [24]. However, RBC have a cortex made
of spectrin rather than actomyosin, and thus have a much
lower tension, that compensates a negative membrane tension
[25]. In Human RBC, membrane tension was shown to be
negative with a magnitude of 0.65 pN/μm [26], close to the
magnitude derived from our theory. In contrast to RBC, we
predict σ = 40 pN/μm for Human blood platelets, given that
R ≈ 2μm and L ≈ 100μm [27], which is close to the value
reported for blood granulocytes (35 pN/μm) [14].

The precise scaling observed in the experimental data con-
firms our mechanically driven hypothesis where the MB pushes
on the cell cortex, and in which at long time scales (on the
order of a minute), only the bending rigidity of the MTs and
the cortical tension need to be considered (Fig 1D). To verify
that this result is still valid for a ring of multiple dynamically
crosslinked MTs, we developed a numerical model of cells with
MBs in Cytosim, a cytoskeleton simulation engine [28]. Cy-
tosim simulates stochastic binding/unbinding of connectors,
and represents them by a Hookean spring between two MTs.
For this work, we extended Cytosim to be able to model a
contractile surface under tension that can be deformed by
the MTs. Cell shape is restricted to remain ellipsoidal, and
is described by six parameters: three axes length R1, R2, r
and a rotation matrix, i.e. three angles. The three lengths
are constrained such that the volume of the ellipsoid remains
constant. To implement confinement, any MT model-point
located outside the cell is subject to inward-directed force
f = kδ, in which δ is the shortest vector between the point and
the surface and k the confining stiffness. Here for each force f
applied on a MT, an opposite force −f is applied to the surface,
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DRAFTFig. 2. A) Cell radius as a function of total MT length L. Dots: data from 25 species
([2]). L was estimated from the number of microtubules in a cross-section, measured
in electron microscopy, and the cell radius. B) Cell radius as a function of Lκ/σ in
simulations with 0 (gray points) or 10000 (black points) crosslinkers. On both graphs,
the dashed line indicates the theory 4πR4 = κL/σ.

in agreement to Newton’s third law. The rates of change of
the ellipsoid parameters are then given by the net force on
each axis, divided by μ, an effective viscosity parameter (see
Suppl. 1.I.A). The value of μ affects the rate of cell shape
change but not the stationary cell shape. This approach is
much simpler than using a tessellated surface to represent the
cell, and still general enough to capture the shape of blood
platelets [3, 29] and several RBCs [8, 30], see Fig. 1A.

To model resting platelets, we simulated a ring made of
10–20 MTs of length 9–16μm [4] with 0 or 10000 crosslinkers,
confined in a cell of volume 8.4μm3 with a tension σ ∼ 0.45–
45pN/μm, for over six minutes, until equilibration. We find
that the numerical results agree with the scaling law, over a
very large range of parameter values as illustrated in Fig. 2B.
Interestingly, we find that simulated cells are slightly larger
than predicted analytically. This is because MTs of finite
length do not exactly follow the cell radius, and their ends
are less curved, thus exerting more force on the cell. This
means that the value of the tension we computed from the
biological data (σ ∼ 0.1pN/μm) is slightly under-estimated.
More importantly, the simulation shows that with or without
crosslinkers, the cell has the same size at equilibrium (compare
black and gray dots on Fig. 2B), confirming that, because

Fig. 3. A) MB of a live platelet labeled with SIR-tubulin dye. Fluorescence images
were segmented at the specified time after the addition of ADP, a platelet activator, to
obtain the MB size L. B) Simulation of a platelet at different times. A limited increase
of the tension (90pN/μm) causes the MB to shorten while a large increase of the
tension (220pN/μm) causes the buckling of the MB. C) Simulations show that if
cell rounding is fast enough, the MB buckles because crosslinkers cannot reorganize.
This represent an elastic behavior, but at longer times, the MB rearranges, leading to
a viscoelastic response.

they can freely reorganize, crosslinkers should not affect the
long-term elasticity of the MB. To understand the mechanics
of blood cells with MBs at short time scale, however, it is
necessary to consider the crosslinkers.

The marginal band behaves like a viscoelastic system. Dur-
ing activation, mammalian platelets round up before spreading,
and their MB coils during this process which occurs within a
few seconds [19]. Similar reports were made for thrombocytes
[3]. To observe these results experimentally, we extracted mice
platelets, and activated them by exposing them to adenosine
diphosphate ADP, causing an often reversible response. By
monitoring the MB with SiR-tubulin, a bright docytaxe-based
MT dye, we could capture the MB coiling live, Fig. 3A. As
it coils, the MB adopts the shape of the baseball seam curve,
which is the shape that an incompressible elastic ring would
adopt when constrained into a sphere smaller than its natural
radius [31]. Thus, at short time scale, the MB seems to behave
as an incompressible ring, and we reasoned that this must be
because crosslinkers prevent MTs from sliding relative to each
other. To analyse this process further, we returned to Cytosim.
After an initialisation time, in which the MB assembles as
a ring of MTs connected by crosslinkers, cortical tension is
increased stepwise. The cell as a consequence becomes spheri-
cal, and, because its volume is conserved, the largest radius is
reduced compared to that of the discoid resting state. As a
result, the MB adopts a baseball seam shape (Fig. 3B). Over a
longer period, however, the MB regained a flat shape, as MTs
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rearranged into a new, smaller, ring (Fig. 3A). In conclusion,
the simulated MB is viscoelastic (Fig. 3B). At short time
scales, MTs do not have time to slide, and the MB behaves as
an incompressible elastic ring. At long time scales, the MB
behaves as if crosslinkers were not present, with an overall
elastic energy that is the sum of individual MT energies. Thus
overall, the ring seems to transition from a purely elastic at
short time scales, to a viscoelastic Kelvin-Voigt law at long
time scales (Fig. 3C). The transition between the two regimes
is determined by the timescale at which crosslinkers permit
MTs to slide.

The cell is unexpectedly robust. The MB in blood cells is
necessary to establish a flat morphology, but also to maintain
this morphology in face of transient mechanical challenges,
for example as the cell passes through a narrow capillary [7].
In this section, we calculate the response of a cell to a fast
mechanical stimuli during which crosslinkers do not reorganize.
Therefore, we can assume that the ring is uniform and of
constant length, to investigate how cortical tension affects
the resistance of the cell to coiling. Firstly, we examine the
mechanics of a closed ring of length L and rigidity κr within
a sphere, and then extend these results to a non-deformable
ellipsoid. The shape of a ring in a sphere was previously
calculated numerically [31], and we extended these result by
deriving analytically the force fB required to buckle a confined
ring (see Suppl. 1.II.B). If EB is the energy of a buckled MB,
the force is :

fB = − lim
L→2πR

∂REB = 8π
κr

R2 [2]

We verified this relation in simulations, with L = 2πR(1 + ε),
where 1 � ε > 0, which made the ring slightly oversized
compared to its confinement. Given the confining stiffness k,
the force applied to each model-point of the ring is kRε. If n is
the number of model-points in the rings (i.e. n = L/s where s
is the segmentation), the total centripetal force is nkRε. Hence,
we expect that the ring will buckle if k exceeds kc = 1

nRε
fB.

Upon systematically varying k in the simulation (see Methods),
we indeed found that the ring coils for k > kc, Fig. 4A. We
next simulated oblate ellipsoidal cells, with R1 = R2 = R and
r < R, and we varied the flatness of the cell by changing r/R.
We found that the measured critical confinement k∗ is indeed
kc for r = R, but increases exponentially with 1 − R/r, Fig.
4. The buckling force of a MB is thus much higher when the
MB is confined. This is important mechanically, as it implies
that the flat state of the MB should be metastable, and this
could make a blood platelet 50 times more resilient to buckling
(assuming an isotropy ratio r/R = 0.25).

Coiling stems from cortical tension overcoming MB rigidity.
We can now consider the case of a ring inside a deformable
ellipsoid of constant volume V0 = 4/3πR3

0, governed by a
surface tension σ. The length of the ring L is set with L >
2πR0, such that we expect the ring to remain flat, at low
tension, and to be coiled, at high tension, because it does
not fit in the sphere of radius R0. In simulations, starting
from a flat ring, we observe as predicted the existence of a
critical tension σ∗

f leading to buckling, Fig. 5A. This shows
that increasing σR3

0/κr, i.e. increasing the ratio of cortical
tension over ring rigidity, leads to cell rounding. Thus, either
increasing the cortical tension or weakening the ring will lead

Fig. 4. A) Degree of coiling as a function of normalized confinement stiffness k/kc

and isotropy r/R of the fixed oblate ellipsoid in which the ring is confined. The light
shade indicates regions of uncoiled states and the red area indicates coiled states,
as determined by simulations. The dashed line represents the empirical function

k∗ = kc( r
R )2eα(1− R

r
), where α = 2.587 is a phenomenological parameter that

depends on ε, itself defined from the MB length as L = 2πR(1 + ε). B) Illustrations
of MB shapes in different regimes, as indicated by the circled numbers.

to coiling. Starting from a buckled ring, decreasing the tension
below a critical tension σ∗

b also leads to the cell flattening, as
predicted. However, our simulations show that σ∗

b < σ∗
f : a

cell initially flat will remain flat for σ∗
b < σ < σ∗

f , while a cell
initially round will remain round for σ∗

b < σ < σ∗
f , Fig. 5A,B.

Hysteresis is the hallmark of bistability, and we had predicted
this bistability in the previous section by showing that the
flat configuration is metastable. This metastability, i.e. the
fact that a MB in a flat cell has a higher buckling threshold
than in a spherical cell, allows the cell to withstand very large
mechanical constraints such as shear stresses.

Discussion

We have examined how the forces determining the morphology
of blood cells balance each other. In particular, we predicted
a scaling law 4πR4 = κL/σ, if the elasticity of MTs is com-
pensated by cortical tension, in which L is the sum of the
lengths of the MTs inside the cell, κ the bending rigidity of
MTs and σ the cortical tension. Remarkably, this scaling
law is well respected by values of R and L measured for 25
species. We caution that these observations were made for
non-discoidal RBC (where the two major axes differ), indicat-
ing that other factors not considered here must be at work
[7]. In human RBC, perturbation of the spectrin meshwork
can lead to elliptical RBC [32], showing that the cortex can
impose anisotropic tensions, while another study suggests that
MB-associated actin can sequester the MB into an elliptical
shape [33]. Cortical anisotropy would be an exciting topic
for future studies, but this may not be needed to understand
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Fig. 5. A) Configuration of the MB as a function of renormalized tension σR3

0/κr

and renormalized MB length L/R0, in which the volume of the cell is 4
3 πR3

0. The
state of the MB is indicated by colours: gray: flat MB ; red : always buckled MB ; pink :
bistable region, in which the MB can be either buckled or flat. B) A cut through the
phase diagram, for a MB of length L = 7.3R0. The degree of coiling (see methods
for definition) as a function of tension, in a cell initially flat (black dots) or buckled (gray
dots), shows the metastability of the flat state. Arrows illustrate the hysteresis.

wild-type mammalian platelets.
Using analytical theory and numerical simulations, we ana-

lyzed the mechanical response of cells with MB, and showed a
complex viscoelastic behavior characterized by a timescale τc

that is determined by crosslinker reorganization. At long time
scales (t � τc), the MB behaves elastically, and its elasticity
is the sum of all MTs rigidity. At short time scales (t < τc),
the MB behaves as an incompressible elastic ring of fixed
length because crosslinkers do not yield. At this time scale,
the stiffness of the ring exceeds the sum of the individual MT
stiffness as long as the crosslinkers connect neighboring MT
tightly [34]. Buckling leads to the baseball seam curve, which
is a configuration of minimum elastic energy. This explains
the coiled shape of the MB observed in mouse platelets, as
well human platelets [19] and well as dogfish thrombocytes
[3]. Thus an increase of cortical tension over bundle rigidity
can cause coiling, if the cell deforms faster than the MB can
reorganize. A fast increase of tension is a likely mechanism
supported by several experimental evidence [35–37]. In dog-
fish thrombocytes and platelets, blebs are concomitant with
MB coiling, suggesting a strong increase of cortical tension
[3]. We note however that a recent study suggests that MB
destabilization could be due to ring extension [19].

Finally, calculating the buckling force of a cell containing an
elastic MB and a contractile cortex led to a surprising result.
We found that the buckling force increased exponentially with
the cell flatness, because the cortex reinforces the ring laterally.
This makes the marginal band a particularly efficient system to
maintain the structural integrity of blood cells. For transient
mechanical constraints, the MB behaves elastically and the
flat shape is metastable, allowing the cell to overcome large
forces without deformation. However, as we observed, the
viscoelasticity of the MB allows the cell to adapt its shape

when constraints are applied over long timescales, exceeding
the time necessary for MB remodeling by crosslinker binding
and unbinding. This study suggest that it will be particularly
interesting to compare the time-scale at which blood cells
experience mechanical stimulations in vivo, with the time
scale determined by the dynamics of the MT crosslinkers.

Methods

MTs of persistence length lp are described as bendable fila-
ments of rigidity κ = kBT lp, in which kBT is the thermal
energy. We can write the energy of such a filament of length
L as the integral of its curvature squared :

E = κ

2

∫ L

0

(
d2r
ds2

)2

ds [3]

Where r(s) is the position as a function of the arclength s along
the filament. The dynamics of such a system was simulated
in Cytosim, an Open Source simulation software [28]. In
Cytosim, a filament is represented by model points distributed
regularly defining segments of length s. Fibers are confined
inside a convex region of space Ω by adding a force to every
model points that is outside Ω. The force is f = k(p − r),
where p is the projection of the model point r on the edge
of Ω. For this work, we implemented a deformable elliptical
surface confining the MTs, parametrized by six parameters.
The evolution of these parameters is implemented using an
effective viscosity (see Suppl. 1.I.C). To verify the accuracy
of our approach, we first simulated a straight elastic filament,
which would buckle when submitted to a force exceeding
π2κ/L2, as shown by Euler. Cytosim recovered this result
numerically. For a closed circular ring, we also find that
the critical tension necessary for buckling corresponds very
precisely to the theoretical prediction [38]. This is also true
for an elastic ring confined inside a prolate ellipsoid of tension
σ (see Suppl. 1.I.D).

To simulate cell radius as a function of Lκ/σ, we used a
volume of 8π/3μm3 (close to the volume of a platelet), with
a tension σ ∼ 0.45–45pN/μm, consistent with physiological
values. The MTs have a rigidity 22 pN μm2 as measured
experimentally [22]. We simulate 10 − 20 MTs of length 9 −
16μm, and with a segmentation of 125nm, we used more than
70 points per MTs. The crosslinkers have a resting length
of 40nm, a stiffness of 91pN/μm, a binding rate of 10s−1, a
binding range of 50nm, and an unbinding rate of 6s−1. An
example of simulation configuration file is provided in Suppl.
2. When considering an incompressible elastic ring, we used a
cell of volume 4/3πR3

0, where R0 is the radius of the resting
(spherical) cell. For simplicity, we can renormalize all lengths
by R0 and thus all energies by κR/R0. We simulate a cell with
a tension σ = 5−18κR/R3

0, and a ring of length 1−1.2×2πR0.
To test the effect of confinement, we place an elastic ring of
rigidity κ in an ellipsoid space of radii R0, R0, r R0, in which
r < 1. The elastic ring has a length (1 + ε)2πR0, in which
ε = 0.05. To describe how coiled is a MB, we first perform a
principal component analysis using all the MTs model points.
The vector uz is then set in the direction of the smallest
eigenvalue while ux, uy are set orthogonally. We can then
define the degree of coiling C as the deviation in Z divided by
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the deviations in XY :

C =

√ ∑
z2∑

x2 + y2 [4]

Thus, C is independent of the size of the cell and only measures
the deformation of the MB. To measure the critical value of a
parameter μ (e.g. tension or confinement) leading to coiling,
we computed the derivative of the degree of coiling C with
respect to this parameter. Because buckling is analogous to a
first-order transition, the critical value μ∗ can be defined by :

∂μC
∣∣
μ∗ = max ‖∂μC‖ [5]

Platelets were extracted using a previously published pro-
tocol [39], and labeled by SiR-tubulin [40] purchased from
Spirochrome.
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Figure Legends

1 A) Scanning electron micrographs of Platelets and Ery-
throcytes [6–8], scale bar 1μm. B) The actin/spectrin cortex
of platelets, EM from [9], scale bar 0.5μm. C) The MB of
platelets is made of multiple MTs bundled by motors and
crosslinkers [10], EM from [6]. D) In our model, the shape of
the cell is determined by the balance of two forces. Because
of microtubule stiffness κ, the MB pushes against the tense
cortex, which resists by virtue of its surface tension σ.

2 A) Cell radius as a function of total MT length L. Dots:
data from 25 species ([2]). L was estimated from the num-
ber of microtubules in a cross-section, measured in electron
microscopy, and the cell radius. B) Cell radius as a function
of Lκ/σ in simulations with 0 (gray points) or 10000 (black
points) crosslinkers. On both graphs, the dashed line indicates
the theory 4πR4 = κL/σ.

3 A) MB of a live platelet labeled with SIR-tubulin dye.
Fluorescence images were segmented at the specified time
after the addition of ADP, a platelet activator, to obtain the
MB size L. B) Simulation of a platelet at different times.
A limited increase of the tension (90pN/μm) causes the MB
to shorten while a large increase of the tension (220pN/μm)
causes the buckling of the MB. C) Simulations show that if cell
rounding is fast enough, the MB buckles because crosslinkers
cannot reorganize. This represent an elastic behavior, but
at longer times, the MB rearranges, leading to a viscoelastic
response.

4 A) Degree of coiling as a function of normalized con-
finement stiffness k/kc and isotropy r/R of the fixed oblate
ellipsoid in which the ring is confined. The light shade in-
dicates regions of uncoiled states and the red area indicates
coiled states, as determined by simulations. The dashed line
represents the empirical function k∗ = kc( r

R
)2eα(1− R

r
), where

α = 2.587 is a phenomenological parameter that depends on
ε, itself defined from the MB length as L = 2πR(1 + ε). B)
Illustrations of MB shapes in different regimes, as indicated
by the circled numbers.

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dmitrieff et al.
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DRAFT

5 A) Configuration of the MB as a function of renormalized
tension σR3

0/κr and renormalized MB length L/R0, in which
the volume of the cell is 4

3 πR3
0. The state of the MB is indicated

by colours: gray: flat MB ; red : always buckled MB ; pink
: bistable region, in which the MB can be either buckled or

flat. B) A cut through the phase diagram, for a MB of length
L = 7.3R0. The degree of coiling (see methods for definition)
as a function of tension, in a cell initially flat (black dots) or
buckled (gray dots), shows the metastability of the flat state.
Arrows illustrate the hysteresis.
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1 Simulation of microtubules/cortex interaction

To understand cell shape maintenance, one needs to model the interaction between the cellular cortex and the
microtubule marginal band. The structure of the marginal band is well known, compared to the organization of
the cortex which is not caracterized. We thus decided to represent the microtubules individually, and the cortex
effectively as a continuous deformable surface. Treating the interactions between a discretized (e.g. triangulated)
surface and discrete filaments can be demanding computationally, since such a surface would have a very large
number of degrees of freedom. In contrast, we describe here how the problem remains relatively simple for a
continuous shape that is described by a limited number of parameters.

1.1 General Formulation

1.1.1 Forces and Parametrization

Let S(pk) be the surface defined by the set of parameters {pk}k<n. Let {fi}i<m be the set of forces applied on S
at the points {ri}i<m. They are defined by −fi = ∂E/∂ri, where E is the energy of the system (excluding the
surface). One can define “effective forces” {φk}k<n associated with each degree of freedom of the surface :

φk = − ∂E

∂pk
=

∑
i<m

fi.
∂ri
∂pk

(1)

We can define δE the infinitesimal change in energy after an infinitesimal set of displacements δri, and then
compute it as a function of the infinitesimal set of parameter changes δpk.

δE = −
∑
i

δri.fi (2)

δri =
∑
k

δpk
∂ri
∂pk

(3)

δE = −
∑
k

δpkφ
k (4)

To write equation 3, we had to assume that any displacement of the surface (allowed by the constraints) can be
described in terms of pk, i.e. that S({pk}) is surjective. It is here interesting to notes that φk has the dimension
of a force if pk is a length, while it has the dimention of a torque (i.e. an energy) is pk is an angle.

1.1.2 Constraints

In many cases, constraints can be introduced using Lagrange multipliers, by inserting them into the energy E.
For instance, to maintain the volume, we can define an energy E′ = E+PV where V is the volume and P is the
pression ; here P is also a Lagrange multiplier and we have to calculate its value appropriately to obtain V = V0.
The pseudo-forces φk

P associated to pressure are :

φk
P = −P

∂V

∂pk
(5)

1.2 Deformable Ellipsoid

In this section, we describe a more complex, 3D surface. We model an ellipsoid centered around the origin, with
a fixed volume V0 and a surface tension σ, which an associated energy En = σS, if S is the surface area of the
ellipsoid. The ellipsoid is described by its eigenvectors u1,2,3 and their eigenvalues (i.e. the radii of the ellipse)
a1,2,3. We will also use the orientation matrix M = [u1,u2,u3]. By construction, M is a rotation matrix of
determinant 1.

1.2.1 Surface Tension

We can compute the pseudo-forces associated to surface tension as:

φk
σ = −σ

∂S

∂ak
(6)

The surface area of an ellipsoid is a complex special function that is not a combination of the usual functions.
For convenience, we used an analytical approximation of the area :

S(a1, a2, a3) � 4π

(
(a1a2)

p + (a3a2)
p + (a1a3)

p

3

) 1
p

(7)

For which p = 1.6075 is an empirical parameter. This formula yields an error usually below a percent.
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1.2.2 Point-forces

To add the contribution of the external forces exerted by the microtubules on the surface, we need to determine
∂r/∂pk. The position of a point on the surface of the ellipsoid is defined by two angles θ, φ as :

r = u1r1 cos θ sinφ+ u2r2 sin θ sinφ+ u3r3 cosφ (8)

Therefore, we have :

∂r

∂rk
= r.uk (9)

It is clear that only the component of the force normal to the surface is providing work upon changing rk,
therefore, we can discard the tangential component when computing the radial forces. The contribution of a
force f at a point r with a local normal n to the pseudo force φk

f is therefore :

φk
f = fn

n.uk

‖uk‖ (10)

With : fn = f .n (11)

We can now compute the torque generated by f . In 2D, it would be convenient to describe the ellipse
orientation by an angle θ, and the result is that the ”angular force” φθ is the torque r× f . We will assume that
this is general and stays true in 3D ; thus we can write φang directly as a vector :

φang = r× f (12)

1.2.3 Volume conservation

To implement volume conservation we only need to find a pressure P such that (V − V0)/V0 < ε where ε is a
(small) tolerance parameter. Many techniques allow the convergence to a suitable value of P - and the choice of
method has no physical implication. Here we used a gradient descent method known as the shooting method.
For this, we start with an initial value of P = 0 and we compute V (P ). If |V (P ) − V0|/V0 > ε, we compute
V (P + δP ) to get the gradient of the volume with respect to pressure. We then follow this gradient until we
reach the desired aim for V . This method works very well if V (P ) is monotonous, which is always the case here.

The volume of the ellipse is V = 4
3πa1a2a3 and therefore, using the Lagrange multiplier P to conserve the

volume we can write :

φk
P =

4

3
πP

a1a2a3
ak

(13)

1.3 Time Evolution

We can now define the time evolution of the ellipse. We assume a unique viscosity μ associated to the change of
size of the ellipse, and a rotational viscosity ηang.

ȧk =
1

μ

(
φk
P + φk

σ +
∑

φk
f

)
(14)

Ṁ = R (u) with u =
1

ηang

∑
φang

f (15)

In which R(u) is the rotation matrix generated from the moment vector u.

1.4 Validations

To validate our numerical method and its implementation, we first simulated a microtubule bundle confined
inside an ellipsoid cell of tension σ and volume 4

3πR
3
0. A classical result of analytical mechanics is that a filament

should buckle under a force tangential force f is this force is larger than a critical force :

f∗
1 =

κπ2

L2
(16)

Assuming the microtubules to be sliding freely, the critical buckling force of a microtubules is thus f∗
n = nf1.

We confined the microtubule in a deformable ellipsoid, which thus takes the shape of a prolate ellipsoid. Let us
call a1 = R the longer axis of this ellipsoid, and the shorter axis are a2, a3 =

√
R3

0/R. The force exerted on the

microtubule is fσ = 2σ∂RS(R,
√
R3

0/R,
√

R3
0/R), with S defined in equation 7. Starting with a microtubule of

length L, buckling will occur for a critical tension :

σ∗ =
κπ2

2R2

(
∂RS(R,

√
R3

0/R,
√

R3
0/R)

)−1

(17)

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2016. ; https://doi.org/10.1101/086728doi: bioRxiv preprint 

https://doi.org/10.1101/086728
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5

5

7.5

10

2.1 2.2 2.3 2.4 2.5 2.6

te
n
si
o
n
σ
/
(κ
/
R

3 0
)

length L/R0

Figure 1: Phase diagram of the degree of buckling as a function of the length and the tension. Red means that
the filament is buckled, gray that it is flat. The dashed line represents the critical tension calculated in Eq. 17.

2 Mechanics of a Confined Elastic Ring

2.1 Formulation

Let us consider a rod of length L lying on a sphere of radius R. We can describe this rod by its position r,
parametrized by its arclength s, such that the energy reads :

E(R,L) =
κ

2

∫ L

0

r̈2ds (18)

Because the rod lies on the unit sphere, and because s is the arclength, we have the constraints :

‖r‖2 = R2 and ‖ṙ‖2 = 1 (19)

We can introduce this as constraints in the energy using two Lagrange multipliers α and β, to define :

E =
κ

2

∫ L

0

[
r̈2 + α(R2 − ‖r‖2) + β(‖ṙ‖2 − 1)

]
ds (20)

Minimizing this energy yields the Euler-Lagrange equation :

r(4) = α r+ β̇ ṙ+ β r̈ (21)

Since the curve is lying on a sphere, we can use the identity :

r̈(s) = ki(s) [r(s)× ṙ(s)]− 1

R2
r(s) (22)

In which k(i) is the intrinsic (geodesic) curvature. Eventually, we find :

k̈i =
ki
R2

(
γ − R4

2
k2i

)
(23)

In which γ is a constant [1]. To find the shape of a closed ring, one needs to find the value of α and ki(0) such
that the curve is of length L is a closed ring, i.e. :

r(L) = r(0) and ṙ(L) = ṙ(0) (24)

Numerically, we determined γ and ki(0) using a shooting method.

2.2 Case of a Weakly Deformed Ring

For a weakly deformed ring, equation 23 can be simplified to

k̈i =
γ

R2
ki (25)
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Figure 2: Bending energy of an incompressible elastic ring of length 2πR0 (the marginal band) in a sphere of
radius R < R0. The solid line represents the numerical solution to the Euler-Lagrange equations (Eq. 23), while
the dashed line represents the small deformation approximation, Eq. 33.

Periodicity imposes
√−γ → m when L → 2πR, in which m ∈ N. Since the lowest energy curve has a period

L/2, we can conclude that m = 2, i.e. γ → −4 for L → 2πR. Although analytically solving the full shape
equation R(s) is arduous [2] even in this weakly deformed approximation, we can construct a shape equation
that satisfies Eq. 25 for small deformation as follows:

R = R

⎛
⎝(1− b) sin t+ b sin 3t
(1− b) cos t− b sin 3t

2
√

(1− b)b cos 2t

⎞
⎠ (26)

In which 0 ≤ t ≤ 2π is a angle coordinate. For small deformations b → 0, one finds :

ki(s) = 6
√
b cos 2s/R+O

(
b

3
2

)
(27)

k̈i(s) = γ × 6
√
b cos 2s/R+O

(
b

3
2

)
, (28)

with γ = −4 as expected. From equation 26, we can compute the bending energy of the marginal band :

E(R, b) =

∫ 2π

0

(
1

R2
+ k2i

)
‖∂tR‖2dt (29)

For small deformations b → 0, we have :

E(R, b) =
κ

2R

(
2π + 36πb+O

(
b2
))

(30)

We can also compute the length of the marginal band, and the energy :

L(R, b) = 2πR
(
1 + 6b+O

(
b2
))

, (31)

E(R,L) → κ

2R

(
2π + 3

L− 2πR

R

)
(32)

We then find the force exerted by a nearly flat ring on the sphere L = 2πR:

fB = lim
L→2πR

∂RE(R,L) =
8πκ

R2
(33)

This result is in agreement with solving the full shape equation (Eq. 23), as illustrated in figure 2. fB is the force
exerted by a nearly flat ring on a sphere; by construction it is also the critical force at which a ring will buckle.
Numerically, we can study ring buckling in two cases : when the ring is undergoing an elastic confinement, and
when the ring is confined by a deformable ellipsoid.

2.3 Ring under Elastic Confinement

Let us consider a ring of length L confined in a a sphere of radius R such that L = 2π(R + ε) by an elastic
confinement k (see [3] for the implementation of confinement). The confinement force is here fc = knε, in which
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n is the number of points describing the discrete ring. The ring will buckle if fc > fB ; using Eq. 33, we find
that the ring will buckle above a critical confinement :

kc =
8πκ

nεR2
, (34)

in which n = L/s, where s is the segmentation.

2.4 Ring Confined in a Deformable Ellipsoid

Using our computed value of fB , we can compute analytically the critical value of the tension that will buckle
a ring in a deformable space, assuming that space to be ellipsoid and near-spherical. For this, we take the very
same approach as we did for the bundle in a prolate ellipsoid, although now the ellipsoid is oblate, and the
buckling force is that of a ring rather than an open bundle.

σ∗ =
fB

∂RS(R,R,R3
0/R

2)
(35)
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% This is a configuration file for cytosim
% www.cytosim.org
% Cytosim is an Open Source project available on:
% http://www.github.com/nedelec/cytosim
%
% This is a supplementary material to:
% << Balance of microtubule stiffness and cortical
%  tension determines the size of blood cells with
%  marginal bands across species >>
% Serge Dmitrieff, Adolfo Alsina, Aastha Mathur
%   and Francois Nedelec; November 1st 2016
%
% Note that this simulation will abort, because the
% ‘Deformable Ellipse' specifically developed for
% this study will only be released once the article
% is accepted.
% Github will be updated prior to publication, 
% to allow anyone to run this model is full.

%%%%%%%%%%%% Setup

set simul Platelets
{
    time_step = 0.01
    viscosity = 1
    display = ( back_color=white; inner_color=white; 
point_value=0.01; style=3; )
}

set space fixed_cell
{
    geometry = ellipse 2 2 0.5
    display = ( color=0xFFDDDD44; )
}

set space deformable_cell
{

    geometry = contractile  2 2 0.5
    tension = 7
    viscosity = 400, 500
    accuracy = 0.001
    display = ( color=0x00000011; )
}

set fiber microtubule
{
    rigidity = 10
    segmentation = 0.25
    confine = inside, 100, fixed_cell
    display = ( color=dark_green; line=2.5; )
}

%%%%%%%%%%%% Simulate Microtubules

new space fixed_cell

new 18 fiber microtubule
{
    length = 7
}

run simul *
{
    nb_frames  = 1
    nb_steps   = 100
}

%%%%%%%%%%%% Switch to Contractile Ellipse

new space deformable_cell

change fiber microtubule
{
    confine = inside, 200, deformable_cell

.
C
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}

delete space fixed_cell

run simul *
{
    nb_frames  = 40
    nb_steps   = 400
}

%%%%%%%%%%%% Add Crosslinkers

set hand binder
{
    binding_rate = 10
    binding_range = 0.05
    unbinding_rate = 6
    unbinding_force = 6
    display = ( size=3; color=red; )
}

set couple crosslinker
{
    hand1 = binder
    hand2 = binder
    length=0.04
    stiffness = 200
    fast_diffusion = 1
}

new 30000 couple crosslinker

%%%%%%%%%%%% Simulate Ring

run simul *
{
    nb_frames  = 100

    nb_steps   = 1000
}

%%%%%%%%%%%% Increase tension & Simulate 

change space deformable_cell
{
    tension=400
}

run simul *
{
    nb_frames  = 700
    nb_steps   = 7000
}
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