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Abstract

In the database retrieval and nearest neighbor classification tasks, the two ba-

sic problems are to represent the query and database objects, and to learn the

ranking scores of the database objects to the query. Many studies have been con-

ducted for the representation learning and the ranking score learning problems,

however, they are always learned independently from each other. In this paper,

we argue that there are some inner relationships between the representation

and ranking of database objects, and try to investigate their relationships by

learning them in a unified way. To this end, we proposed the Unified framework

for Representation and Ranking (UR2) of objects for the database retrieval and

nearest neighbor classification tasks. The learning of representation parameter

and the ranking scores are modeled within one single unified objective function.

The objective function is optimized alternately with regarding to representation

parameter and the ranking scores. Based on the optimization results; iterative

algorithms are developed to learn the representation parameter and the ranking

scores on a unified way. Moreover, with two different formulas of representation

(feature selection and subspace learning), we give two versions of UR2. The pro-

posed algorithms are tested on two challenging tasks - MRI image based brain

tumor retrieval and nearest neighbor classification based protein identification.

The experiments show the advantage of the proposed unified framework over
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the state-of-the-art independent representation and ranking methods.

Keywords: Database retrieval, Nearest neighbor classification, Data

representation, Ranking score learning

1. Introduction1

In the database retrieval and nearest neighbor classification tasks, given a2

query object, we try to find some relevant objects from a database [1, 2]. The3

relevant objects here are defined as the objects of the same semantical class.4

For example, in the brain tumors diagnosis problem, given a tumor region in a5

Magnetic Resonance Imaging (MRI) image as a query, it could be very helpful for6

the diagnosis to retrieve tumors of the same pathological category from a brain7

MRI scans database [3]. While in drug discovery problem, given a query protein,8

it could also be useful to find the proteins sharing the same specific chemical9

properties or similar structure as the query protein from a protein database, so10

that they can be used as sources for the treatment [4]. To this end, in a typical11

database retrieval system, the feature vectors are usually first extracted from12

both the query and database objects, and then the query is compared against13

each database object to compute the similarities or dissimilarities using their14

feature vectors. Finally, all the database objects will be ranked according to15

their similarities to the queries in the descending order, and a few number of16

them with the largest similarities will be returned to the user, or used to make17

a classification decision. Because the similarity is used for ranking the database18

objects, it is also called ranking score [5].19

Two fundamental problems have been studied widely is the learning of the20

representations of the objects feature vectors, and the learning of the ranking21

scores of the database objects to the query, as listed as follows:22

• Representation: The original features extracted from the objects are23

usually very high-dimensional, redundant, sometimes noisy, and only oc-24

cupying a part of the input space. Thus the original features may not cap-25

ture the semantical information and could not be used directly to retrieve26

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2016. ; https://doi.org/10.1101/086678doi: bioRxiv preprint 

https://doi.org/10.1101/086678
http://creativecommons.org/licenses/by-nc-nd/4.0/


the relevant objects very well. In this case, it’s necessary to represent the1

feature vectors to another dataspace so that they could be represented2

better for the retrieval task. Many representation methods can be consid-3

ered, such as feature selection [6], subspace learning [7], sparse coding [8],4

nonnegative matrix factorization [9], hashing [10], etc. In this paper, we5

will focus on the feature selection and subspace learning problem.6

– To handle the redundant and noisy features, feature selection is7

desired. Feature selection assigns different feature weights to different8

features, so that the useful features will be emphasized while the9

redundant and noisy features will be restrained [6].10

– To handle the the high-dimension problem of the feature vectors, the11

subspace learning could be employed for dimensionality reduction.12

Subspace learning maps the input feature vectors into a lower dimen-13

sional space, by using an optimal linear mapping matrix [7].14

Many feature selection and subspace learning methods have been proposed15

to refine the original features, which could be classified into two types16

— supervised and unsupervised representation methods. The supervised17

method uses the class labels to guide the learning procedure, however, in18

database retrieval problems, the objects are usually not annotated, thus19

unsupervised representation is more suitable in this task.20

• Ranking Score Learning: To compute the ranking score of a database21

object to a query, a distance or similarity measure could be employed to22

compare them, such as Euclidean distance, cosine similarity, etc. This type23

of methods is called pairwise similarity, and they only consider the query24

and objects to compare, while neglecting the manifold structure of the25

database. To handle this problem, the manifold ranking (MR) has been26

proposed by Zhou et al. [11], so that the ranking score could be learned27

with respect to the manifold structure of the database, which is charac-28

terized by a nearest neighbor graph constructed from the database. More-29
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over, Yang et al. [5] proposed the Local Regression and Global Alignment1

(LRGA) based ranking method to further improve the manifold ranking2

by using the local linear regression model for the ranking score learning3

problem.4

The representation parameter is usually learned first, and then used to rep-5

resent both the query and database objects. Based on the new representation,6

some ranking score learning algorithm will be applied for the ranking prob-7

lem. Thus the representation and the ranking are conducted sequentially and8

independently. An important assumption behind this strategy is that the rep-9

resentation and the ranking are independent from each other, thus the possible10

inner relationships between them, which is not clear yet, has been ignored. It’s11

very interesting to notice that in [5], Yang et al. has applied the same LRGA12

model for both ranking and subspace learning. However, this model has been13

applied to the ranking and subspace learning respectively. In this paper, we ar-14

gue that the representation and ranking should be considered in an unified way,15

so that we could investigate the possible relationships between them. Given a16

representation method, the ranking should be adjusted to the representation17

parameter. Moreover, given the ranking scores, the representation parameters18

should also be refined according to the ranking results.19

To this end, we try to propose an unified framework for both the represen-20

tation parameter learning and the ranking score learning, by constructing an21

unified objective function. The object representations parameterized by rep-22

resentation parameters will be used to compute the ground distances between23

query and database objects, and the the ground distances will be further used24

to regularize the ranking scores. At the same time, the ranking score will also25

be regularized by the manifold structure of the database. In this way, an unified26

objective function is built. The objective function will be optimized with regard27

to representation parameter and the ranking score alternately in an iterative al-28

gorithm. When the representation parameter is optimized, ranking score will be29

fixed, and then their role will be switched. Once the representation parameter30
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is learned in the training procedure, it will be used to represent the new query1

object and rank the database objects. The contribution of this paper is listed2

as follows:3

1. An unified framework for representation and ranking is proposed. Though4

we only discuss the feature selection and subspace learning as examples5

of representation, it could be extended to other representation methods6

easily, such as sparse coding, nonnegative matrix factorization, etc.7

2. An iterative algorithm is proposed for the learning of representation pa-8

rameters and ranking scores.9

The remainder of this paper is organized as follows: In Section 2, we present10

the unified framework for representing and ranking. In Section 3, we apply the11

proposed framework to the brain tumor retrieval and nearest neighbor protein12

classification applications and show the experimental results. The conclusions13

and future works are given in Section 4.14

2. Unified Framework for Representing and Ranking15

In this section, we will introduce the novel framework for data object repre-16

sentation and ranking in database retrieval and nearest neighbor classification17

tasks.18

2.1. Objective Function19

Suppose we have a database with N database objects, we denote it as D =20

{x1, · · · ,xN} ∈ RP , where xi = [xi1, · · · , xiP ]
⊤ ∈ RP is the P dimensional21

feature vector of the i-th database object. Given a query object, we denote it22

as y ∈ RP , where y = [y1, · · · , yP ]⊤ ∈ RP is the P dimensional feature vector23

the query object. The task of database retrieval is to rank the database objects24

in D according to the similarity between y and each xi ∈ D, and then return25

then few top ranked ones as retrieval results. To this end, we need to learn the26

nonnegative ranking score for each xi, denoted as fi, as the similarity measure27

between y and xi. The ranking scores of all the database objects are further28

5
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organized as a ranking score vector f = [f1, · · · , fN ]⊤ ∈ RN
+ . Moreover, instead1

of using the original features of query object y and the database object xi, we2

also consider to represent them by feature selection or subspace learning. The3

represented query and database objects are denoted as yΘ ∈ RP ′
and xΘ

i ∈ RP ′
,4

where Θ is the representation parameter, and P ′ is the dimension of the feature5

space of the new representation.6

To learn the representation parameter Θ and the ranking score vector f in an7

unified way, we will formulate the learning problem by an unified objective func-8

tion. We will consider the following two regularization terms when constructing9

the objective function:10

Ground distance regularization : Given a query object represented as yΘ,11

and a database object represented as xΘ
i , parameterized by Θ, we could12

compute the squared Euclidean distance between them as the ground dis-13

tance: ||yΘ−xΘ
i ||22. If the ground distance of query to i-th database object14

is short, it’s natural to expect the ranking score of i-th database objective15

is large; and vice versa. We model the regularization of ground distance16

with the following minimization problem:17

min
f∈RN

+ ,Θ

N∑
i=1

∥∥yΘ − xΘ
i

∥∥2
2
fi (1)

Manifold regularization : Based on the manifold assumption [12], which as-18

sumes that all the database objects lie on a low-dimensional manifold, we19

also try to regularize the ranking scores by manifold information. The20

manifold can be approximated linearly in a local area of the feature space21

of the database objects. Therefore, we assume that a database object xi22

can be approximated by linearly reconstructing from its K nearest neigh-23

bors xj ∈ Ni, as xi ≈
∑

j:xj∈Ni
Aijxj , where Aij is the reconstruction24

coefficient which summarizes the contribution of xj to the reconstruction25

of xi. Following Locally Linear Reconstruction (LLR) [13], the coeffi-26

cients Aij , j = 1, · · · , N could be obtained by minimizing the squared27

6
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reconstruction error as:1

min
Ai1,··· ,AiN

∥∥∥∥∥∥xi −
N∑
j=1

Aijxj

∥∥∥∥∥∥
2

2

s.t.

N∑
j=1

Aij = 1, Aij ≥ 0, j = 1, · · · , N,

Aij = 0, if xj /∈ Ni

(2)

This problem could be solved as a Quadratic programming (QP) prob-2

lem. The solved reconstruction coefficients are organized in a matrix3

A = [Aij ] ∈ RN×N
+ . With the reconstruction coefficient matrix, we could4

formulate the manifold assumption to ranking scores by5

min
f∈RN

+

N∑
i=1

∥∥∥∥∥∥fi −
N∑
j=1

Aijfj

∥∥∥∥∥∥
2

2

(3)

By solving this problem, we imply that a ranking score fi could also be6

recontracted from the ranking scores fj of its neighbors xj ∈ Ni. The7

manifold assumption is imposed to the ranking score by sharing the same8

local linear reconstruction coefficients Aij between the feature space and9

the ranking score apace.10

By combining the two regularization terms in (1) and (3), we could have the11

following objective function for the learning of f and Θ:12

min
f∈RN

+ ,Θ

N∑
i=1

∥∥yΘ − xΘ
i

∥∥2
2
fi + α

N∑
i=1

∥∥∥∥∥∥fi −
N∑
j=1

Aijfj

∥∥∥∥∥∥
2

2

(4)

where α is a trade-off parameter.13

We also suppose we have a query set with M query objects for the training14

procedure, denoted as Q = {y1, · · · ,yM} ∈ RP , where yk = [yk,1, · · · , yk,P ]⊤ ∈15

RP is the P dimensional feature vector of the k-th data object. When k-th16

query yk is available in the training query set Q, we denote the ranking score17

vector for the k-th query object as fk = [f1k, · · · , fNk]
⊤ ∈ RN

+ , where yik is the18

7
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ranking score of i-th database object against k-th query object. We define the1

ranking score matrix as F = [f1, · · · , fM ] = [fik] ∈ RN×M
+ , with its k-th collum2

as the ranking score vector of k-th query. Then the objective function could be3

extended to the following one by applying the objective function to each query4

and summing them up:5

min
F∈RN×M

+ ,Θ

M∑
k=1

 N∑
i=1

∥∥yΘ
k − xΘ

i

∥∥2
2
fik + α

N∑
i=1

∥∥∥∥∥∥fik −
N∑
j=1

Aijfjk

∥∥∥∥∥∥
2

2

 (5)

By minimizing the objective function in (5), we try to find the optimal ranking6

scores for the queries in Q, and the representation parameter Θ for both the7

query and databases objects in Q and D simultaneously.8

2.2. Optimization9

To optimize the objective function (5), we adopt the alternate optimization10

strategy. F and Θ will be optimized alternatively in an iterative algorithm, and11

in each iteration, one of them will be solved or updated, while the other fixed,12

then their role will be switched.13

2.2.1. Optimizing F while fixing Θ14

By fixing the representation parameter Θ, and defining the ground distance15

matrix D = [dΘik] ∈ RN×M with dΘik = ||yΘ
k − xΘ

i ||22, the problem (5) could be16

rewritten in matrix formula as,17

min
F∈RN×M

+

M∑
k=1

N∑
i=1

dΘikfik + α
M∑
k=1

N∑
i=1

∥∥∥∥∥∥fik −
N∑
j=1

Aijfjk

∥∥∥∥∥∥
2

2

= Tr(F⊤D) + αTr
[
F⊤(I −A)⊤(I −A)F

]
= Tr(F⊤D) + αTr(F⊤LF )

(6)

where L = I−2A+A⊤A ∈ RN×N . We introduce the lagrange multiplier matrix18

Φ = [ϕik] ∈ RN×N for the constrain of F ∈ RN×M
+ , where ϕik is the lagrange19

8
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multiplier for constraint fik ≥ 0. The lagrange function L of the optimization1

problem is2

L = Tr(F⊤D) + αTr(F⊤LF ) + Tr(F⊤Φ) (7)

By setting the derivative of L with respect to F to zero, we have3

∂L
∂F

= D + 2αLF +Φ

= D + 2α(I − 2A+A⊤A)F +Φ = 0

(8)

Using the KKT condition [Φ] ◦ [F ] = 0, where [·] ◦ [·] denotes the element-wise4

matrix product, we get the following equation:5

[D + 2α(I +A⊤A)F − 4αAF ] ◦ [F ] = 0

⇒ [D + 2α(I +A⊤A)F ] ◦ [F ] = [4αAF ] ◦ [F ]
(9)

which leads to the following update rule for F6

F ← [4αAF ]

[D + 2α(I +A⊤A)F ]
◦ [F ] (10)

where [·]
[·] denotes the element-wise matrix division.7

2.2.2. Optimizing Θ while fixing F8

To optimize Θ, we first need to specify the form of data representation9

which transfer a the original feature vector x ∈ RP to it newly represented10

feature vector xΘ ∈ RP ′
, which is parameterized by Θ. Here we consider the11

feature selection and subspace learning as data representation methods, which12

are introduced as follows:13

Feature Selection : Given a P dimensional feature vector x = [x1, · · · , xP ]
⊤

14

of a object, not all the features are relevant to the task in hand, and15

many of them might be noisy features. We try to assign each feature with16

different feature weight, so that the important features will be emphasized17

and the noisy features will be restrained. To this end, we introduce the18

nonnegative feature weight vector t = [t1, · · · , tP ]⊤ ∈ RP
+ to parameterize19

9
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the feature selection, where tp is the weight for the p-th feature. The1

constrains tp ≥ 0 and
∑P

p=1 tp = 1 are introduced to t to prevent the2

negative weight. The feature vector could then be represented as3

xΘ = [t1x1, · · · , tPxP ]
⊤ = diag(t)x,

s.t. tp ≥ 0,

P∑
p=1

tp = 1, p = 1, · · · , P.
(11)

In this case, the representation parameter Θ is t. We apply the feature4

selection to both the query and the database objects, and then the ground5

distance between the k-th query object yk and the i-th database object6

xi will be computed as7

||yΘ
k − xΘ

i ||22 = ||diag(t)yk − diag(t)xi||22 =

P∑
p=1

t2p(ykp − xip)
2 (12)

By replacing t by Θ, substituting (12) to (5), fixing F and removing the8

irrelevant term, (5) could be turned to the following optimization problem,9

min
t

M∑
k=1

N∑
i=1

[
P∑

p=1

t2p(ykp − xip)
2

]
fik

=
P∑

p=1

t2pep

s.t.tp ≥ 0,
P∑

p=1

tp = 1, p = 1, · · · , P.

(13)

where ep =
∑M

k=1

∑N
i=1(ykp − xip)

2fik. This problem could be efficiently10

solve as a standard QP problem as well.11

Subspace Learning : Given the feature vector a data object x ∈ RP , sub-12

space learning [7] tries to map it into a P ′-dimension data space by a13

orthometric transformation matrix W ∈ RP×P ′
as14

10
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xΘ = W⊤x,

s.t. W⊤W = I
(14)

where I is an identity matrix of order P ′. In this case, the representation1

parameter is W . By applying the subspace learning to both query and2

database objects, we have the ground distance between yk and xi defined3

as4

||yΘ
k − xΘ

i ||22 = ||W⊤yk −W⊤xi||22 = Tr
[
W⊤(yk − xi)(yk − xi)

⊤W
]

(15)

By replacing Θ by W , substituting (15) to (5), fixing F , and removing the5

term irrelevant to W , (5) could be turned to the following optimization6

problem,7

min
t

M∑
k=1

N∑
i=1

Tr
[
W⊤(yk − xi)(yk − xi)

⊤W
]
fik

= Tr(W⊤EW )

s.t.W⊤W = I

(16)

where E =
∑M

k=1

∑N
i=1(yk − xi)(yk − xi)

⊤fik. This problem could be8

obtained by solving the generalized eigenvalue decomposition problem,9

Ew = λw (17)

where λ is a eigenvalue and w ∈ RP is its corresponding eigenvector.10

Assume that the P ′ smallest eigenvalues are ranked in a ascending or-11

der, as λ1, · · · , λP ′ , and the corresponding eigenvectors are denoted as12

w1, · · · ,wP ′ . Then the solution of (16) could be obtained asW = [w1, · · · ,wP ′ ] ∈13

RP×P ′
.14

11
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2.3. Algorithm1

Based on the optimization results, we could develop the iterative algorithm2

for the training procedure of unified object representation parameter Θ and the3

ranking score matrix F . The algorithm is summarized in Algorithm 1.4

Algorithm 1 UR2: off-line learning algorithm.

Input: Database object set D = {xi, · · · ,xN}.

Input: Query object set Q = {yi, · · · ,yM}.

Construct the nearest neighbor graph for D and compute its reconstruction

coefficient matrix A.

Initialize the ranking score matrix F 0.

Initialize the representation parameter Θ0 and compute the initial ground

distance matrix D0.

for t = 1, · · · , T do

Update the ranking score matrix F t based on the previous ground distance

matrix Dt−t and ranking score matrix F t−1, as in (10).

Update the representation parameter Θt by fixing F t, as in (13) or (17).

Update the ground distance matrix Dt based on the newly updated repre-

sentation parameter Θt.

end for

Output: The ranking score matrix FT , and the representation parameter

ΘT .

2.4. Ranking new query object5

We have introduced the off-line training procedure of Θ given a set of training6

query objects. In this subsection, we will discuss how to represent and rank a7

new query object y in the on-line retrieval procedure. In fact, we assume that8

the new arrived query won’t effect the representation parameter, and we use9

the parameter Θ learned using the training query objects to represent it as10

yΘ, based on feature selection or subspace learning. To learn its ranking score11

12
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vector f, we simply solve the optimization problem in (4) while fixing Θ as1

learned by Algorithm 1. We define a ground distance vector for yΘ against2

all the represented database objects as d = [d1, · · · , dN ]⊤ ∈ RN , where di =3

||yΘ − xΘ
i ||22. (4) then could be rewritten as4

min
f∈RN

+

f⊤d+ αf⊤Lf (18)

Its lagrange function L of is5

L = f⊤d+ αf⊤Lf+ f⊤ϕ (19)

where ϕ ∈ RN is the lagrange multiplier vector for constrain f ≥ 0. By setting6

the derivative of L with respect to f to zero, we have7

∂L
∂f

= d+ 2αLf+ ϕ

= d+ 2α(I − 2A+A⊤A)f+ ϕ = 0

(20)

Using the KKT condition [ϕ] ◦ [f] = 0, we get the following equation:8

[d+ 2α(I +A⊤A)f− 4αAf] ◦ [f] = 0

⇒ [d+ 2α(I +A⊤A)f] ◦ [f] = [4αAf] ◦ [f]
(21)

which leads to the following update rule for f9

f← [4αAf]

[d+ 2α(I +A⊤A)f]
◦ [f] (22)

Based on the update rule, we could have the on-line ranking algorithm for query10

y, as summarized in Algorithm 2.11

3. Experiments12

In this experiment, we will evaluate the proposed methods for the brain13

tumor retrieval task and the nearest neighbor protein identification task.14

13
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Algorithm 2 UR2: on-line ranking algorithm.

Input: Database object set D = {xi, · · · ,xN} with its Laplacian matrix L.

Input: Query object y.

Input: The representation parameter Θ.

Initialize the ranking score vector f0.

Compute the ground distance vector d based on Θ.

for t = 1, · · · , T do

Update the ranking score vector ft based on the ground distance vector d

and previous ranking score vector ft−1 as in (22).

end for

Output: The ranking score vector fT .

3.1. Experiment I: Brain Tumor Retrieval1

MRI has been one of the the most popular means for the diagnose of human2

brain tumors. However, the diagnosis of a brain tumor relies strongly on the3

experience of radiologists. In clinical practice, it would be significant helpful4

to have a retrieval system for brain tumors in MRI image which could return5

the tumors of the same pathological category as the query image. The doctors6

then can use the relevant MRI images returned by the retrieval system and the7

diagnosis information associated to these relevant images for the diagnosis for8

the current case [3]. In this experiment, we will evaluate the proposed method9

as MRI image representation and ranking method for the brain tumor retrieval10

system.11

3.1.1. Dataset and Setup12

Three types of brain tumors have been studied widely due to their high13

incidence rate in clinics, which are gliomas, meningiomas, and pituitary tumors.14

In this experiment, we use a dataset of 1014 MRI slices of the three types of brain15

tumors. There are 220 MRI slices of meningiomas, 475 MRI slices of gliomas,16

and 319 MRI slices of pituitary tumors in the dataset. The tumor regions in17

the images were manually outlined by drawing the the tumor boundaries. In18

14
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this experiment, we define two tumor region as relevant if they contains tumors1

of the same type, otherwise, they are defined irrelevant. Given a query tumor2

region, the brain tumor retrieval task is to retrieve relevant tumor regions from3

the database. To this end, we extract visual features from the tumor region,4

including the following ones:5

• Intensity Features: To extract the intensity features from the tumor6

region, we calculate the mean and variance of the normalized intensities7

of the tumor region pixels.8

• Texture Features: To extract the texture feature from the tumor re-9

gion, we first calculate the Gray Level Co-occurrence Matrix (GLCM)10

and wavelet coefficients, and then some statistical parameters including11

mean, variance, entropy, correlation, etc, are estimated and used as tex-12

ture features.13

• Shape Features: To extract the shape features from the tumor region, we14

first calculate the shape signature from the points of the tumor boundary15

by using the radial distance, then perform the wavelet decomposition to16

the shape signature, and finally compute the mean and variance of the17

wavelet coefficients in each sub-band as shape features.18

• Bag-of-Words Features: We also employ the bag-of-words model to19

extract the visual features from the tumor region. The key points are first20

detected, then the Scale-Invariant Feature Transform (SIFT) descriptor of21

each key points are calculated as “words”, and finally they are quantized22

to a dictionary and the quantization histogram is used as the bag-of-words23

feature.24

All these features will be concatenated to obtain the visual feature vector of25

each brain tumor region in the MRI image. Using the proposed method, we26

perform the feature selection or subspace learning to the visual feature vector of27

query and database tumor regions to obtain the new representations, and learn28

the ranking scores of the database tumor regions according to the query tumor29

15
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region for the ranking problem. Based on the ranking scores, the database1

tumor regions are ranked in a descending order of the ranking score, and the2

top few ones will be returned as relevant ones.3

To conduct the experiment, we need a database, a training query set used4

to learn the representation, and a test query set to evaluate the retrieval per-5

formance. To this end, we randomly split the entire dataset into three subsets,6

one with 50% slices as database, one with with 25% slices as training query set,7

and another one with 25% slices as test query set. The database training query8

test qeury set split will be repeated randomly for ten times to reduce the bias9

of each split.10

To evaluate the retrieval performances, we used the Receiver Operating11

Characteristic (ROC) and the recall-recision curves. The ROC curve is created12

by plotting True Positive Rates (TPR) against the False Positive Rates (FPR)13

of different numbers of returned tumors. The recall-precision curve is created by14

plotting precision against recall of different numbers of returned tumors. The15

TPR, FPR, precision and recall are defined as follows:16

TPR =
TP

TP + FN
,FPR =

FP

FP + TN
,

precision =
TP

TP + FP
, recall =

TP

TP + FN

(23)

where TP is the number of returned tumors relevant to the query, TN is the17

number non-returned tumors irrelevant to the query, FP is the number of re-18

turned tumors irrelevant to the query, while FN is the non-returned tumors19

relevant to the query. Besides the curves, we also employ the Area Under the20

ROC Curve (AUC) and the Mean Average Precision (MAP) as the single mea-21

sures for the retrieval task.22

3.1.2. Results23

In the experiments, we compare our unified framework for both represen-24

tation and ranking of tumor region against several representation and ranking25

methods. The UR2 method with Feature Selection is donated as UR2
FS , and26

UR2 method with Subspace Learning is donated as UR2
SL. Since our methods27

16
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are based on manifold learning of ranking score and representation parame-1

ters, we compare them against several manifold-based ranking and presentation2

methods, including:3

• a feature selection method, Laplacian Score for Feature Selection (LSFS)4

[14],5

• a subspace learning method, Locally Linear Embedding (LLE) [15],6

• a ranking score learning method, LRGA [16], and7

• the naive combinations of LRGA with LSFS and LLE respectively, denoted8

as “LRGA+LSFS” and “LRGA+LLE”.9

Figure. 1 show the results (average ROC and recall-precision curves) ob-10

tained by applying our methods UR2
FS and UR2

SL to the tumor region retrieval11

problem compared to other manifold-based representation and ranking score12

methods with tensity, texture, shape and bag-of-word histogram features. LLE13

has been chosen as a baseline since it has been extensively used in previous14

manifold learning works. Figure. 1 confirms the advantages of unfired represen-15

tation and ranking approaches w.r.t. competing methods. For example, in the16

case of ROC our UR2
FS outperforms other methods consistently with different17

FPR values, which is followed by UR2
SL. In the case of recall-precision curve,18

UR2
FS is more closer to the top right corner of the figure than any other meth-19

ods. We should note that the proposed unified framework outperform not only20

the independent presentation and ranking methods (LRGA, LSFS and LLE),21

but also their naive combinations (LRGA+LSFS and LRGA+LLE). We explain22

this with the fact that our approaches, differently from other independent rep-23

resentation and ranking methods, take into account both representation and24

ranking problems simultaneously, so that the representation parameters and25

ranking scores could be learned optimally. Moreover, it is worth noting that the26

manifold ranking method (LRGA) outperforms the feature selection and sub-27

space learning methods (LSFS and LLE) with pairwise distance as similarities,28

which highlights the importance of considering the manifold structure of the29

17
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database when ranking. It’s also interesting to notice that for this task in hand,1

feature selection works better than subspace learning. The possible reason is2

that we have extracted many visual features from the tumor region while only3

few of them are relevant to the pathological type of the tumors. Similar conclu-4

sions can be made for the AUC and MAP values of the methods (see boxplots5

of AUC and MAP in Figure. 2). Also in this case the unified approaches of6

representation and ranking outperform independent representation and ranking7

methods.8
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Figure 1: The ROC and recall-precision curves on brain tumor retrieval problem.
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Figure 2: The AUC and MAP values on brain tumor retrieval problem.

3.2. Experiment II: Protein Identification1

Identification the protein sample by using bio-sensor is very important for2

biochemical research and disease diagnose. In this experiment, we will evaluate3

the usage of proposed methods for the nearest neighbor classification based4

identification using the bio-sensor array data.5

3.2.1. Dataset and setup6

In this experiment, we collect a dataset of 100 protein samples, belonging7

to 9 different proteins. The 9 proteins are SubtilisinA (Sub), Fibrinogen (Fib),8

Hemoglobin (Hem), Cytochrome C (Cyt), Lysozyme (Lys), Horseradish perox-9

19
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idase (Hor), Bovine serum albumin (Bov), Lipase (Lip) and Casein (Cas). The1

sample number of each protein varies from 6 to 16. The distribution of sample2

number of different proteins is shown in Figure 3.3

Sub Fib Hem Cyt Lys Hor Bov Lip Cas

2
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um
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Distribution of protein sample numbers

Figure 3: Distribution of protein sample numbers in the protein identification dataset.

Given an unknown sample, the task of protein identification is to classify the4

sample into one of the nine proteins in the training set. To this end, each sample5

will be tested against a bio-sensor array developed by Pei et al [17], called adap-6

tive ensemble aptamers (ENSaptamers) which exploits the collective recognition7

abilities of a small set of rationally designed, nonspecific DNA sequences. The8

seven fluorescence intensities of a sample generated by seven ENSaptamers of9

the bio-sensor array are used as the original features and organized as a seven-10

dimensional feature vector. Then the feature vector of the query sample will be11

compared against all the feature vectors of the training samples in the datable12

and the most similar ones will be used for nearest neighbor classification.13

To test the proposed methods, we employ the leave-one-out protocol to con-14

duct the experiment. Each sample in the dataset will be used as a query sample15

in turns, while the remaining ones as training set. The training set will be16

20
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further divided into training query set and database to learn the representation1

parameter. The training query set will contains 40% samples of the entire train-2

ing set, while the database will contains 60% of the training samples. Once the3

representation parameter is learned by using the training set, it will be used to4

represent the query and the training samples. For the nearest neighbor clas-5

sification of the query, the entire training set will be used as database. The6

ranking score of the database samples will be learned w.r.t the query, the ones7

with largest ranking scores will be returned and the query’s class label will be8

obtained by major voting of the returned samples.9

The classification results are evaluated by the average classification accura-10

cies of all the queries, which is defined as11

Accuracy =
Number of correctly classified queries

Total Number of queries
(24)

By varying the number of returned samples from the database, we could have12

different accuracies. The classification results will be reported using the curves13

of the accuracies against the returned sample numbers.14

3.2.2. Results15

The accuracies of different methods with different different returned sample16

numbers are shown in Figure 4. It can be seen that both UR2
FS and UR2

SL per-17

form better than the best results of other methods at most cases, with UR2
SL18

getting the overall best results. The combination of LLE/ LSFS and LRGA per-19

forms better than using individual representation or ranking methods, but could20

not beat the proposed unified framework. It indicates that using presentation21

and ranking methods together could boost the nearest neighbor classification22

performance, but the way to combine them is also very important. It’s also23

interesting to notice that UR2
SL outperforms UR2

FS in this experiment, indicat-24

ing that all the seven features of seven ENSaptamers are useful for the protein25

identification problem. This fact could also be verified by the fact that LLE out-26

performs LSFS. Moreover, it could be observed that when the returned sample27

number is small, the classifications are a kind of stable. However, when the re-28

21
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turned sample number is larger than 20, the classifications decrees significantly.1

This is because that for each query, there are at most 15 samples of the same2

protein in the database, which is defined as relevant to the query. When more3

than 15 samples are returned, the irrelevant samples will increase significantly4

and dominate the major voting of the nearest neighbor classification.5
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Figure 4: Curves of Accuracies against different returned sample numbers.

4. Conclusion and Future works6

Representation learning and ranking score learning are two foundational7

problems for similar neighbor finding with many significant applications includ-8

ing database retrieval and nearest classification. Most research in the machine9

learning community have been focussed on the learning of representation pa-10

rameters and ranking score respectively, which ignores the possible relationships11

between these two issues at all. In this paper, for the first time, we propose the12

unified framework for representation and ranking objects in database retrieval13

and nearest classification problems. It is shown in this work that using the14

proposed unified framework to learn the representation and raking parameters15

22
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works well in this scenario. A significant advantage of the proposed method,1

as compared to methods to represent and rank objects respectively, is that,2

with different representation parameter to define the ground distance, the opti-3

mal ranking scores could be learned according to the representation parameter.4

Moreover, the representation parameter could also be adjusted according to the5

ranking scores.6

For the future works, we would consider using sparse coding as the repre-7

sentation method instead of features selection and subspace learning, which is8

the stat-of-the-art representation method. Moreover, the optimization of the9

ranking score could possibly has close form, which is another direction desired10

to explore.11
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