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Abstract

Experimental studies have revealed evidence of both parts-based and holistic
representations of objects and faces in the primate visual system. However, it is
still a mystery how such seemingly contradictory types of processing can coexist
within a single system. Here, we propose a novel theory called mixture of sparse
coding models, inspired by the formation of category-specific subregions in the
inferotemporal (IT) cortex. We developed a hierarchical network that constructed
a mixture of two sparse coding submodels on top of a simple Gabor analysis. The
submodels were each trained with face or non-face object images, which resulted
in separate representations of facial parts and object parts. Importantly, evoked
neural activities were modeled by Bayesian inference, which had a top-down
explaining-away effect that enabled recognition of an individual part to depend
strongly on the category of the whole input. We show that this explaining-
away effect was indeed crucial for the units in the face submodel to exhibit
significant selectivity to face images over object images in a similar way to
actual face-selective neurons in the macaque IT cortex. Furthermore, the model
explained, qualitatively and quantitatively, several tuning properties to facial
features found in the middle patch of face processing in IT as documented by
Freiwald, Tsao, and Livingstone (2009). These included, in particular, tuning to
only a small number of facial features that were often related to geometrically
large parts like face outline and hair, preference and anti-preference of extreme
facial features (e.g., very large/small inter-eye distance), and reduction of the
gain of feature tuning for partial face stimuli compared to whole face stimuli.
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Thus, we hypothesize that the coding principle of facial features in the middle
patch of face processing in the macaque IT cortex may be closely related to
mixture of sparse coding models.

Introduction 1

The variety of objects that we see everyday is overwhelming and how our visual 2

system deals with such complexity is a long-standing problem. Classical psychol- 3

ogy has often debated on whether an object is represented as a combination of 4

individual parts (parts-based processing) or as a whole (holistic processing) [1]. 5

Experimental studies have revealed evidence of both types of processing in behav- 6

iors [1, 2] and in neural activities in higher visual areas [2–5], somewhat favoring 7

holistic representation for faces and parts-based representation for non-face 8

objects [1, 2, 5]. However, a theoretical question is: how could a single system 9

reconcile such two seemingly contradictory types of processing? Although a num- 10

ber of studies on computational vision models showed remarkable performance 11

in visual recognition [6–10], success in modeling higher visual areas [11,12], or 12

account for behavioral experiments on holistic face processing [12,13], none of 13

these studies offered insight into the tension between parts-based and holistic 14

processing in a comparative manner with neurophyisology. 15

In this study, we address this question in a novel theoretical framework, 16

called mixture of sparse coding models. We assume two separate sparse coding 17

models, one dedicated to encode face images and the other to encode non-face 18

object images, that perform competitive interaction. Sparse coding is well known 19

for its close relationship with representations in early visual areas [14–22]; we 20

transfer this technique to the study of higher visual representations. That 21

is, exploiting the fact that sparse coding to image data of a specific category 22

can yield parts-based feature representations (cf. [23,24]), we constructed two 23

separate category-specific representations for faces and objects analogously to the 24

formation of specialized subregions for faces and objects in the inferotemporal 25

(IT) cortex [25,26]. Furthermore, we combined the two sparse coding models into 26

a mixture model and modeled neural activities in terms of Bayesian inference. 27

Then, we found that this framework gave rise to a form of holistic computation: 28

not only recognition of the whole object depends on the individual parts, but 29

also recognition of a part depends on the whole. This is in fact a Bayesian 30

explaining-away effect: an input image is first independently interpreted by each 31

sparse coding submodel, but then the one offering the better interpretation is 32

adopted and the other is dismissed. For example, even if a part of an input 33

image is a potential facial feature (e.g., a half-moon-like shape I), that feature 34

would not be recognized as an actual facial feature (e.g., a mouth) if the whole 35

image is a non-face object (Figure 1B). 36

We discovered that our model had a close relationship with computation 37

known for a region of the macaque IT cortex called the face-selective middle 38

patch, as documented by Freiwald et al. [4]. First, our model cells in the face 39

submodel exhibited prominent selectivity to face images over non-face object 40
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images in a similar way to actual face-selective neurons, and this selectivity was 41

crucially dependent on the above-mentioned explaining-away effect. Second, 42

these model cells reproduced a number of tuning properties of face neurons in the 43

middle patch. In particular, our model face cells tended to (a) be tuned to only a 44

small number of facial features, often related to geometrically large parts such as 45

face outline and hair, (b) prefer one extreme for a particular facial feature while 46

anti-prefering the other extreme, and (c) reduce the gain of tuning when a partial 47

face was presented compared to a whole face. We quantified these properties 48

and compared these with the experimental data at the population level [4]; the 49

result showed a good match. Thus, we propose the hypothesis that regions of the 50

IT cortex representing objects or faces may employ a computational principle 51

similar to mixture of sparse coding models. 52

Results 53

Model 54

To investigate the computational principles underlying face and object processing 55

in the IT cortex, we designed a multi-layer network model illustrated in Figure 1A. 56

The network had the architecture that received an image of 64 ⇥ 64 pixels, 57

processed it with a fixed bank of standard energy detector models, and fed the 58

results to two sparse coding models, called face submodel and object submodel 59

(each with 400 model neurons), which were then combined into a mixture model 60

to perform competitive interaction as explained later. 61

Each energy detector computed the squared norm of the outputs from two 62

Gabor filters for the input image (Figure 1A, inset). The two filters had the 63

same center position, orientation, and spatial frequency, but had phases different 64

by 90°. The entire bank of energy detectors had all combinations of 10 ⇥ 10 65

center positions (in a grid layout), 8 orientations, and 3 frequencies; thus, 66

the output of this stage had a total of 2400 dimensions (see the section on 67

Model details in Methods.) In the actual visual cortex, inputs to IT areas are 68

presumably computed between V1 and V4 and this computation must be much 69

more complex than the energy detector bank in our model. However, some 70

important aspects should still be reflected by this simple operation since a large 71

number of V4 neurons are known to be orientation-selective [27]; moreover, this 72

simple assumption was sufficient to reproduce certain response properties of face 73

neurons as shown in what follows. 74

In training the mixture model, we assumed, for simplicity, that the class 75

label of each input image, either “face” or “object,” was given (Figure 1C). This 76

allowed us to use a naive learning procedure that separately trained each face or 77

object submodel with an existing sparse coding method. Specifically, we used 78

publicly available face and object image datasets in which the faces or objects 79

were properly aligned within each image frame [24, 28, 29] (see the section on 80

Data preprocessing in Methods). Then, for each image class k, which was either 81

1 (face) or 2 (object), we learned the basis matrix Ak and the mean vector bk
82
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by sparse coding of the corresponding set of images that were processed by the 83

energy model. (The basis matrix and mean vector were used for determining the 84

responses of the model neurons to an input as explained below.) Classical mixture 85

models are usually trained with an unsupervised learning method without class 86

labels [30]. However, such learning is generally not easy and not our main interest 87

here since we focus on inference, i.e., on computation of evoked responses, not 88

on learning or plasticity. (We come back to this point in the Discussion section.) 89

To perform sparse coding learning, we adopted our previously developed 90

approach based on independent component analysis (ICA) [22], which is known to 91

be a good approximation of sparse coding [31] and for which efficient algorithms 92

exist. In this approach, an important step was to drastically reduce the input 93

dimensions, from 2400 to 100 dimensions here, by principal component analysis 94

(PCA) before performing ICA. This is, in fact, a simple modification of a standard 95

preprocessing used in any classical sparse coding or ICA methods. However, 96

we have previously discovered that such strong dimension reduction has an 97

effect of spatial pooling [32] and thereby produces much larger basis patterns 98

than without it [22]. In the present case, we later show that weaker dimension 99

reduction resulted in representations of overly small features, which led to a loss 100

of discriminative power. After this step, to regain enough components from the 101

reduced dimensions, we used overcomplete ICA [33], estimating 400 components 102

from 100 dimensions. (See the section on Learning details in Methods.) 103

Once the network was trained, the response properties of the model neurons 104

were tested using various input images. In this phase, we never explicitly gave 105

class information on each input image, but rather let the network estimate it by 106

Bayesian inference, which worked in the following three steps (Figure 1D). 107

1. Given an input x (processed by the energy detectors), interpret it separately 108

by each submodel k. Formally, infer the responses ŷk in each submodel k 109

that maximize the sparse coding objective Lk: 110

ŷk  argmax
yk

Lk(y
k | x) (1)

where 111

Lk(y
k | x) = � 1

2�2
kx�Akykk2 � 1

�

X

m

|ykm � b

k
m| (2)

using pre-fixed constants � and �. Recall that Ak and bk are the basis 112

matrix and the mean vector for submodel k that are obtained in the 113

learning phase as described above. 114

2. Compare the goodnesses of the two interpretations in the form of posterior 115

probabilities. Formally, for each k: 116

rk  
⇡k exp(Lk(ŷk | x))P
h ⇡h exp(Lh(ŷh | x)) (3)

using a pre-fixed constant ⇡k for prior probability. For simplicity, we 117

assume ⇡k = 1/2. 118
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3. Modulate multiplicatively the responses in each submodel by the corre- 119

sponding posterior probability computed above. That is, for each k: 120

ŷk  rkŷ
k
. (4)

Step 1 is similar to inference in the classical sparse coding [31], where the 121

responses in each submodel are estimated so as to minimize the reconstruction 122

error and maximize the sparsity at the same time. One difference is, however, 123

that the sparsity constraint here is on the difference from the mean vector 124

bk. We assume here a non-zero mean since the mean of face images is not 125

zero and such stimulus usually elicits non-zero responses of actual face neurons, 126

while the classical sparse coding assumes a zero mean since the mean of natural 127

image patches is a blank, gray image, and such stimulus evokes no response of 128

V1 neurons. The last two steps in our inference are a major departure from 129

the classical sparse coding, where step 2 computes the posterior probability 130

indicating how well each submodel interprets the input and step 3 multiplies 131

the responses in each submodel by the corresponding posterior probability. By 132

these steps, even if the input contains a feature that can potentially activate 133

some units in a submodel, such units may eventually be deactivated when the 134

whole input was not interpreted well by this submodel compared to the other 135

submodels (Bayesian explaining-away effect). 136

Finally, to compare with neural responses later, we passed the response 137

value of each unit (after step 3) to the smooth half-wave rectifying function 138

h(a) = log(1 + exp(a)), which always produces non-negative values. 139

Although we presented above the mixture model and its inference computation 140

in an informal and procedural way, these can be formalized rigorously within a 141

probabilistic generative model. Generally, the motivation for such formalization 142

is to regard visual recognition as a process of inferring hidden causes in the 143

external world that generate a natural image. Our model can be seen as one such 144

approach: all the computations described above can be derived from Bayesian 145

inference of posterior probabilities in a statistical framework of mixture of sparse 146

coding models. The details can be found in the section on Theory of mixture of 147

sparse coding models in Methods. 148

Basis representations 149

We proceed to show the representation in our model obtained by the learning 150

procedure described so far. The basis matrix Ak of each submodel defines its 151

internal representation and each column vector of the matrix (basis vector) 152

exposes the specific feature represented by each unit. Figure 2 shows the basis 153

vectors of three example units in the face submodel. Each unit is visualized as 154

a set of ellipses corresponding to the energy detectors, where their underlying 155

Gabor filters have the indicated center positions (in the visual field coordinates), 156

orientations, and spatial frequencies (inversely proportional to the size of the 157

ellipse). The color of the ellipse indicates the weight value normalized by the 158

maximal weight value. For readability, we show only the ellipses corresponding to 159
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Figure 1. (A) The architecture of our hierarchical model. It starts with an
energy detector bank and proceeds to two sparse coding submodels for faces and
objects, which are then combined into a mixture model. Inset: an energy
detector model. (B) Cartoon face and boat. Note that the mouth of the face
and the base of the boat are the same shapes. (C) Learning scheme. We assume
explicit class information, either “face” or “object,” of input images to be given
during training, which allows us to use a standard sparse coding learning for
each submodel with the corresponding dataset. (D) Inference scheme. For
testing response properties, the network first interprets the input separately by
the sparse code of each submodel (step 1), then compares the goodnesses of the
obtained interpretations as posterior probabilities (step 2), and finally modules
multiplicatively the responses in each submodel with the corresponding
posterior probability (step 3).

Figure 2. The basis representations of three sample model face units. Each
panel depicts the weighting pattern (basis vector) from a face unit to energy
detectors by a set of ellipses, where each ellipse corresponds to the energy
detector at the indicated x-y position, orientation, and frequency (inverse of the
ellipse size); see the top right legend. The color shows the normalized weight
value (color bar). Only the maximum positive and the minimum negative
weights are shown at each position for readability.

the maximal positive (excitatory) weight and the minimal negative (inhibitory) 160

weight at each location. Although this visualization approach may seem a bit 161

too radical, it did not lose much information: we confirmed by visual inspection 162

that the local weight patterns for most units had only one positive peak and one 163

negative peak at each position and frequency and the patterns of orientation 164

integration did not have notable changes across frequencies. In Figure 2, we can 165

see that unit #1 represented a face outline either on the left (excitatory) or on 166

the right (inhibitory); unit #2 represented mainly eyes (excitatory); unit #3 167

mainly represented a mouth (excitatory) and nose (weakly inhibitory). Figure 3 168

shows the basis vectors of 32 randomly selected units from (A) the face submodel 169

and (B) the object submodel. The representations in these two submodels were 170

qualitatively different: face units represented local facial features (i.e., facial 171

parts like outline, eye, nose, and mouth) and object units represented local object 172

features. 173
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Figure 3. The basis representations of (A) 32 example model face units and
(B) 32 example model object units.

Selectivity to faces 174

Next, we show a series of comparisons between the response properties of our 175

model and the experiments conducted by Freiwald et al. [4] on the region in 176

monkey IT cortex called the face middle patch. 177

As mentioned above, due to the Bayesian explaining-away effect in the 178

mixture model, model face units exhibited selectivity to face images and object 179

units to object images. We measured the responses of our model units to natural 180

face and object images that were separate from the training images (without 181

explicitly giving class labels). The left panel of Figure 4A shows the responses (ŷk
182

in step 3 of Bayesian inference) of the face units (top) and object units (bottom) 183

to face images, where the images were sorted by the response magnitudes, 184

separately for each unit. The right panel similarly shows the responses of the 185

same units to object images. We can see that the face units were prominently 186

responsive to many face images while indifferent to non-face object images; the 187

object units had the opposite property. To quantify such face selectivity, we 188

calculated the face-selectivity index for each unit, which was defined as the ratio 189

between the difference and the sum of the mean response to faces and the mean 190

response to objects (where the baseline, i.e., the response to a blank image, was 191

subtracted from each response value). Figure 4D (blue) shows the distribution 192

of face-selectivity indices for the face units. The result indicates almost no unit 193

with index between �1/3 and 1/3, which is consistent with the experimental 194

data [4, Figure 1b]. 195

Such vivid selectivities disappeared when the mixture computation was 196

removed. Figure 4B shows the analogous responses of the face and object units 197

immediately after performing sparse coding (ŷk in step 1); the face units became 198

almost equally responsive to object images to face images. Indeed, Figure 4D 199

(yellow) shows that the face-selectivity indices of those units became substantially 200

lower by the removal of mixture, with a majority falling between �1/3 and 1/3. 201

To gain more insight into the underlying computations, see the distributions of 202

face posterior probabilities (r1 in step 2) for face and object images in Figure 4C: 203

faces and objects were clearly discriminated. In fact, those posterior probabilities 204

modulated the response of each unit representing a part (step 3), which resulted 205

in prominent face selectivity. (Note that the discrimination capability did not 206

automatically arise from step 3 since it actually depended on proper training of 207

both submodels; see the section on “Control simulations.”) Further, Figure 4E 208

shows that the images that elicited the largest responses of the face units were 209

mostly faces in the mixture model (blue), whereas it was not the case in the 210

model without mixture (yellow). Thus, even though the face units by themselves 211

could detect accidental features similar to facial parts, the mixture computation 212
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Figure 4. (A) The responses of model face units (1–400) and model object
units (401–800) to face images (left) and object images (right). The images are
sorted by response magnitudes (color bar) for each unit. (B) The responses in
the case of removing mixture computation. (C) The distribution of face
posterior probabilities for face image inputs and for object image inputs. (D)
The distribution of face-selectivity indices for the face units in the case of the
mixture model (blue) or the case of the sparse coding model (yellow). The
broken lines indicate the values �1/3 and 1/3. (E) The distribution of the
number of face images in the top 10 (face or object) images that elicited the
largest responses of each face unit.

ensured that they responded only when the whole input was a face image. In 213

other words, face selectivity can be interpreted as a form of holistic processing 214

in our mixture model. 215

Tuning to facial features 216

We next turn our attention to tuning properties to facial features. The experiment 217

by Freiwald et al. [4] used cartoon face stimuli for which facial features were 218

controlled by 19 feature parameters, each ranging from �5 to +5. The authors 219

recorded responses of a neuron in the face middle patch while presenting a 220

number of cartoon face stimuli whose feature parameters were randomly varied. 221

Then, for each feature parameter, they estimated a tuning curve by taking the 222

average of the responses to the stimuli that had a particular value while varying 223

other parameters (“full variation”). We simulated the same experiment and 224

analysis on our model (see the section on Simulation details in Methods; see also 225

Figure S3 for examples of cartoon face images.). 226

To illustrate tuning to facial features in our model, Figure 5 shows the tuning 227

curves of the face units in Figure 2 to all 19 feature parameters. Each unit 228

was significantly tuned to one to nine feature parameters (where significance 229

was defined in terms of surrogate data; see Methods). Some tunings clearly 230

reflected the corresponding parts in the basis representations. Unit#1 was tuned 231

only to the face direction, preferring the left as opposed to the right. Unit#2 232

mainly showed tuning to eye-related features, in particular, preferring narrower 233

inter-eye distances and larger irises. Unit#3 mainly showed tuning to mouth- 234

and nose-related features, in particular, preferring smily mouths and longer 235

noses. 236

Even in the whole population, most units were significantly tuned to only a 237

small number of features similarly to the experiment [4]. Figure 6A shows the 238

distribution of the numbers of tuned features per unit, which were on average 3.6 239

and substantially smaller than 19, the total number of features. The face neurons 240

in the monkey face middle patch were also tuned to only a small number of 241

features, i.e., 2.6 on average [4, Figure 3c] (replotted in red boxes in Figure 6A). 242
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Figure 5. The tuning curves (red) of the model face units shown in Figure 2 to
19 feature parameters of cartoon faces. The mean (blue) as well as the
maximum and minimum (green) of the tuning curves estimated from surrogate
data are also shown (see the section on Simulation details in Methods).

Figure 6. (A) The distribution of the numbers of significantly tuned features
per unit, overlaid with a replot of [4, Fig. 3c]. (B) The distribution of the
numbers of significantly tuned units for each feature parameter, overlaid with a
replot (red boxes) of [4, Fig. 3d].

Figure 6B shows the distribution of the numbers of significantly tuned units 243

per feature. The distribution strongly emphasizes geometrically large parts, 244

i.e., face aspect ratio, face direction, feature assembly height, and inter-eye 245

distance. The shape of the distribution has a good match with the experimental 246

result [4, Figure 3d] (replotted in Figure 6B), though iris size seems much more 247

represented in the monkey case. 248

A prominent property of the experimentally obtained tuning curves was 249

preference or anti-preference of extreme facial features [4]; our model reproduced 250

this property as well. For example, Figure 5 shows that many tuning curves 251

were maximum or minimum at one of the extreme values (�5 or +5). For 252

the entire population, Figure 7A shows all significant tuning curves of all face 253

units, sorted by the peak feature values. To quantify this, Figure 7B shows the 254

distributions of peak and trough feature values; the extremity preference index 255

(the ratio of the average number of peaks in the extreme values to the number of 256

peaks in the non-extreme values) was 9.1 and the extremity anti-preference index 257

(analogously defined for troughs) was 12.0. These indicate that the tendency of 258

preference or anti-preference of extreme features generally held for the population. 259

This result is in good agreement with the monkey experiment [4], which also 260

reported distributions of peak and trough values that were biased to the extreme 261

values [4, Fig. 4a] (the extremity preference indices were 7.0, 5.5, and 7.1, and 262

the extremity anti-preference indices were 12.6, 13.7, and 12.1 for three monkeys; 263

the average distribution is replotted in Figure 7B). 264

In addition, the experimental study even observed monotonic tuning curves 265

[4], which were also found in our model as in Figure 5. To quantify this for 266

the population, Figure 7C shows the distribution of minimal values of the 267

significant tuning curves preferring value +5 pooled together with the tuning 268

curves preferring value �5 that have then been flipped; the distribution has a 269

clear peak at value �5. Further, for each minimal value in Figure 7C, the average 270

of the tuning curves (normalized by the maximum response) with that minimal 271

value is given in Figure 7D; the averaged tuning curve for minimal value �5 has 272
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Figure 7. (A) All significant tuning curves of all model face units sorted by the
peak parameter value. Each tuning curve (row) here was mean-subtracted and
divided by the maximum. (B) The distributions of peak parameter values (top)
and of trough parameter values (bottom). The overlaid red boxes are replots
of [4, Fig. 4a] averaged over three monkeys. (C) The distribution of minimal
values of the significant tuning curves peaked at +5 and the flipped tuning
curves peaked at �5, overlaid with a averaged replot of [4, Fig. 4d]. (D) The
average of the tuning curves for each minimal value in (C) (with the same color).

a monotonic shape. These indicate that tuning curves preferring one extreme 273

value tended to anti-prefer the other extreme value and be monotonic. This 274

result is consistent with the experimental data, which also showed a distribution 275

of minimal values that was peaked at �5 [4, Fig. 4d] (replotted in Figure 7C) 276

and a monotonic averaged tuning curve corresponding to minimal value �5 [4, 277

Fig. 4d, inset]. We discuss later why the model face units acquired such extremity 278

preferences. 279

We have explained above the face selectivity property as a form of holistic 280

processing in the mixture model. On the other hand, the experimental study 281

investigated holistic face processing in the IT cortex by using partial face stimuli 282

and inverted face stimuli [4]. To gain insight into these experiments, we also 283

conducted simulations of the same experiments in our model. 284

To simulate the experiment with partial faces [4], we estimated two kinds 285

of tuning curves in addition to the one used so far (“full variation”), namely, 286

the responses to full cartoon faces where one feature was varied and the other 287

were fixed to standard ones (“single variation”) and the responses to partial 288

faces where only one feature was presented and varied (“partial face”). (See the 289

section on Simulation details in Methods.) Figure 8 compares tuning curves in 290

(A) full variation vs. single variation, (B) full variation vs. partial face, and 291

(C) single variation vs. partial face. Overall, the shapes of the tunings were 292

similar for all three kinds (average correlation 0.94 to 0.95). However, the gain 293

of each tuning function (the slope of the fitted linear function) tended to drop 294

after the removal of most of facial features (Figure 8C); the average gain ratio 295

was 2.0, which was close to 2.2, the experimentally reported number [4, Fig. 6c]. 296

This effect was not only because typical face units represented a combination of 297

two features or more, but also because partial faces looked less face-like than 298

full faces: Figure 8E shows lower face posterior probabilities for the partial face 299

condition than the full variation condition. Indeed, such drop was weakened 300

when the mixture computation was removed: the average gain ratio was 1.5 when 301

the same comparison was made for the responses of model face units without the 302

mixture computation, i.e., using only step 1 in Bayesian inference (Figure 8D). 303

In addition to these, note that the tunings curves in full variation were slightly 304

reduced compared to those in single variation (Figure 8A–B); a similar tendency 305
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Figure 8. (A) Full-variation versus single-variation tuning curves. (B)
Full-variation versus partial face tuning curves. (C) Single-variation versus
partial face tuning curves. (D) Single-variation versus partial face tuning curves
in the case of removing mixture computation. (E) The distributions of face
posterior probabilities for the full variation, the single variation, the partial face,
and the inverted face conditions. (F) The distribution of the numbers of tuned
units per feature for inverted faces (left) and the mean correlation coefficient
between the tunings for upright faces and for inverted faces for each facial
feature (right).

can be observed in the experimental result [4, Fig. 6c]. This reduction in the 306

model was because the face images used in the single variation condition took 307

standard feature values for most parameters and such face images looked more 308

face-like than others (giving slightly larger face posterior probabilities than the 309

full variation condition; Figure 8E). 310

To simulate the experiment with inverted faces [4], we presented, to the 311

model, the same set of full cartoon faces except for their vertical inversion and 312

estimated tuning curves for each facial feature in the same way (full variation). 313

As a result, we found that the number of units that were tuned to each facial 314

feature was more or less similar to the original model (Figure 8F, left). However, 315

the tuning curves for assembly height tended to be inverted, whereas those for 316

most other features did not (Figure 8F, right; for eye eccentricity, only two units 317

had significant tunings and they happened to have a highly negative correlation 318

between the upright and inverted cases). These results were consistent with 319

the experiment [4, Figure 7ad]. However, we also observed that the overall 320

responses of the model face units to inverted faces were much lower compared to 321

upright faces (a somewhat similar tendency can be discernible in the experimental 322

report [4, Figure 7bc]). This was because the mixture model could not classify 323

well the inverted faces as faces since the face submodel was trained only with 324

upright face images; consequently, the face posterior probabilities were generally 325

low for inverted faces (Figure 8E, violet). Taken together, our result indicates 326

that feature tuning for inverted faces could be explained by representation of 327

individual parts of upright faces, although whole inverted faces may not be 328

recognized as faces. 329

Interaction between feature parameters was limited, though present. For 330

each pair of feature parameters, a 2D tuning was estimated by averaging the 331

responses to a pair of parameter values while varying the remaining parameters. 332

Then, the 2D tuning for a pair of parameters was compared to another 2D tuning 333

predicted by the sum of two (full-variation) 1D tunings for the same parameters 334

or by the product of these. The distributions of correlation coefficients are given 335

in Figure 9; the averages were both 0.90, which was similar to the experimental 336

result (averages 0.88 and 0.89) [4, Figure 5b]. 337
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Figure 9. The distributions of correlation coefficients between 2D tuning
functions and additive (blue) or multiplicative predictors (red).

Figure 10. The distributions of (A) the number of tuned features per unit (cf.
Figure 6A), (B) the number of tuned units per feature (cf. Figure 6B), and (C)
the peak (top) and the trough (bottom) feature values (cf. Figure 7B), in
different model variations. The color of each curve indicates the model variation
(see legend).

Control simulations 338

How much do our results depend on the exact form of model? To address this 339

question, we modified the original model in various ways and conducted the 340

same analysis. 341

First, we already showed that, when we omitted the mixture computation and 342

simply used a sparse coding model of face images, the model units were deprived 343

of selectivities to faces vs. objects (Figure 4). However, tuning properties to 344

facial features did not change much. Figure 10 shows that the distributions of 345

the number of tuned features per unit, of the number of tuned units per feature, 346

of the peak feature values, and of the trough feature values for the modified 347

model (cyan curves) are all similar to the original model (blue curves). Therefore, 348

while the selectivities were from the mixture model, the tuning properties were 349

produced by the sparse coding. 350

Next, we varied the strength of dimension reduction of the outputs of the 351

energy detector bank before performing sparse coding learning (the original 352

model reduced the dimensionality from 2400 to 100). Three observations were 353

made. First, consistently with our previous observation in our V2 model [22,32], 354

overall feature sizes tended to decrease while the reduced dimensionality was 355

increased. Figure 12 shows example face and object units in the case of 300 356

reduced dimensions; compare these with Figure 3. (When we further increased 357

the reduced dimensionality, we obtained quite a few units with globally shaped, 358

somewhat noisy basis representations. These seemed to be a kind of “junk units” 359

that are commonly produced when the amount of data is insufficient compared 360

to the input dimensionality.) Second, as the reduced dimensionality increased, 361

face posterior probabilities (as in Figure 4C) were substantially decreased for 362

face images (Figure 11); the face images could barely be discriminated in the 363

case of 300 reduced dimensions. Meanwhile, face posterior probabilities remained 364

low for object images. This seemed to happen because the object submodel 365

now learned to represent spatially very small and generic features so that it 366

could give sufficiently good interpretations not only to object images but also 367
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Figure 11. The distribution of face posterior probabilities for face images
(solid curve) or for object images (broken curve) in different model variations (cf.
Figure 4C). The color of each curve indicates the model variation (see legend).

Figure 12. The basis representations of 32 example model units from (A) the
face submodel and (B) the object submodel, in the network trained with 300
reduced dimensions.

to face images. This justified our model construction approach that performs 368

strong dimension reduction before sparse coding learning. Third, Figure 10A–B 369

shows that the number of tuned features per unit and the number of tuned 370

units per feature decreased in the case of 300 reduced dimensions (red curve). 371

This was due to the weakened selectivity rather than the size decrease of feature 372

representations since the effect disappeared when the mixture computation was 373

omitted (yellow curve). 374

As an additional control simulation, we varied the number of units (200 or 375

800) in each submodel of the mixture model while keeping the other conditions. 376

In either case, we observed no discernible difference in the results from the 377

original model (Figure S1). 378

We also examined a single sparse coding model (with no mixture model) 379

trained with face and non-face images all together. In this model, we found 380

almost no unit having face selectivity that was as vivid as in the original model; 381

even for the units that gave average responses larger to faces than non-faces 382

(which were only less than 10% of the whole population), selectivity to face 383

images was rather weak, with face-selective indices mostly less than 1/3 (Figure 384

S2A). However, such weakly face-selective units showed tuning properties similar 385

to the original model (Figure S2B). Taken together, the response properties of 386

those units were comparable to the sparse coding model trained only with faces 387

without mixture model (Figure 4B and Figure 10, cyan curves). 388

Discussion 389

In this study, we proposed a novel framework called mixture of sparse coding 390

models and used this to investigate the computational principles underlying 391

face and object processing in the IT cortex. In this model, two sparse feature 392

representations, each specialized to faces or non-face objects, were built on top of 393

an energy detector bank and combined into a mixture model (Figure 1). Evoked 394

responses of units were modeled by a form of Bayesian inference, in which each 395

sparse coding submodel attempts to interpret a given input by its code set, 396
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but the best interpretation explains away the input, dismissing the explanation 397

offered by the other submodel. The model units in our face submodel not only 398

exhibited significant selectivity to face images similarly to actual face neurons 399

(Figure 4), but also reproduced qualitatively and quantitatively tuning properties 400

of face neurons to facial features (Figures 5 to 9) as reported for the face middle 401

patch, a particular subregion in the macaque IT cortex [4]. Thus, computation 402

in this cortical region might be somehow related to mixture of sparse coding 403

models. 404

While sparse coding produced parts-based representations in each submodel 405

(Figures 2 and 3), the mixture model produced an explaining-away effect that led 406

to holistic processing (Figures 4E). This combination was key to simultaneous 407

explanation of two important neural properties: tuning to a small number 408

of facial features and face selectivity. That is, although the former property 409

could be explained by sparse coding alone (Figure 10), the latter could not 410

(Figure 4B) presumably since facial parts could accidentally be similar to object 411

parts. However, when the sparse coding submodels for faces and objects were 412

combined in the mixture model, the individual face units could be activated 413

only if the whole input was interpreted as a face. In this sense, our theory 414

interprets the face selectivity property as a signature of holistic processing. (It 415

should be noted that the face selectivity may not be considered an “emergent” 416

property of the model in the same sense as the tuning properties, since some 417

kind of enhanced selectivity might well be expected by the introduction of a 418

mixture model.) We also linked our model with more classical experiments on 419

holistic processing by reproducing the tuning properties for partial or inverted 420

faces (Figure 8). However, we could not prove the necessity of the mixture 421

computation in these cases since the results without mixture were still consistent, 422

albeit more weakly, with the experimental data. 423

Having explained known response properties, we can draw a few testable 424

predictions of unknown properties from our theory. First, since face selectivity 425

depends on the computational progress of stimulus interpretation as a face or 426

as an object, we can predict delayed suppression in responses of face-selective 427

neurons to non-face stimuli. Second, since face selectivity depends on the failure 428

of stimulus interpretation as an object, we can predict loss of selectivity of face- 429

selective neurons after deactivation of the object-selective region by muscimol 430

injection or cooling. 431

Among the reported properties of face neurons in the monkey IT cortex, 432

preferences to extreme features (in particular, monotonic tuning curves) were 433

considered as a surprising property [4] since they were rather different from more 434

typical bell-like shapes such as orientation and frequency tunings. We showed 435

that our model explained quite well such extremity preferences (Figure 7). It is 436

intriguing why our model face units had such property. First, we would like to 437

point out that the facial features discussed here are mostly related to positions of 438

facial parts and such features can be relatively easily encoded by a linear function 439

of an image. This is not the case, however, for orientations and frequencies since 440

encoding these seem to require a much more complicated nonlinear function, 441

perhaps naturally leading to units with bell-like tunings. Second, we could 442
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speculate that the extremity preferences may be really necessary due to the 443

statistical structure of natural face images, irrelevant to any particular details 444

of our model. Indeed, even when we perform a very basic statistical analysis of 445

principal components of face images (so-called eigenfaces, e.g., [34]), they look 446

like linear representations of certain facial features, maximal in one extreme and 447

minimal in the other extreme. However, this seems to be a rather deep question 448

and fully answering it is beyond the scope of this study. 449

The results shown here relied on all computational components in mixture 450

of sparse coding models, including inference computation of each sparse coding 451

submodel and suppressive operations using computed posterior probabilities. 452

Since these computations seem to be difficult to implement only with simple 453

feedforward processing in the biological visual system, a natural assumption would 454

be some kind of recurrent computation possibly involving feedback processing. 455

While quite a few biologically plausible implementations have been proposed 456

for sparse coding inference, e.g., [31, 35], we prefer here not to speculate how 457

the mixture computation might be implemented, in particular, whether class 458

information as in the top layer in our model might be represented explicitly in 459

some cortical area or implicitly as some kind of mutual inhibition circuit between 460

the face-selective and the object-selective regions in IT. 461

Related to the previous point, it would also be interesting whether or not 462

similar results could be reproduced by a deep (feedforward) neural network 463

model [6–12]. Note that, although face-selective units, tuning properties to head 464

orientation, or behavioral properties on holistic face processing (such as the face 465

inversion effect) have been discovered in some models [11–13, 36], no tuning 466

properties to facial features like here have been reported yet. We particularly 467

wonder whether the face-selective units in such models represent facial parts, 468

since such parts are sometimes impossible to recognize correctly without any 469

surrounding context if the input image does not contain enough detail, e.g., 470

Figure 1B. While it is mathematically true that such nonlinear context-dependent 471

computation could also be arbitrarily well approximated by a feedforward model, 472

whether this can be achieved by a network optimized for image classification 473

needs to be investigated empirically. In any case, however, we think that top- 474

down feedback processing as formulated in our model would be a simpler and 475

biologically more natural way of performing such computation. 476

Since we trained each submodel of our mixture model separately by face or 477

object images, our learning algorithm was supervised, implicitly using class labels 478

(“face” or “object”). This choice was primarily for simplification in the sense of 479

avoiding the generally complicated problem of unsupervised learning of a mixture 480

model. We do not claim by any means that face and object representations in 481

the IT cortex should be learned exactly in this way. Nonetheless, the existence of 482

such teaching signals may not be a totally unreasonable assumption in the actual 483

neural system. In particular, since faces can be detected by a rather simple 484

operation [37,38], some kind of innate mechanism would easily be imaginable. 485

This may also be related to the well-known fact that infant monkeys and humans 486

can recognize faces immediately after eye opening [39,40]. 487

Early work on sparse coding concentrated on explaining receptive field 488
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properties of V1 simple cells in terms of local statistics of natural images 489

[14, 15], following Barlow’s efficient coding hypothesis [41,42]. The theory was 490

subsequently extended to explain other properties of V1 complex cells [17–19] 491

and V2 cells [20–22]. The present study continues this approach to investigate 492

higher visual representations, though a novel finding here is that an additional 493

mechanism, a mixture model, is necessary to explain the neural properties 494

discussed here. On the other hand, in computer vision, sparse-coding-like models 495

have also been used for feature representation learning. In particular, the classical 496

study on ICA of face images [34] may be related to the construction of our face 497

sparse coding submodel, although the previous study reported global facial 498

features as the resulting basis set [34]. (Because of this, it was once argued that 499

parts-based representations require the non-negativity constraint [23]. However, 500

it seems that such completely global ICA features may have been due to some 501

kind of overlearning and, indeed, local feature representations were obtained 502

when we used enough data as in Figure 3; we also confirmed this in the case 503

with raw images.) Another relevant formalism is mixture of ICA models [43]. 504

Although the idea is somewhat similar to ours, their full rank assumption on the 505

basis matrix and the lack of Gaussian noise (reconstruction error) terms make it 506

inappropriate in our case because the strong dimension reduction was essential 507

for ensuring the face selectivity (Figure 11). 508

Our model presented here is not meant to explain all the properties of face 509

neurons. Indeed, the properties explained here are a part of known properties of 510

face neurons in the middle patch, which is in turn a part of the face network 511

in the monkey IT cortex [25, 44, 45]. In the middle patch, face neurons are 512

also tuned to contrast polarities between facial parts [46]. In more anterior 513

patches, face neurons are tuned to viewing angles in a mirror-symmetric manner 514

or invariant to viewing angles but selective to identities [47]. Further, all these 515

neurons are invariant to shift and size transformation as usual for IT neurons [47]. 516

Explaining any of these properties seems to require a substantial extension of our 517

current model and is thus left for future research. Finally, since most detailed 518

and reliable experimental data on the IT cortex concerns face processing, we 519

hope that the principles, such as presented here, found in face processing could 520

serve to elucidate principles of general visual object processing. 521

Methods 522

Model details 523

Our hierarchical model began with a bank of Gabor filters. The filters had 524

all combinations of 10⇥ 10 center locations (arranged in a square grid within 525

64⇥ 64 pixels), 8 orientations (at 22.5° interval), 3 frequencies (0.25, 0.17, and 526

0.13 cycles/picels), and 2 phases (0° and 90°). The Euclidean norm of each 527

Gabor filter with frequency f was set to f

1.15 (following 1/f spectrum of natural 528

images) and the Gaussian width and length were both set to 0.4/f . 529
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Data preprocessing 530

As a face image dataset, we used a version of Labeled Faces in Wild (LFW) [28] 531

where face alignment was already performed using an algorithm called “deep 532

funneling” [29]. By this alignment, faces had a more or less similar position, 533

size, and (upright) posture across images. The dataset consisted of about 13,000 534

images in total. Each image was converted to gray scale, cropped to the central 535

square region containing only the facial parts and hairs, and resized to 64⇥ 64 536

pixels. Since many images still contained some background, they were further 537

passed to a disk-like filter, which retained the image region within 30 pixels from 538

the center and gradually faded the region away from this circular area. Finally, 539

the pixel values were standardized to zero mean and unit variance per image. 540

As an object image dataset, we used Caltech101 [24]. We removed four 541

image categories containing human and animal face images (Faces, Faces easy, 542

Cougar face, and Dalmetian). The objects within the images were already 543

aligned. The dataset consisted of about 8,000 images in total. Like face images, 544

each image was converted to gray scale, cropped to square, resized to 64⇥ 64 545

pixels, passed to the above mentioned disk-like filter, and standardized per 546

image. 547

For each class, we reserved 1,000 images for selectivity test and used the rest 548

for model training. 549

Learning details 550

To train the mixture model, we first processed the images with the energy 551

detectors and then subtracted, from each data x, the dimension along the mean 552

x̄ of all (face and object) data: 553

x x� x̄x̄|x
kx̄k2 (5)

Although this operation was not quite essential, this had the effect of a linear 554

form of contrast normalization suppressing a part of inputs with prominently 555

strong signals; in fact, we observed that, without this operation, some elements 556

of mean vectors bk estimated as below became outrageously large. 557

Then, for each submodel for image class k, we learned the basis matrix Ak
558

and the mean vector bk in the following two steps: 559

1. perform strong dimension reduction using PCA [32] from 2400 to 100 560

dimensions while whitening; 561

2. apply overcomplete ICA [33] to estimate 400 components from 100 dimen- 562

sions. 563

For overcomplete ICA, we used the score matching method for computational 564

efficiency [33]. Formally, let dk be the vector of top 100 eigenvalues (from 565

PCA) sorted in descending order, Ek be the matrix of the corresponding (row) 566
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eigenvectors, and Rk be the weight matrix estimated by the overcomplete ICA. 567

Then, using the filter matrix defined as 568

Wk = Rk diag(dk)�1/2Ek
, (6)

the basis matrix can be calculated as Ak = (Wk)# (# is the pseudo inverse) 569

and the mean vector as bk = Wkx̄k (where x̄k is the mean of all data of class 570

k). Note that the signs of the filter vectors obtained from ICA are arbitrary; for 571

the present purpose, we adjusted each sign so that all elements of bk became 572

non-negative. 573

Theory of mixture of sparse coding models 574

A mixture of sparse coding models is similar to a classical mixture of Gaussians 575

[30] in that it describes data coming from a fixed number of categories, but 576

different in that each category is defined by a sparse coding model [14]. 577

Formally, we assume an observed variable x : RD, a (discrete) hidden variable 578

k : {1, 2, . . . ,K}, and K hidden variables yh : RM (h = 1, 2, . . . ,K). Intuitively, 579

x represents a (processed) input image, k represents the index of an image class 580

(submodel), and yh represents features (responses) for the class h. 581

We define the generative process of these variables as follows (see Figure 13 582

for the graphical diagram). First, an image class k is drawn from a pre-fixed 583

prior ⇡h : [0, 1] (where
P

h ⇡h = 1): 584

P (k) = ⇡k (7)

We call k here the generating class. Next, features yk for the class k are drawn 585

from the Laplace distribution with mean vector bk : RM and a pre-fixed standard 586

deviation � (common for all dimensions) 587

P (yk | k) = L(yk | bk
,�) =

Y

m

1

2�
exp

✓
� |ykm � b

k
m|

�

◆
(8)

and an observed image x is generated from the features yk by transforming it 588

by the basis matrix Ak : RD⇥M , with a Gaussian noise of a pre-fixed variance 589

�

2 added: 590

P (x | yk
, k) = N (x | Akyk

,�

2
I) (9)

Here, Ak and bk are model parameters estimated from data (see the section on 591

Learning details above). Features yh for each non-generating class h 6= k are 592

drawn from the zero-mean Laplacian 593

P (yh | k) = L(yh | 0,�) (10)

and never used for generating x. Altogether, the model distribution is rewritten 594

as follows: 595

P (x,y1
,y2

, . . . ,yK
, k) = N (x | Akyk

,�

2
I)L(yk | bk

,�)

2

4
Y

h 6=k

L(yh | 0,�)

3

5
⇡k

(11)
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Figure 13. The graphical diagram for a mixture of sparse coding models. The
variable k is first drawn from its prior, then each variable yh is draw from a
Laplace distribution depending on whether h = k or not, and finally the
variable x is generated from a Gaussian distribution depending on yk. (Note
that, until k is determined, x is dependent on k and all of y1

,y2
, . . . ,yK .)

Since data are generated from the mixture of K distributions each of which is a 596

combination of a Laplacian and a Gaussian similar to the classical sparse coding 597

model [31], we call the above framework mixture of sparse coding models. 598

However, we depart from standard formulation of mixture models or sparse 599

coding in two ways, motivated for modeling face neurons. First, since the feature 600

variable yh for the non-generating classes h 6= k are unused for generating x, a 601

standard formulation would simply drop the factor (10), leaving yh unconstrained. 602

However, our goal here is to model the responses of all (face or object) neurons for 603

all stimuli (faces or objects). In fact, actual face neurons are normally strongly 604

activated by face stimuli, but are deactivated by non-face stimuli, which is why 605

our model uses a zero mean for non-generating feature variables. Second, the 606

classical sparse coding uses a zero-mean prior [31], which is suitable for natural 607

image patch inputs since their mean is zero (blank image) and this evokes no 608

response like V1 neurons. However, the mean of face images is not zero and 609

such mean face image usually elicits non-zero responses of actual face neurons. 610

Therefore our model uses a prior with potentially non-zero mean bk on the 611

feature variable yk for the generating class. 612

Given an input x, how do we infer the hidden variables yh? Since evoked 613

response values of neurons that are experimentally reported are usually the firing 614

rates averaged over trials, we model these quantities as posterior expectations 615

of the hidden variables. Since exact computation of those values would be too 616

slow, we use the following approximation (see the derivation in the section on 617

Approximating posterior later). 618

1. For each image class k, compute the MAP (maximum a posteriori) estimates 619

of the feature variables y1
,y2

, . . . ,yK , conditioned on the class k: 620

(ŷ1(k), ŷ2(k), . . . , ŷK(k)) = argmax
y1,y2,...,yK

P (y1
,y2

, . . . ,yK
, k | x) (12)

2. Compute the approximate posterior probability of each image class k: 621

rk =
P (ŷ1(k), ŷ2(k), . . . , ŷK(k), k | x)P
h P (ŷ1(h), ŷ2(h), . . . , ŷK(h), h | x) (13)

3. Compute the approximate posterior expectation of each feature variable k: 622

ŷk =
X

h

rhŷ
k(h) (14)
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Note that, in equation (12), the feature variables for non-selected classes are 623

always exactly zero: 624

ŷh(k) = 0 for h 6= k. (15)

Therefore, even though an alternative approach would be to model neural 625

responses by the MAP estimates of feature variable for the best image class, 626

this may be too radical since responses becoming absolutely zero are a little 627

unnatural. 628

The Bayesian inference described in the section on “Model” can be derived 629

from steps 1 to 3 above in a straightforward manner using the model defini- 630

tion (11) and the property (15). 631

Approximating posterior 632

Given an input x, we intend to compute the posterior expectations of each yh: 633

E [yk | x] =
X

k

Z Z
· · ·

Z
yk

P (y1
,y2

, . . . ,yK
, k | x)dy1

dy2 · · · dyK (16)

Direct computation of this value is not easy. Note, however, that, from the 634

definition of the model (equation 11), the posterior distribution has a single 635

strong peak for each class k, with variances more or less similar across all classes. 636

Therefore we approximate the posterior probability by 637

P (y1
,y2

, . . . ,yK
, k | x) ⇡ �(y1 = ŷ1(k),y2 = ŷ2(k), . . . ,yK = ŷK(k))rk (17)

where ŷh(k) is the MAP estimate of yh when the selected image class is k 638

(equation 12) and rk is the relative peak posterior probability for the class k 639

(equation 13). Here, �(·) is the delta function that takes infinity for the specified 640

input value and zero for other values. Substituting the approximation (17) into 641

equation (16) yields equation (14). 642

Simulation details 643

Cartoon face images were created by using the method described by Freiwald 644

et al. [4]. Each face image was drawn as a linear combination of 7 facial parts 645

(outline, hair, eye pair, iris pair, eyebrows, nose, and mouth). The facial parts 646

were controlled by 19 feature parameters: (1) face aspect ratio (round to long), 647

(2) face direction (left to right), (3) feature assembly height (up to down), (4) 648

hair length (short to long), (5) hair thickness (thin to thick), (6) eyebrow slant 649

(angry to worried), (7) eyebrow width (short to long), (8) eyebrow height (up 650

to down), (9) inter-eye distance (narrow to wide), (10) eye eccentricity (long to 651

round), (11) eye size (small to large), (12) iris size (small to large), (13) gaze 652

direction (11 x-y positions), (14) nose base (narrow to wide), (15) nose altitude 653

(short to long), (16) mouth-nose distance (short to long), (17) mouth size (narrow 654

to wide), (18) mouth top (smily to frowny), and (19) mouth bottom (closed to 655

open). Note that the first three parameters globally affected the actual geometry 656
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of all the facial parts, while the rest locally determined only the relevant facial 657

part. See Figure S3 for example images. 658

Following the method in the same study [4], we estimated three kinds of 659

tuning curves: (1) full variation, (2) single variation, and (3) partial face. For 660

full variation, a set of 5000 cartoon face images were generated while the 19 661

parameters were randomly varied. For each unit and each feature parameter, 662

a tuning curve at each feature value was estimated as the average of the unit 663

responses to the cartoon face images for which the feature parameter took that 664

value. The tuning curve was then smoothed by a Gaussian kernel with unit 665

variance. To determine the significance of each tuning curve, 5000 surrogate 666

tuning curves were generated by destroying the correspondences between the 667

stimuli and the responses. Then, a tuning curve was regarded significant if (1) its 668

maximum was at least 25% greater than its minimum and (2) its heterogeneity 669

exceeded 99.9% of those of the surrogates, where the heterogeneity of a tuning 670

curve was defined as the negative entropy when the values in the curve were 671

taken as relative probabilities. 672

For single variation, a tuning curve for a feature parameter at each value 673

was estimated as the response to a cartoon face image for which the feature 674

parameter took that value and the other were fixed to standard values. The 675

standard parameter values were obtained by a manual adjustment with the 676

stimuli used in the experiment [4, Suppl. Fig. 1]. For partial face, cartoon face 677

images with only one facial part (hair, outline, eyebrows, eyes, nose, mouth, or 678

irises) were created. Each tuning curve for each feature parameter was obtained 679

similarly to single variation, except that only the relevant facial part was present 680

in the stimulus. 681
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Supporting information

Figure S1 Control simulations varying the number of units. A mix-
ture model was constructed in the same way as the original one, except that
each submodel here had 200 units (upper half) or 800 units (lower half). (A)
The responses of model face units and object units to natural face images (left)
or natural object images (right), together with the distribution of face-selective
indices for the face units (bottom); compare these with Figure 4A and D (blue).
(B) The distributions of the numbers of significantly tuned features (of cartoon
faces) per unit (left), of numbers of significantly tuned units for each feature
parameter (middle), of peak and trough parameter values (right); compare
these with Figures 6 and 7B. Overlaid red boxes are replots of corresponding
experimental data [4].

Figure S2 Control simulation with a single sparse coding model. A
single sparse coding model with 800 units was constructed on top of the same
energy model and trained with an ensemble of face and non-face images. In
the resulting model, only 71 units gave larger average responses to face images
than non-face images. The response properties of these units are shown. (A)
The responses of face and object units to face images (left) or object images
(right), with the distribution of face-selective indices for the face units (bottom).
No prominent selectivity like in Figure 4A can be observed; the result is more
similar to Figure 4B. (B) The distributions of the numbers of significantly tuned
features per unit (left), of numbers of significantly tuned units for each cartoon
face feature parameter (middle), of peak and trough parameter values (right);
compare these with Figures 6 and 7B as well as Figure 10 (cyan curves). Overlaid
red boxes are replots of corresponding experimental data [4].

Figure S3 Random examples of cartoon face images.
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