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Abstract.— Chromosome number is a key feature of the higher-order organization

of the genome, and changes in chromosome number play a fundamental role in

evolution. Dysploid gains and losses in chromosome number, as well as

polyploidization events, may drive reproductive isolation and lineage diversification.

The recent development of probabilistic models of chromosome number evolution in

the groundbreaking work by Mayrose et al. (2010, ChromEvol) have enabled the
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inference of ancestral chromosome numbers over molecular phylogenies and

generated new interest in studying the role of chromosome changes in evolution.

However, the ChromEvol approach assumes all changes occur anagenetically (along

branches), and does not model events that are specifically cladogenetic.

Cladogenetic changes may be expected if chromosome changes result in

reproductive isolation. Here we present a new class of models of chromosome

number evolution (called ChromoSSE) that incorporate both anagenetic and

cladogenetic change. The ChromoSSE models allow us to determine the mode of

chromosome number evolution; is chromosome evolution occurring primarily within

lineages, primarily at lineage splitting, or in clade-specific combinations of both?

Furthermore, we can estimate the location and timing of possible chromosome

speciation events over the phylogeny. We implemented ChromoSSE in a Bayesian

statistical framework, specifically in the software RevBayes, to accommodate

uncertainty in parameter estimates while leveraging the full power of likelihood

based methods. We tested ChromoSSE’s accuracy with simulations and

re-examined chromosomal evolution in Aristolochia, Carex section Spirostachyae,

Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding

evidence for clade-specific combinations of anagenetic and cladogenetic dysploid

and polyploid modes of chromosome evolution.

(Keywords: ChromoSSE; chromosome evolution; phylogenetic models; anagenetic;

cladogenetic; dysploidy; polyploidy; whole genome duplication; chromosome

speciation; reversible-jump Markov chain Monte Carlo; Bayes factors )
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A central organizing component of the higher-order architecture of the1

genome is chromosome number, and changes in chromosome number have long2

been understood to play a fundamental role in evolution. In the seminal work3

Genetics and the Origin of Species (1937), Dobzhansky identified “the raw4

materials for evolution”, the sources of natural variation, as two evolutionary5

processes: mutations and chromosome changes. “Chromosomal changes are one of6

the mainsprings of evolution,” Dobzhansky asserted, and changes in chromosome7

number such as the gain or loss of a single chromosome (dysploidy), or the8

doubling of the entire genome (polyploidy), can have phenotypic consequences,9

affect the rates of recombination, and increase reproductive isolation among10

lineages and thus drive diversification (Stebbins 1971). Recently, evolutionary11

biologists have studied the macroevolutionary consequences of chromosome changes12

within a molecular phylogenetic framework, mostly due to the groundbreaking13

work of Mayrose et al. (2010, ChromEvol) which introduced likelihood-based14

models of chromosome number evolution. The ChromEvol models have permitted15

phylogenetic studies of ancient whole genome duplication events, rapid16

“catastrophic” chromosome speciation, major reevaluations of the evolution of17

angiosperms, and new insights into the fate of polyploid lineages (e.g. Pires and18

Hertweck 2008; Mayrose et al. 2011; Tank et al. 2015).19

One aspect of chromosome evolution that has not been thoroughly studied20

in a probabilistic framework is cladogenetic change in chromosome number.21

Cladogenetic changes occur solely at speciation events, as opposed to anagenetic22

changes that occur along the branches of a phylogeny. Studying cladogenetic23
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chromosome changes in a phylogenetic framework has been difficult since the24

approach used by ChromEvol models only anagenetic changes and ignores the25

changes that occur specifically at speciation events and may be expected if26

chromosome changes result in reproductive isolation. Reproductive27

incompatibilities caused by chromosome changes may play an important role in the28

speciation process, and led White (1978) to propose that chromosome changes29

perform “the primary role in the majority of speciation events.” Indeed,30

chromosome fusions and fissions may have played a role in the formation of31

reproductive isolation and speciation in the great apes (Ayala and Coluzzi 2005),32

and the importance of polyploidization in plant speciation has long been33

appreciated (Coyne et al. 2004; Rieseberg and Willis 2007). Recent work by Zhan34

et al. (2016) revealed phylogenetic evidence that polyploidization is frequently35

cladogenetic in land plants. However, their approach did not examine the role36

dysploid changes may play in speciation, and it required a two step analysis in37

which one first used ChromEvol to infer ploidy levels, and then a second modeling38

step to infer the proportion of ploidy shifts that were cladogenetic.39

Here we present models of chromosome number evolution that40

simultaneously account for both cladogenetic and anagenetic polyploid as well as41

dysploid changes in chromosome number over a phylogeny. These models42

reconstruct an explicit history of cladogenetic and anagenetic changes in a clade,43

enabling estimation of ancestral chromosome numbers. Our approach also identifies44

different modes of chromosome number evolution among clades; we can detect45

primarily anagenetic, primarily cladogenetic, or clade-specific combinations of both46
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modes of chromosome changes. Furthermore, these models allow us to infer the47

timing and location of possible polyploid and dysploid speciation events over the48

phylogeny. Since these models only account for changes in chromosome number,49

they ignore speciation that may accompany other types of chromosome50

rearrangements such as inversions. Our models cannot determine that changes in51

chromosome number “caused” the speciation event, but they do reveal that52

speciation and chromosome change are temporally correlated. Thus, these models53

can give us evidence that the chromosome number change coincided with54

cladogenesis and so may have played a significant role in the speciation process.55

A major challenge for all phylogenetic models of cladogenetic character56

change is accounting for unobserved speciation events due to lineages going extinct57

and not leaving any extant descendants (Bokma 2002). Teasing apart the58

phylogenetic signal for cladogenetic and anagenetic processes given unobserved59

speciation events is a major difficulty. The Cladogenetic State change Speciation60

and Extinction (ClaSSE) model (Goldberg and Igić 2012) accounts for unobserved61

speciation events by jointly modeling both character evolution and the phylogenetic62

birth-death process. Our class of chromosome evolution models uses the ClaSSE63

approach, and could be considered a special case of ClaSSE. We implemented our64

models (called ChromoSSE) in a Bayesian framework and use Markov chain Monte65

Carlo algorithms to estimate posterior probabilities of the model’s parameters.66

However, compared to most character evolution models, SSE models require67

additional complexity since they must model extinction and speciation processes.68

Using simulations, we examined the impact of this additional complexity on our69
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chromosome evolution models’ performance.70

Out of the class of ChromoSSE models described here, it is possible that no71

single model will adequately describe the chromosome evolution of a given clade.72

The most parameter-rich ChromoSSE model has 13 independent parameters,73

however the models that best describe a given dataset (a phylogeny and a set of74

observed chromosome counts) may be special cases of the full model. For example,75

there may be a clade for which the best fitting models have no anagenetic rate of76

polyploidization (the rate = 0.0) and for which all polyploidization events are77

cladogenetic. To explore the entire space of all possible models of chromosome78

number evolution we constructed a reversible jump Markov chain Monte Carlo79

(Green 1995) that samples across models of different dimensionality, drawing80

samples from chromosome evolution models in proportion to their posterior81

probability and enabling Bayes factors for each model to be calculated. This82

approach incorporates model uncertainty by permitting model-averaged inferences83

that do not condition on a single model; we draw estimates of ancestral84

chromosome numbers and rates of chromosome evolution from all possible models85

weighted by their posterior probability. For general reviews of this approach to86

model averaging see Madigan and Raftery (1994), Hoeting et al. (1999), Kass and87

Raftery (1995), and for its use in phylogenetics see Posada and Buckley (2004).88

Averaging over all models has been shown to provide a better average predictive89

ability than conditioning on a single model (Madigan and Raftery 1994).90

Conditioning on a single model ignores model uncertainty, which can lead to an91

underestimation in the uncertainty of inferences made from that model (Hoeting92
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et al. 1999). In our case, this can lead to overconfidence in estimates of ancestral93

chromosome numbers and chromosome evolution parameter value estimates.94

Our motivation in developing these phylogenetic models of chromosome95

evolution is to determine the mode of chromosome number evolution; is96

chromosome evolution occurring primarily within lineages, primarily at lineage97

splitting, or in clade-specific combinations of both? By identifying how much of the98

pattern of chromosome number evolution is explained by anagenetic versus99

cladogenetic change, and by identifying the timing and location of possible100

chromosome speciation events over the phylogeny, the ChromoSSE models can help101

uncover how much of a role chromosome changes play in speciation. In this paper102

we first describe the ChromoSSE models of chromosome evolution and our103

Bayesian method of model selection, then we assess the models’ efficacy by testing104

them with simulated datasets, particularly focusing on the impact of unobserved105

speciation events on inferences, and finally we apply the models to five empirical106

datasets that have been previously examined using other models of chromosome107

number evolution.108

Methods109

Models of Chromosome Evolution110

In this section we introduce our class of probabilistic models of chromosome111

number evolution. We are interested in modeling the changes in chromosome112
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number both within lineages (anagenetic evolution) and at speciation events113

(cladogenetic evolution). The anagenetic component of the model is a114

continuous-time Markov process similar to Mayrose et al. (2010) as described115

below. The cladogenetic changes are accounted for by a birth-death process similar116

to Maddison et al. (2007) and Goldberg and Igić (2012), except each type of117

cladogenetic chromosome event is given its own rate. Thus, the birth-death process118

has multiple speciation rates (one for each type of cladogenetic change) and a single119

constant extinction rate. Our models of chromosome number evolution can120

therefore be understood as a specific case of the Cladogenetic State change121

Speciation and Extinction (ClaSSE) model (Goldberg and Igić 2012), which122

integrates over all possible unobserved speciation events (due to lineages that have123

gone extinct) directly in the likelihood calculation of the observed chromosome124

counts and tree shape. To test the importance of accounting for unobserved125

speciation events we also briefly describe a version of the model that handles126

different cladogenetic event types as transition probabilities at each observed127

speciation event and ignores unobserved speciation events, similar to the128

dispersal-extinction-cladogenesis (DEC) models of geographic range evolution (Ree129

and Smith 2008).130

Our models contain a set of 6 free parameters for anagenetic chromosome131

number evolution, a set of 5 free parameters for cladogenetic chromosome number132

evolution, an extinction rate parameter, and the root frequencies of chromosome133

numbers, for a total of 13 free parameters. All of the 11 chromosome rate134

parameters can be removed (fixed to 0.0) except the cladogenetic no-change rate135

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


parameter. Thus, the class of chromosome number evolution models described here136

has a total of 210 = 1024 nested models of chromosome evolution.137

Our implementation assumes chromosome numbers can take the value of138

any positive integer, however to limit the transition matrices to a reasonable size139

for likelihood calculations we follow Mayrose et al. (2010) in setting the maximum140

chromosome number Cm to n+ 10, where n is the highest chromosome number in141

the observed data. Note that we allow this parameter to be set in our142

implementation. Hence, it is easily possible to test the impact of setting a specific143

value for the maximum chromosome count.144

Chromosome evolution within lineages.—145

Chromosome number evolution within lineages (anagenetic change) is146

modeled as a continuous-time Markov process similar to Mayrose et al. (2010). The147

continuous-time Markov process is described by an instantaneous rate matrix Q148

where the value of each element represents the instantaneous rate of change within149

a lineage from a genome of i chromosomes to a genome of j chromosomes. For all150

elements of Q in which either i = 0 or j = 0 we define Qij = 0. For the off-diagonal151
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i

j = i k = i

no change:
λijk = φc

i

j = i+1 k = i

i

j = i k = i+1

gain:
λijk = γc/2

i

j = i−1 k = i

i

j = i k = i−1

loss:
λijk = δc/2

i

j = 2i k = i

i

j = i k = 2i

polyploidization:
λijk = ρc/2

i

j = 1.5i k = i

i

j = i k = 1.5i

demi-
polyploidization:
λijk = ηc/2

Figure 1: Modeled cladogenetic chromosome evolution events. At each spe-
ciation event 9 different cladogenetic events are possible. The rate of each type
of speciation event is λijk where i is the chromosome number before cladogenesis
and j and k are the states of each daughter lineage immediately after cladogenesis.
The dashed lines represent possible chromosomal changes within lineages that are
modeled by the anagenetic rate matrix Q.
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elements i 6= j with positive values of i and j, Q is determined by:152

Qij =



γae
γm(i−1) j = i+ 1,

δae
δm(i−1) j = i− 1,

ρa j = 2i,

ηa j = 1.5i,

0 otherwise,

(1)

where γa, δa, ρa, and ηa are the rates of chromosome gains, losses, polyploidizations,153

and demi-polyploidizations. γm and δm are rate modifiers of chromosome gain and154

loss, respectively, that allow the rates of chromosome gain and loss to depend on155

the current number of chromosomes. This enables modeling scenarios in which the156

probability of fusion or fission events is positively or negatively correlated with the157

number of chromosomes. If the rate modifier γm = 0, then γae
0(i−1) = γa. If the158

rate modifier γm > 0, then γae
γm(i−1) ≥ γa, and if γm < 0 then γae

γm(i−1) ≤ γa.159

These two rate modifiers replace the parameters λl and δl in Mayrose et al. (2010),160

which in their parameterization may result in negative transition rates. Here we161

chose to exponentiate γm and δm to ensure positive transition rates, and avoid ad162

hoc restrictions on negative transition rates that may induce unintended priors.163

For odd values of i, we set Qij = η/2 for the two integer values of j resulting164

when j = 1.5i was rounded up and down. We define the diagonal elements i = j of165
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Q as:166

Qii = −
Cm∑
i6=j

Qij. (2)

The probability of anagenetically transitioning from chromosome number i to j167

along a branch of length t is then calculated by exponentiation of the instantaneous168

rate matrix:169

Pij(t) = e−Qt. (3)

Chromosome evolution at cladogenesis events.—170

At each lineage divergence event over the phylogeny, nine different171

cladogenetic changes in chromosome number are possible (Figure 1). Each type of172

cladogenetic event occurs with the rate φc, γc, δc, ρc, ηc, representing the173

cladogenesis rates of no change, chromosome gain, chromosome loss,174

polyploidization, and demi-polyploidization, respectively. The speciation rates λ for175

the birth-death process generating the tree are given in the form of a 3-dimensional176

matrix between the ancestral state i and the states of the two daughter lineages j177

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


and k. For all positive values of i, j, and k, we define:178

λijk =



φc j = k = i

γc/2 j = i+ 1 and k = i,

γc/2 j = i and k = i+ 1,

δc/2 j = i− 1 and k = i,

δc/2 j = i and k = i− 1,

ρc/2 j = 2i and k = i,

ρc/2 j = i and k = 2i,

ηc/2 j = 1.5i and k = i,

ηc/2 j = i and k = 1.5i,

0 otherwise,

(4)

so that the total speciation rate of the birth-death process λt is given by:179

λt = φc + γc + δc + ρc + ηc. (5)

Similar to the anagenetic instantaneous rate matrix described above, for odd values180

of i, we set λijk = ηc/4 for the integer values of j and k resulting when 1.5i is181

rounded up and down. The extinction rate µ is constant over the tree and for all182

chromosome numbers.183

Note that this model allows only a single chromosome number change event184
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on a maximum of one of the daughter lineages at each cladogenesis event. Changes185

in both daughter lineages at cladogenesis are not allowed; at least one of the186

daughter lineages must inherit the chromosome number of the ancestor. The model187

also assumes that cladogenesis events are always strictly bifurcating and that there188

are no polytomies.189

Likelihood Calculation Accounting for Unobserved Speciation.—190

The likelihood of cladogenetic and anagenetic chromosome number evolution191

over a phylogeny is calculated using a set of ordinary differential equations similar192

to the Binary State Speciation and Extinction (BiSSE) model (Maddison et al.193

2007). The BiSSE model was extended to incorporate cladogenetic changes by194

Goldberg and Igić (2012). Similar to Goldberg and Igić (2012), we define DNi(t) as195

the likelihood that a lineage with chromosome number i at time t evolves into the196

observed clade N . We let Ei(t) be the probability that a lineage with chromosome197

number i at time t goes extinct before the present, or is not sampled at the present.198

However, unlike the full ClaSSE model the extinction rate µ does not depend on199

the chromosome number i of the lineage. The differential equations for these two200

probabilities is given by:201

202

dDNi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
DNi(t)203

+
Cm∑
j=1

QijDNj(t) +
Cm∑
j=1

Cm∑
k=1

λijk

(
DNk(t)Ej(t) +DNj(t)Ek(t)

)
(6)204

205
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206

207

dEi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qij + µ

)
Ei(t)208

+ µ+
Cm∑
j=1

QijEj(t) +
Cm∑
j=1

Cm∑
k=1

λijkEj(t)Ek(t), (7)209

210

where λijk for each possible cladogenetic event is given by equation 4, and the rates211

of anagenetic changes Qij are given by equation 1.212

The differential equations above have no known analytical solution.213

Therefore, we numerically integrate the equations for every arbitrarily small time214

interval moving along each branch from the tip of the tree towards the root. When215

a node l is reached, the probability of it being in state i is calculated by combining216

the probabilities of its descendant nodes m and n as such:217

Dli(t) =
Cm∑
j=1

Cm∑
k=1

λijkDmj(t)Dnk(t), (8)

where again λijk for each possible cladogenetic event is given by equation 4. Letting218

D denote a set of observed chromosome counts, Ψ an observed phylogeny, and θq a219

particular set of chromosome evolution model parameters, then the likelihood for220

the model parameters θq is given by:221

P (D,Ψ|θq) =
Cm∑
i=1

πiD0i(t), (9)

where πi is the root frequency of chromosome number i and D0i(t) is the likelihood222

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


of the root node being in state i conditional on having given rise to the observed223

tree Ψ and the observed chromosome counts D.224

Initial Conditions.—225

The initial conditions for each observed lineage at time t = 0 for the226

extinction probabilities described by equation 7 are Ei(0) = 1− ρs for all i where ρs227

is the sampling probability of including that lineage. For lineages with an observed228

chromosome number of i, the initial condition is DNi(0) = ρs. The initial condition229

for all other chromosome numbers j is DNj(0) = 0.230

Likelihood Calculation Ignoring Unobserved Speciation.—231

To test the effect of unobserved speciation events on inferences of232

chromosome number evolution we also implemented a version of the model233

described above that only accounts for observed speciation events. At each lineage234

divergence event over the phylogeny, the probabilities of cladogenetic chromosome235

number evolution P ({j, k}|i) are given by the simplex {φp, γp, δp, ρp, ηp}, where236

φp, γp, δp, ρp, and ηp represent the probabilities of no change, chromosome gain,237

chromosome loss, polyploidization, and demi-polyploidization, respectively. This238

approach does not require estimating speciation or extinction rates.239

Here, we calculate the likelihood of chromosome number evolution over a240

phylogeny using Felsenstein’s pruning algorithm (Felsenstein 1981) modified to241

include cladogenetic probabilities similar to models of biogeographic range242

evolution (Landis et al. 2013; Landis in press). Let D again denote a set of243

observed chromosome counts and Ψ represent an observed phylogeny where node l244
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has descendant nodes m and n. The likelihood of chromosome number evolution at245

node l conditional on node l being in state i and θq being a particular set of246

chromosome evolution model parameter values is given by:247

248

Pl(D,Ψ|i, θq) =249

Cm∑
j=1

Cm∑
k=1

P ({j, k}|i)︸ ︷︷ ︸
cladogenetic

[ Cm∑
je=1

Pjje(tm)Pm(D,Ψ|je, θq)
][ Cm∑

ke=1

Pkke(tn)Pn(D,Ψ|ke, θq)
]

︸ ︷︷ ︸
anagenetic

,

(10)

250

251

where the length of the branches between l and m is tm and between l and n is tn.252

The state at the end of these branches near nodes m and n is je and ke,253

respectively. The state at the beginning of these branches, where they meet at node254

l, is j and k respectively. The cladogenetic term sums over the probabilities255

P ({j, k}|i) of all possible cladogenetic changes from state i to the states j and k at256

the beginning of each daughter lineage. The anagenetic term of the equation is the257

product of the probability of changes along the branches from state j to state je258

and state k to state ke (given by equation 3) and the likelihood of the tree above259

node l recursively computed from the tips.260

The likelihood for the model parameters θq is given by:261

P (D,Ψ|θq) =
Cm∑
i=1

πiP0(D,Ψ|i, θq), (11)

where P0(D,Ψ|i, θq) is the conditional likelihood of the root node being in state i262
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and πi is the root frequency of chromosome number i.263

Estimating Parameter Values and Ancestral States.—264

For any given tree with a set of observed chromosome counts, there exists a265

posterior distribution of model parameter values and a set of probabilities for the266

ancestral chromosome numbers at each internal node of the tree. Let P (si, θq|D,Ψ)267

denote the joint posterior probability of θq and a vector of specific ancestral268

chromosome numbers si given a set of observed chromosome counts D and an269

observed tree Ψ. The posterior is given by Bayes’ rule:270

P (si, θq, |D,Ψ) =
P (D,Ψ|si, θq)P (si|θq)P (θq)∫

θ

Cm∑
s=1

P (D,Ψ|s, θ)P (s|θ)P (θ)dθ

. (12)

Here, P (si|θq) is the prior probability of the ancestral states s conditioned on the271

model parameters θq, and P (θq) is the joint prior probability of the model272

parameters.273

In the denominator of equation 12 we integrate over all possible values of θ274

and sum over all possible ancestral chromosome numbers s. Since θ is a vector of275

13 parameters and s is a vector of 2n− 1 ancestral states where n is the number of276

observed tips in the phylogeny, the denominator of equation 12 requires a high277

dimensional integral and an extremely large summation that is impossible to278

calculate analytically. Instead we use Markov chain Monte Carlo methods279

(Metropolis et al. 1953; Hastings 1970) to estimate the posterior probability280

distribution in a computationally efficient manner.281
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Joint ancestral states are inferred using a two-pass tree traversal procedure282

as described in Pupko et al. (2000), and previously implemented in a Bayesian283

framework by Huelsenbeck and Bollback (2001) and Pagel et al. (2004). First,284

partial likelihoods are calculated during the backwards-time post-order tree285

traversal in equations 6 and 7. Joint ancestral states are then sampled during a286

pre-order tree traversal in which the root state is first drawn from the marginal287

likelihoods at the root, and then states are drawn for each descendant node288

conditioned on the state at the parent node until the tips are reached. Again, we289

must numerically integrate over a system of differential equations during this290

root-to-tip tree traversal. This integration, however, is performed in forward-time,291

thus the set of ordinary differential equations must be slightly altered since our292

models of chromosome number evolution are not time reversible. Accordingly, we293

calculate:294

295

dDNi(t)

dt
= −

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qji + µ

)
DNi(t)296

+
Cm∑
j=1

QjiDNj(t) +
Cm∑
j=1

Cm∑
k=1

λijk

(
DNj(t)Ek(t) +DNk(t)Ej(t)

)
(13)297

298

299

300

dEi(t)

dt
=

(
Cm∑
j=1

Cm∑
k=1

λijk +
Cm∑
j=1

Qji + µ

)
Ei(t)301

− µ−
Cm∑
j=1

QjiEj(t)−
Cm∑
j=1

Cm∑
k=1

λijkEj(t)Ek(t), (14)302

303
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during the forward-time root-to-tip pass to draw joint conditional ancestral states.304

Priors.—305

Model parameter priors are listed in Table 1. Our implementation allows all306

priors to be easily modified so that their impact on results can be effectively307

assessed. Priors for anagenetic rate parameters are given an exponential308

distribution with a mean of 2/Ψl where Ψl is the length of the tree Ψ. This309

corresponds to a mean rate of two events over the observed tree. The priors for the310

rate modifiers γm and δm are assigned a uniform distribution with the range311

−3/CM to 3/Cm. This sets minimum and maximum bounds on the amount the312

rate modifiers can affect the rates of gain and loss at the maximum chromosome313

number to γae
−3 = γa0.050 and γae

3 = γa20.1, and δae
−3 = δa0.050 and314

δae
3 = δa20.1, respectively.315

The speciation rates are drawn from an exponential prior with a mean equal316

to an estimate of the net diversification rate d̂. Under a constant rate birth-death317

process not conditioning on survival of the process, the expected number of lineages318

at time t is given by:319

E(Nt) = N0e
td, (15)

where N0 is the number of lineages at time 0 and d is the net diversification rate320

λ− µ (Nee et al. 1994b; Höhna 2015). Therefore, we estimate d̂ as:321

d̂ = (lnNt − lnN0)/t, (16)

where Nt is the number of lineages in the observed tree that survived to the322
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present, t is the age of the root, and N0 = 2.323

The extinction rate µ is given by:324

µ = r × λt = r × (φc + γc + δc + ρc + ηc), (17)

where λt is the total speciation rate and r is the relative extinction rate. The325

relative extinction rate r is assigned a uniform (0,1) prior distribution, thus forcing326

the extinction rate to be smaller than the total speciation rate. The root327

frequencies of chromosome numbers π are drawn from a flat Dirichlet distribution.328

Table 1: Model parameter names and prior distributions. See the main text
for complete description of model parameters and prior distributions. Ψl represents
the length of tree Ψ and Cm is the maximum chromosome number allowed.

Parameter X f(X)

Anagenetic Chromosome gain rate γa Exponential(λ = Ψl/2)
Chromosome loss rate δa Exponential(λ = Ψl/2)
Polyploidization rate ρa Exponential(λ = Ψl/2)
Demi-polyploidization rate ηa Exponential(λ = Ψl/2)
Linear component of chromosome gain rate γm Uniform(−3/Cm, 3/Cm)
Linear component of chromosome loss rate δm Uniform(−3/Cm, 3/Cm)

Cladogenetic No change φc Exponential(λ = 1/d̂)

Chromosome gain γc Exponential(λ = 1/d̂)

Chromosome loss δc Exponential(λ = 1/d̂)

Polyploidization ρc Exponential(λ = 1/d̂)

Demi-polyploidization ηc Exponential(λ = 1/d̂)
Other Root frequencies π Dirichlet(1,. . . ,1)

Relative-extinction r Uniform(0, 1)

Model Uncertainty and Selection329

Model Averaging.—330
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To account for model uncertainty we calculate the posterior density of331

chromosome evolution model parameters θ without conditioning on any single332

model of chromosome evolution. For each of the 1024 chromosome models Mk,333

where k = 1, 2, . . . , 1024, the posterior distribution of θ is334

P (θ|D) =
K∑
k=1

P (θ|D,Mk)P (Mk|D). (18)

Here we average over the posterior distributions conditioned on each model335

weighted by the model’s posterior probability. We assume an equal prior336

probability for each model P (Mk) = 2−10.337

Reversible Jump Markov Chain Monte Carlo.—338

To sample from the space of all possible chromosome evolution models, we339

employ reversible jump MCMC (Green 1995). This algorithm draws samples from340

parameter spaces of differing dimensions, and in stationarity samples each model in341

proportion to its posterior probability. This permits inference of each model’s fit to342

the data while simultaneously accounting for model uncertainty.343

Our reversible jump MCMC moves between models of different dimensions344

using augment and reduce moves (Huelsenbeck et al. 2000; Pagel and Meade 2006;345

May et al. 2016). The reduce move proposes that a parameter should be removed346

from the current model by setting its value to 0.0, effectively disallowing that class347

of evolutionary event. Augment moves reverse reduce moves by allowing the348

parameter to once again have a non-zero value. Both augment and reduce moves349

operate on all chromosome rate parameters except for φc the rate of no350
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cladogenetic change. Thus the least complex model the MCMC can sample from is351

one in which φc > 0.0 and all other chromosome rate parameters are set to 0.0,352

corresponding to a model of no chromosomal changes over the phylogeny. The prior353

probability of reducing or augmenting model Mk is Pr(Mk) = Pa(Mk) = 0.5.354

Bayes Factors.—355

In some cases we wish to compare the fit of models to summarize the mode356

of evolution within a clade. Bayes factors (Kass and Raftery 1995) compare the357

evidence between two competing models Mi and Mj358

Bij =
P (D|Mi)

P (D|Mj

=
P (Mi|D)

P (Mj|D)
/
P (Mi)

P (Mj)
. (19)

In words, the Bayes factor Bij is given by the ratio of the posterior odds to the359

prior odds of the two models. Unlike other methods of model selection such as360

Akaike Information Criterion (AIC; Akaike 1974) and the Bayesian Information361

Criterion (BIC; Schwarz 1978), Bayes factors take into account the full posterior362

densities of the model parameters and do not rely on point estimates. Furthermore363

AIC and BIC ignore the priors assigned to parameters, whereas Bayes factors364

penalizes parameters based on the informativeness of the prior. If the prior is365

informative but overlaps little with the likelihood it is penalized more than a366

diffuse uninformative prior that allows the parameter to take on whatever value is367

informed by the data (Xie et al. 2011).368

Implementation369
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The model and MCMC analyses described here are implemented in C++ in370

the software RevBayes (Höhna et al. 2016). Rev scripts that specify the371

chromosome number evolution model (ChromoSSE) described here as a372

probabilistic graphical model (Höhna et al. 2014) and run the empirical analyses in373

RevBayes are available at http://github.com/wf8/ChromoSSE. The RevGadgets374

R package (available at https://github.com/revbayes/RevGadgets) contains375

functions to summarize results and generate plots of inferred ancestral chromosome376

numbers over a phylogeny.377

The MCMC proposals used are outlined in Table 2. Aside from the378

reversible jump MCMC proposals described above, all other proposals are standard379

except for the ElementSwapSimplex move operated on the Dirichlet distributed root380

frequencies parameter. This move randomly selects two elements r1 and r2 from the381

root frequencies vector and swaps their values. The reverse move, swapping the382

original values of r1 and r2 back, will have the same probability as the initial move383

since r1 and r2 were drawn from a uniform distribution. Thus, the Hasting ratio is384

1 and the ElementSwapSimplex move is a symmetric Metropolis move.385

Simulations386

We conducted a series of simulations to: 1) test the effect of unobserved387

speciation events on chromosome number estimates when using a model that does388

not account for unobserved speciation, 2) compare the accuracy of models of389

chromosome evolution that account for unobserved speciation versus those that do390

not, 3) test the effect of jointly estimating speciation and extinction rates with391
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chromosome number evolution, and 4) test for identifiability of cladogenetic392

parameters. We will refer to each of the 4 simulations above as experiment 1,393

experiment 2, experiment 3, and experiment 4.394

For all 4 experiments the same set of simulated trees and chromosome395

counts were used. 100 trees were simulated under the birth-death process with396

λ = 0.25 and η = 0.15 (Figure 2) using the R package diversitree (FitzJohn 2012).397

The trees were conditioned on an age of 25.0 time units and a minimum of 10398

extant lineages. To test the effect of unobserved speciation events due to lineages399

going extinct on cladogenetic estimates, chromosome number evolution was400

simulated along the trees including their extinct lineages (unpruned) and the same401

100 trees but with the extinct lineages pruned. All chromosome number402

simulations were performed using RevBayes (Höhna et al. 2016).403

Three models were used to generate simulated chromosome counts: a model404

where all chromosome evolution was anagenetic, a model where all chromosome405

evolution was cladogenetic, and a model that mixed both anagenetic and406

cladogenetic changes (Table 3). Parameter values were roughly informed by the407

mean values estimated from the empirical datasets. The mean length of the408

simulated trees was 253.5 (Figure 2). Hence, the anagenetic rates were set to409

2/235.5 ≈ 0.008 which corresponds to an expected value of 2 events over the tree.410

The root chromosome number was fixed to be 8. Simulating data for all 3 models411

over both the pruned and unpruned tree resulted in 600 simulated datasets. To412

reproduce the effect of using reconstructed phylogenies all inferences were413

performed using the trees with extinct lineages pruned and with chromosome414
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counts from extinct lineages removed.415

For all 4 experiments, MCMC analyses were run for 5000 iterations, where416

each iteration consisted of 28 different moves in a random move schedule with 79417

moves per iteration (Table 2). Samples were drawn with each iteration, and the418

first 1000 samples were discarded as burn in. Effective sample sizes were419

consistently over 200. To perform all 4 experiments 1300 MCMC analyses were run420

requiring a total of 60927.8 CPU hours on the Savio computational cluster at the421

University of California, Berkeley.422

Experiment 1.—423

In experiment 1 we tested the effect of unobserved speciation events on424

chromosome number estimates when using a model that does not account for425

unobserved speciation. Is the additional model complexity required to account for426

unobserved speciation necessary, or are the effects of unobserved speciation427

negligible and safe to ignore? Using the model described above that does not428

account for unobserved speciation, ancestral chromosome numbers and chromosome429

evolution model parameters were estimated for each of the 600 datasets.430

Experiment 2.—431

Here we compared the accuracy of models of chromosome evolution that432

account for unobserved speciation versus those that do not. Since extinction can433

safely be assumed to be present to some extent in all clades, it is likely all empirical434

datasets contain some unobserved speciation. Do we see an increase in accuracy435

when we account for unobserved speciation events, or conversely do we see an436
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Table 2: MCMC moves used for chromosome number evolution analyses.
See the main text for further explanations of the moves used. Samples were drawn
from the MCMC each iteration, where each iteration consisted of 28 different moves
in a random move schedule with 79 moves per iteration.

Parameter X Move Weight

Anagenetic Chromosome gain rate γa Scale(λ = 1) 2
Chromosome gain rate γa Reduce/Augment 2
Chromosome loss rate δa Scale(λ = 1) 2
Chromosome loss rate δa Reduce/Augment 2
Polyploidization rate ρa Scale(λ = 1) 2
Polyploidization rate ρa Reduce/Augment 2
Demi-polyploidization rate ηa Scale(λ = 1) 2
Demi-polyploidization rate ηa Reduce/Augment 2
Linear component of gain rate γm Slide(δ = 0.1) 1
Linear component of gain rate γm Slide(δ = 0.001) 1
Linear component of gain rate γm Reduce/Augment 2
Linear component of loss rate δm Slide(δ = 0.1) 1
Linear component of loss rate δm Slide(δ = 0.001) 1
Linear component of loss rate δm Reduce/Augment 2

Cladogenetic No change φc Scale(λ = 5) 2
Chromosome gain γc Scale(λ = 5) 2
Chromosome gain γc Reduce/Augment 2
Chromosome loss δc Scale(λ = 5) 2
Chromosome loss δc Reduce/Augment 2
Polyploidization ρc Scale(λ = 5) 2
Polyploidization ρc Reduce/Augment 2
Demi-polyploidization ηc Scale(λ = 5) 2
Demi-polyploidization ηc Reduce/Augment 2
All cladogenetic rates φc, γc, δc,

ρc, ηc

Joint Up-Down
Scale(λ = 0.5)

2

Other Root frequencies π BetaSimplex(α = 0.5) 10
Root frequencies π ElementSwapSimplex 20
Relative-extinction r Scale(λ = 5) 3
Relative-extinction and all clado rates r, φc, γc,

δc, ρc, ηc

Joint Up-Down
Scale(λ = 0.5)

2

Total 28 79
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increase in the variance of our estimates that perhaps describes true uncertainty437

due to extinction? To test this, we estimated ancestral chromosome numbers and438

chromosome evolution model parameters over the simulated datasets that included439

unobserved speciation using both the chromosome model that accounts for440

unobserved speciation as well as the model that does not.441

Experiment 3.—442

In experiment 3 we tested the effect of jointly estimating speciation and443

extinction rates with chromosome number evolution. Estimating speciation and444

extinction rates accurately is notoriously challenging (Nee et al. 1994a; Rabosky445

2010; Beaulieu and O’Meara 2015; May et al. 2016), so how much of the variance in446

chromosome evolution estimates made with models that jointly estimate speciation447

and extinction are due to uncertainty in diversification rates? Here we compared448

our estimates of ancestral chromosome numbers and chromosome evolution model449

parameters using the model that accounts for unobserved speciation (and in which450

speciation and extinction rates are jointly estimated) with estimates made from the451

same model but where the true rates of speciation and extinction used to simulate452

the data were fixed. The latter analyses were given the true rates of total453

speciation and extinction, but still had to estimate the proportion of speciation454

events for each type of cladogenetic event.455

Experiment 4.—456

Since we model the same chromosome number transitions as both457

cladogenetic and anagenetic processes, it is possible that the two processes could be458
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confounded and our models may not be fully identifiable. Furthermore, preliminary459

results suggested our models overestimate anagenetic changes and underestimate460

cladogenetic changes when the true generating process includes cladogenetic461

evolution. Here we compared cladogenetic and anagenetic estimates under462

simulation scenarios that only included cladogenetic changes. Do we see an increase463

in accuracy of cladogenetic parameter estimates when anagenetic changes are464

disallowed (fixed to 0)?465

Summarizing Simulation Results.—466

To summarize the results of our simulations, we measured the accuracy of467

ancestral state estimates as the percent of simulation in which the true root468

chromosome number 8 was found to be the maximum a posteriori (MAP) estimate.469

To evaluate the uncertainty of the simulations, we calculated the mean posterior470

probability of root chromosome number for the simulation replicates that correctly471

found 8 to be the MAP estimate. We also calculated the percentage of simulation472

replicates for which the true model of chromosome number evolution used to473

simulate the data (as given by Table 3) was estimated to be the MAP model, and474

calculated the mean posterior probabilities of the true model. To compare the475

accuracy of model averaged parameter value estimates we calculated coverage476

probabilities. Coverage probabilities are the percentage of simulation replicates for477

which the true parameter value falls within the 95% highest posterior density478

(HPD). High accuracy is shown when coverage probabilities approach 1.0.479

Empirical Data480
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Figure 2: Tree simulations. 100 trees were simulated under the birth-death process
as described in the main text. Chromosome number evolution was simulated over the
unpruned trees that included all extinct lineages, as well as over the same trees but
with extinct lineages pruned. This resulted in two simulated datasets: one simulated
under a process that did have unobserved speciation events, and one simulated with
no unobserved speciation events. Shown above is a histogram of the number of
lineages that survived to the present, the tree lengths, Colless’ Index (a measure of
tree imbalance; Colless 1982), and lineage through time plots of the 100 pruned and
unpruned trees.
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Table 3: Simulation parameter values. Parameter values used to simulate
datasets under 3 modes of chromosome number evolution: anagenetic only, cladoge-
netic only, and mixed. The total speciation rate λt = 0.25 and the extinction rate
µ = 0.15. The root state was fixed to 8.

Simulation
mode γa δa ρa ηa γm δm φc γc δc ρc ηc

Anagenetic 0.008 0.008 0.008 - - - λt - - - -
Cladogenetic - - - - - - 0.85λt 0.05λt 0.05λt 0.05λt -
Mixed 0.008 0.008 0.008 - - - 0.85λt 0.05λt 0.05λt 0.05λt -

Phylogenetic data and chromosomes counts from five plant genera were481

analyzed (see Table 4). Like in Mayrose et al. (2010) we assumed each species had482

a single cytotype, however polymorphism could be accounted for by a vector of483

probabilities for each chromosome count. Sequence data for Aristolochia was484

downloaded from TreeBASE (Vos et al. 2010) study ID 1586. Sequences for485

Helianthus, Mimulus sensu lato, and Primula were downloaded directly from486

GenBank (Benson et al. 2005), reconstructing the sequence matrices from Timme487

et al. (2007), Beardsley et al. (2004), and Guggisberg et al. (2009). For each of488

these four datasets phylogenetic analyses were performed with all gene regions489

concatenated and assuming the general time-reversible (GTR) nucleotide490

substitution model (Tavaré 1986; Rodriguez et al. 1990) with among-site rate491

variation modeled using a discretized gamma distribution (Yang 1994) with four492

rate categories. Since divergence time estimation in years is not the objective of493

this study, and only relative branching times are needed for our models of494

chromosome number evolution, a birth-death tree prior was used with a fixed root495

age of 10.0 time units. The MCMC analyses were sampled every 100 iterations and496
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run for a total of 400000 iterations, with samples from the first 100000 iterations497

discarded as burnin. Convergence was assessed by ensuring that the effective498

sample size for all parameters was over 200. For Carex section Spirostachyae the499

time calibrated tree from Escudero et al. (2010) was used.500

Ancestral chromosome numbers and chromosome evolution model501

parameters were then estimated for each of the five clades. Since testing the effect502

of incomplete taxon sampling on chromosome evolution inference was not a goal of503

this work, we used a taxon sampling fraction of 1.0 for all empirical datasets504

(though see the Discussion section for more on this). MCMC analyses were run for505

11000 iterations, where each iteration consisted of 28 different moves in a random506

move schedule with 79 moves per iteration (Table 2). Samples were drawn each507

iteration, and the first 1000 samples were discarded as burn in. Effective sample508

sizes for all parameters were over 200. For all datasets except Primula we used509

priors as outlined in Table 1. To demonstrate the flexibility of our Bayesian510

implementation and its capacity to incorporate prior information we used an511

informative prior for the root chromosome number in the Primula section Aleuritia512

analysis. Our dataset for Primula section Aleuritia also included samples from513

Primula sections Armerina and Sikkimensis. Since we were most interested in514

estimating chromosome evolution within section Aleuritia, we used an informative515

Dirichlet prior {1, ..., 1, 100, 1....1} (with 100 on the 11th element) to bias the root516

state towards the reported base number of Primula x = 11 (Conti et al. 2000).517

Note all priors can be easily modified in our implementation, thus the impact of518

priors can be efficiently tested.519
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Table 4: Empirical data sets analysed.

Clade Study Gene region Alignment
length (bp)

Number of
OTUs

Haploid chro-
mosome num-
bers range

Aristolochia Ohi-Toma
et al. (2006)

matK 1268 34 3 - 16

Carex section
Spirostachyae

Escudero
et al. (2010)

ITS, trnK
intron

see Escudero
et al. (2010)

24 30 - 42

Helianthus Timme et al.
(2007)

ETS 3085 102 17 - 51

Mimulus
sensu lato

Beardsley
et al. (2004)

trnL intron,
ETS, ITS

2210 115 8 - 46

Primula
section
Aleuritia

Guggisberg
et al. (2009)

rpl16 intron,
rps16 intron,
trnL intron,
trnL-trnF
spacer,
trnT-trnL
spacer,
trnD-trnT
region

5705 56 9 - 36
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Results520

Simulations521

General Results.—522

In all simulations, the true model of chromosome number evolution was523

infrequently estimated to be the MAP model (< 36% of replicates), and when it524

was the posterior probability of the MAP model was very low (< 0.12; Table 5).525

We found that the accuracy of root chromosome number estimation was similar526

whether the process that generated the simulated data was cladogenetic-only or527

anagenetic-only (Tables 5 and 6). However, when the data was simulated under a528

process that included both cladogenetic and anagenetic evolution we found a529

decrease in accuracy in the root chromosome number estimates in all cases.530

Experiment 1 Results.—531

The presence of unobserved speciation in the process that generated the532

simulated data decreased the accuracy of ancestral state estimates (Figure 3, Table533

5). Similarly, uncertainty in root chromosome number estimates increased with534

unobserved speciation (lower mean posterior probabilities; Table 5). The accuracy535

of parameter value estimates (as measured by coverage probabilities) were similar536

(results not shown).537

Experiment 2 Results.—538
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When comparing estimates from models that did account for unobserved539

speciation to estimates from models that did not, we found that the accuracy in540

estimating model parameter values were mostly similar, though for some541

cladogenetic parameters there was higher accuracy with the models that did542

account for unobserved speciation (Figure 4). Estimates of anagenetic parameters543

were more accurate than estimates of cladogenetic parameters when the true544

generating model included cladogenetic changes.545

We found that the models that accounted for unobserved speciation had546

more uncertainty in their root chromosome number estimates (lower mean posterior547

probabilities) compared to models that did not account for unobserved speciation.548

Similarly, the root chromosome number was estimated with slightly lower accuracy549

(Table 6).550

Experiment 3 Results.—551

We found that jointly estimating speciation and extinction rates with552

chromosome number evolution slightly decreased the accuracy in estimating the553

root chromosome number, and further it increased the uncertainty of root554

chromosome number (as reflected in lower mean posterior probabilities; Table 6).555

Fixing the speciation and extinction rates to their true value removed much of the556

increased uncertainty associated with using a model that accounts for unobserved557

speciation (Table 6).558

Experiment 4 Results.—559

Under simulation scenarios that had cladogenetic changes but no anagenetic560
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changes, we found that anagenetic parameters were overestimated and cladogenetic561

parameters were underestimated (Figure 5 A), which explains the lower coverage562

probabilities of cladogenetic parameters reported above for experiment 2 (Figure563

4). When anagenetic parameters were fixed to 0.0 cladogenetic parameters were no564

longer underestimated (Figure 5 A), and the coverage probabilities of cladogenetic565

parameters increased slightly (Figure 5 B).566
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Figure 3: Experiment 1 results: the effect of unobserved speciation events
on the maximum a posteriori (MAP) estimates of root chromosome num-
ber. Model averaged MAP estimates of the root chromosome number for 100 repli-
cates of each simulation type on datasets that included unobserved speciation and
datasets that did not include unobserved speciation. Each circle represents a simu-
lation replicate, where the size of the circle is proportional to the number of lineages
that survived to the present (the number of extant tips in the tree). The true root
chromosome number used to simulate the data was 8 and is marked with a pink
dotted line.
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Table 5: Experiment 1 results: the effect of ignoring unobserved speciation
events on chromosome evolution estimates. Regardless of the true mode of
chromosome evolution, the presence of unobserved speciation decreases accuracy in
estimating the true root state. The columns from left to right are: 1) an indication
of whether or not the data was simulated with a process that included unobserved
speciation, 2) the true mode of chromosome evolution used to simulate the data, (for
description see main text and Table 3), 3) the percent of simulation replicates in
which the true chromosome number at the root used to simulate the data was found
to be the maximum a posteriori (MAP) estimate, 4) the mean posterior probability of
the MAP estimate of the true root chromosome number, 5) the percent of simulation
replicates in which the true model used to simulate the data was also found to be
the MAP model, and 6) the mean posterior probability of the MAP estimate of the
true model.

Simulated
Data
Included
Unobserved
Speciation?

Mode of
Evolution
Used to
Simulate
Data

True Root
State
Estimated
(%)

Mean
Posterior of
True Root
State

True Model
Estimated
(%)

Mean
Posterior of
True Model

No Cladogenetic 93 0.92 13 0.10

No Anagenetic 89 0.91 31 0.12

No Mixed 88 0.84 0 0.0

Yes Cladogenetic 78 0.87 15 0.09

Yes Anagenetic 83 0.91 36 0.12

Yes Mixed 62 0.80 2 0.10
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Figure 4: Experiment 2 results: the effect of using a model that accounts for
unobserved speciation on coverage probabilities of chromosome model pa-
rameters. Each point represents the proportion of simulation replicates for which
the 95% HPD interval contains the true value of the model parameter. Coverage
probabilities of 1.00 mean perfect coverage. The circles represent coverage proba-
bilities for estimates made using the model that does not account for unobserved
speciation, and the triangles represent coverage probabilities for estimates made us-
ing the model that does account for unobserved speciation.
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Table 6: Experiments 2 and 3 results: the effects of using a model that ac-
counts for unobserved speciation and of jointly estimating diversification
rates on ancestral chromosome number estimates. This table compares esti-
mates of chromosome evolution using a model that does not account for unobserved
speciation events with a model that does (Experiment 2), and compares estimates of
chromosome evolution when jointly estimated with speciation and extinction rates
versus when the true speciation and extinction rates are given (Experiment 3). Re-
gardless of the true mode of chromosome evolution, the use of a model that accounts
for unobserved speciation increases uncertainty in root state estimates. The columns
from left to right are: 1) an indication of which experiment the results pertain to, 2)
an indication of whether or not the estimates were made with a model that accounted
for unobserved speciation, 3) whether diversification rates were jointly estimated with
chromosome evolution, 4) the percent of simulation replicates in which the true chro-
mosome number at the root used to simulate the data was found to be the MAP
estimate, 5) the mean posterior probability of the MAP estimate of the true root
chromosome number.

Experiment
#

Estimates
Made w/
Model That
Accounted for
Unobserved
Speciation?

Speciation
and
Extinction
Rates Jointly
Estimated?

Mode of
Evolution
Used to
Simulate
Data

True Root
State
Estimated
(%)

Mean
Posterior of
True Root
State

2 No No Cladogenetic 78 0.87

2 No No Anagenetic 83 0.91

2 No No Mixed 62 0.80

2 & 3 Yes Yes Cladogenetic 78 0.81

2 & 3 Yes Yes Anagenetic 80 0.86

2 & 3 Yes Yes Mixed 61 0.72

3 Yes No Cladogenetic 78 0.84

3 Yes No Anagenetic 83 0.90

3 Yes No Mixed 62 0.76
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Figure 5: Experiment 4 results: testing identifiability of cladogenetic pa-
rameters. a) Chromosome parameter value estimates from 100 simulation replicates
under a simulation scenario with no anagenetic changes (cladogenetic only). The
stars represent true values. The box plots compare parameter estimates made when
anagenetic parameters were fixed to 0 to estimates made when all parameters were
free. When all parameters were free the anagenetic parameters were overestimated
and cladogenetic parameters were underestimated. When the anagenetic parameters
were fixed to 0 the estimates for the cladogenetic parameters were more accurate.
b) Coverage probabilities of chromosome evolution parameters under the cladoge-
netic only model of chromosome evolution. The accuracy of cladogenetic parameter
estimates increased when anagenetic parameters were fixed to 0.

Empirical Data567

Model averaged MAP estimates of ancestral chromosome numbers for each568

of the five empirical datasets are show in Figures 6, 7, 8, 9, and 10. The mean569

model-averaged chromosome number evolution parameter value estimates for the570

empirical datasets are reported in Table 7. Posterior probabilities for the MAP571
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model of chromosome number evolution were low for all datasets, varying between572

0.04 for Carex section Spirostachyae and 0.21 for Helianthus (Table 8). Bayes573

factors supported unique, clade-specific combinations of anagenetic and574

cladogenetic parameters for all five datasets (Table 8). None of the clades had575

support for purely anagenetic or purely cladogenetic models of chromosome576

evolution.577

The ancestral state reconstructions for Aristolochia were highly similar to578

those found by Mayrose et al. (2010). We found a moderately supported root579

chromosome number of 8 (posterior probability 0.45), and a polyploidization event580

on the branch leading to the Isotrema clade which has a base chromosome number581

of 16 with high posterior probability (0.88; Figure 6). On the branch leading to the582

main Aristolochia clade we found a dysploid loss of a single chromosome. Overall,583

we estimated moderate rates of anagenetic dysploid and polyploid changes, and the584

rates of cladogenetic change were 0 except for a moderate rate of cladogenetic585

dysploid loss (Tables 7). There was only one cladogenetic change inferred in the586

MAP ancestral state reconstruction, which was a recent possible dysploid587

speciation event that split the sympatric west-central Mexican species Aristolochia588

tentaculata and A. taliscana.589

In Helianthus, on the other hand, we found high rates of cladogenetic590

polyploidization, and low rates of anagenetic change (Tables 7). 12 separate591

possible polyploid speciation events were identified over the phylogeny (Figure 7),592

and cladogenetic polyploidization made up 16% of all observed and unobserved593

speciation events. Bayes factors gave very strong support for models that included594
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cladogenetic polyploidization as well as anagenetic demi-polyploidization (Table 8),595

the latter explaining the frequent anagenetic transitions from 34 to 51 chromosomes596

found in the MAP ancestral state reconstruction. The well supported root597

chromosome number of 17 (posterior probability 0.91) corresponded with the598

findings of Mayrose et al. (2010).599

As opposed to the Helianthus results, the Carex section Spirostachyae600

estimates had very low rates of polyploidization and instead had high rates of601

cladogenetic dysploid change (Tables 7). An estimated 36.9% of all observed and602

unobserved speciation events included a cladogenetic gain or loss of a single603

chromosome. Overall, the rates of anagenetic changes were estimated to be much604

lower than the rates of cladogenetic changes. Bayes factors did not support either605

anagenetic or cladogenetic polyploidization (Table 8). The MAP root chromosome606

number of 37, despite being very weakly supported (0.08), corresponds with the607

findings of Escudero et al. (2014), where it was also poorly supported (Figure 8).608

In Primula, we found a base chromosome number for section Aleuritia of 9609

with high posterior probability (0.82; Figure 9), which agrees with estimates from610

Glick and Mayrose (2014). We estimated moderate rates of anagenetic and611

cladogenetic changes, including both cladogenetic polyploidization and612

demi-polyploidization (Table 7). The MAP ancestral state estimates include an613

inferred history of possible polyploid and demi-polyploid speciation events in the614

clade containing the tetraploid Primula halleri and the hexaploid P. scotica.615

Primula is the only dataset out of the five analysed here for which Bayes factors616

supported the inclusion of cladogenetic demi-polyploidization (Table 8).617
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Table 7: Mean model-averaged parameter value estimates for empirical
datasets. Rates for all parameters are given in units of chromosome changes per
branch length unit except for µ which is given in extinction events per time units.

Clade γa δa ρa ηa γm δm φc γc δc ρc ηc µ

Aristolochia 0.02 0.05 0.01 0.0 -0.01 -0.01 0.43 0.0 0.04 0.0 0.0 0.19
Carex section
Spirostachyae

0.19 0.79 0.16 0.13 0.0 0.04 2.49 2.15 0.15 0.95 0.5 2.26

Helianthus 0.0 0.02 0.0 0.03 -0.0 -0.0 0.68 0.0 0.0 0.13 0.0 0.09
Mimulus s.l. 0.03 0.02 0.01 0.0 0.02 0.02 0.65 0.0 0.0 0.05 0.0 0.16
Primula
section
Aleuritia

0.01 0.05 0.01 0.01 -0.0 -0.0 2.39 0.01 0.03 0.15 0.09 2.47

The well supported root chromosome number of 8 (posterior probability618

0.90) found for Mimulus s.l. corresponds with the inferences reported in Beardsley619

et al. (2004). We estimated moderate rates of anagenetic dysploid gains and losses,620

as well as a moderate rate of cladogenetic polyploidization (Table 7). Bayes factors621

also supported models that included anagenetic dysploid gain and loss, as well as622

cladogenetic polyploidization (Table 8). The MAP ancestral state reconstruction623

revealed that most of the possible polyploid speciation events took place in the624

Diplacus clade, particularly in the clade containing the tetraploids Mimulus625

cupreus, M. glabratus, M. luteus, and M. yecorensis (Figure 10). Additionally, an626

ancient cladogenetic polyploidization event is inferred for the split between the two627

main Diplacus clades at about 5 million time units ago.628
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Figure 6: Ancestral chromosome number estimates of Aristolochia. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root chromosome number is 8 with a posterior probability of 0.45. The grey arrow
highlights the possible dysploid speciation event leading to the west-central Mexican
species Aristolochia tentaculata and A. taliscana. Clades corresponding to subgenera
are indicated at right.
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Figure 7: Ancestral chromosome number estimates of Helianthus. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root chromosome number is 17 with a posterior probability of 0.91. The grey arrows
show the locations of 12 inferred polyploid speciation events.
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Figure 8: Ancestral chromosome number estimates of Carex section
Spirostachyae. The model averaged MAP estimate of ancestral chromosome num-
bers are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number is 37 with a posterior probability of
0.08. Grey arrows indicate the location of possible dysploid speciation events. 36.9%
of all speciation events include a cladogenetic gain or loss of a single chromosome.
Clades corresponding to subsections are indicated at right.
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Figure 9: Ancestral chromosome number estimates of Primula section
Aleuritia. The model averaged MAP estimate of ancestral chromosome numbers
are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number of section Aleuritia is 9 with a pos-
terior probability of 0.82. The arrows show the inferred history of possible polyploid
and demi-polyploid speciation events in the clade containing the tetraploids Primula
egaliksensis and P. halleri and the hexaploid P. scotica. Clades corresponding to
sections are indicated at right.
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Figure 10: Ancestral chromosome number estimates of Mimulus sensu lato.
The model averaged MAP estimate of ancestral chromosome numbers are shown at
each branch node. The states of each daughter lineage immediately after cladogenesis
are shown at the “shoulders” of each node. The size of each circle is proportional
to the chromosome number and the color represents the posterior probability. The
MAP root chromosome number is 8 with a posterior probability of 0.90. The arrows
highlight the inferred history of repeated polyploid speciation events in the Diplacus
clade, which contains the tetraploids Mimulus cupreus, M. glabratus, M. luteus, and
M. yecorensis. Clades corresponding to segregate genera are indicated at right.
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Table 8: Best supported chromosome evolution models for empirical datasets. The MAP model of chromosome evolution and its
corresponding posterior probability are shown with Bayes factors (BF ) for models that include each parameter. Parameters with BF > 1 are
in bold and indicate support for models that include that parameter. Parameters with “positive” and “strong” support according to Kass and
Raftery (1995) are marked with * and **, respectively.

Clade MAP Model Posterior
Probability of
MAP Model
(%)

BFγa BFδa BFρa BFηa BFγm BFδm BFγc BFδc BFρc BFηc

Aristolochia δa, γa, ρa 0.05 3.08* 8.34* 2.52 0.42 0.55 0.61 0.15 1.09 0.06 0.03
Carex section
Spirostachyae

δa, δm, γc 0.04 1.11 42.67** 0.95 0.89 0.37 6.33* 37.02** 0.25 0.65 0.44

Helianthus δa, ηa, ρc 0.22 0.35 143.07** 0.51 >1000** 0.15 0.87 0.02 0.04 >1000** 0.16
Mimulus s.l. γa, δa, γm, δm,

ρc

0.13 101.04** 24.0** 0.86 0.31 1.57 1.55 0.07 0.1 20.41** 0.02

Primula section
Aleuritia

δa, ρc, ηc 0.06 0.63 5.61* 0.95 0.58 0.23 0.64 0.17 0.54 76.83** 14.89*

.
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Discussion629

The results from the empirical analyses show that the ChromoSSE models630

detect strikingly different modes of chromosome evolution with clade-specific631

combinations of anagenetic and cladogenetic processes. Anagenetic dysploid gains632

and losses were supported in nearly all clades; however, cladogenetic dysploid633

changes were supported only in Aristolochia and Carex. The occurrence of634

anagenetic dysploid changes in all clades suggest that small chromosome number635

changes due to gains and losses may frequently have a minimal effect on the636

formation of reproductive isolation, though our results suggest that Carex may be a637

notable exception. Anagenetic polyploidization was only supported in Aristolochia,638

while cladogenetic polyploidization was supported in Helianthus, Mimulus s.l., and639

Primula. These findings confirm the evidence presented by Zhan et al. (2016) that640

polyploidization events could play a significant role during plant speciation.641

Our models shed new light on the importance of whole genome duplications642

as a key driver in evolutionary diversification processes. Helianthus has long been643

understood to have a complex history of polyploid speciation (Timme et al. 2007),644

but our results here are the first to statistically show the prevalance of cladogenetic645

polyploidization in Helianthus (occuring at 16% of all speciation events) and how646

few of the chromosome changes are estimated to be anagenetic. Polyploid647

speciation has also been suspected to be common in Mimulus s.l. (Vickery 1995),648

and indeed we estimated that 7% of speciation events were cladogenetic649

polyploidization events. We also estimated that the rates of cladogenetic650

dysploidization in Mimulus s.l. were 0, which is in contrast to the parsimony based651
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inferences presented in Beardsley et al. (2004), which estimated 11.5% of all652

speciation events included polyploidization and 13.3% included dysploidization.653

Their estimates, however, did not distinguish cladogenetic from anagenetic654

processes, and so they likely underestimated anagenetic changes. Our ancestral655

state reconstructions of chromosome number evolution for Helianthus, Mimulus s.l.,656

and Primula show that polyploidization events generally occurred in the relatively657

recent past; few ancient polyploidization events were reconstructed (one exception658

being the ancient cladogenetic polyploidization event in Mimulus clade Diplacus).659

This pattern appears to be consistent with recent studies that show polyploid660

lineages may undergo decreased net diversification (Mayrose et al. 2011; Scarpino661

et al. 2014), leading some to suggest that polyploidization may be an evolutionary662

dead-end (Arrigo and Barker 2012). While in the analyses presented here we fixed663

rates of speciation and extinction through time and across lineages, an obvious664

extension of our models would be to allow these rates to vary across the tree and665

statistically test for rate changes in polyploid lineages.666

Our findings also suggest dysploid changes may play a significant role in the667

speciation process of some lineages. The genus Carex is distinguished by668

holocentric chromosomes that undergo common fusion and fission events but rarely669

polyploidization (Hipp 2007). This concurs with our findings from Carex section670

Spirostachyae, where we saw no support for models including either anagenetic or671

cladogenetic polyploidization. Instead we found high rates of cladogenetic dysploid672

change, which is congruent with earlier results that show that Carex diversification673

is driven by processes of fission and fusion occurring with cladogenetic shifts in674
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chromosome number (Hipp 2007; Hipp et al. 2007). Hipp (2007) proposed a675

speciation scenario for Carex in which the gradual accumulation of chromosome676

fusions, fissions, and rearrangements in recently diverged populations increasingly677

reduce the fertility of hybrids between populations, resulting in high species678

richness. More recently, Escudero et al. (2016) found that chromosome number679

differences in Carex scoparia led to reduced germination rates, suggesting hybrid680

dysfunction could spur chromosome speciation in Carex. Holocentricity has arisen681

at least 13 times independently in plants and animals (Melters et al. 2012), thus682

future work could examine chromosome number evolution in other holocentric683

clades and test for similar patterns of cladogenetic fission and fusion events.684

The models presented here could also be used to further study the role of685

divergence in genomic architecture during sympatric speciation. Chromosome686

structural differences have been proposed to perform a central role in sympatric687

speciation, both in plants (Gottlieb 1973) and animals (Feder et al. 2005; Michel688

et al. 2010). In Aristolochia we found most changes in chromosome number were689

estimated to be anagenetic, with the only cladogenetic change occuring among a690

pair of recently diverged sympatric species. By coupling our chromosome evolution691

models with models of geographic range evolution it would be possible to692

statistically test whether the frequency of cladogenetic chromosome changes693

increase in sympatric speciation events compared to allopatric speciation events,694

thereby testing for interaction between these two different processes of reproductive695

isolation and evolutionary divergence.696

The simulation results from Experiment 1 demonstrate that extinction697
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reduces the accuracy of inferences made by models of chromosome evolution that698

do not take into account unobserved speciation events. Furthermore, the699

simulations performed in Experiments 2 and 3 show that the substantial700

uncertainty introduced in our analyses by jointly estimating diversification rates701

and chromosome evolution resulted in lower posterior probabilities for ancestral702

state reconstructions. We feel that this is a strength of our method; the lower703

posterior probabilities incorporate true uncertainty due to extinction and so704

represent more conservative estimates. Additionally, the simulation results from705

Experiment 4 reveal that rates of anagenetic evolution were overestimated and706

rates of cladogenetic change were underestimated when the generating process707

consisted primarily of cladogenetic events. This suggests the possibility that our708

models of chromosome number evolution are only partially identifiable, and that709

the results of our empirical analyses may have a similar bias towards overestimating710

anagenetic evolution and underestimating cladogenetic evolution. This bias may be711

an issue for all ClaSSE type models, but the practical consequences here are712

conservative estimates of cladogenetic chromosome evolution.713

An important caveat for all phylogenetic methods is that estimates of model714

parameters and ancestral states can be highly sensitive to taxon sampling (Heath715

et al. 2008). All of the empirical datasets examined here included716

non-monophyletic taxa that were treated as separate lineages. We made the717

unrealistic assumptions that 1) each of the non-monophyletic lineages sharing a718

taxon name have the same cytotype, and 2) the taxon sampling probability (ρs) for719

the birth-death process was 1.0. The former assumption could drastically affect720
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ancestral state estimates, but its effect can only be confirmed by obtaining721

chromosome counts for each lineage regardless of taxon name. While testing the722

effect of incomplete taxon sampling on chromosome evolution inference was not a723

goal of this work, analyses were performed with different values of ρs (results not724

shown). The results indicated that speciation and extinction rates are sensitive to725

ρs, but the relative speciation rates (e.g. between φc and γc) remained similar.726

Thus, ancestral state estimates of cladogenetic and anagenetic chromosome changes727

were robust to different values of ρs. This could vary among datasets and care728

should be taken when considering which lineages to sample.729

Bayesian model averaging is particularly appropriate for models of730

chromosome number evolution since conditioning on a single model ignores the731

considerable degree of model uncertainty found in both the simulations and the732

empirical analyses. In the simulations the true model of chromosome evolution was733

rarely inferred to be the MAP model (< 39% of replicates), and in the instances it734

was correctly identified the posterior probability of the MAP model was < 0.13.735

The posterior probabilities of the MAP models for the empirical datasets were736

similarly low, varying between 0.04 and 0.22. Conditioning on a single poorly737

fitting model of chromosome evolution, even when it is the best model available,738

results in an underestimate of the uncertainty of ancestral chromosome numbers.739

Furthermore, Bayesian model averaging enabled us to detect different modes of740

chromosome number evolution without the limitation of traditional model testing741

procedures in which multiple analyses are performed that each condition on a742

different single model. This is a particularly useful approach when the space of all743
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possible models is large.744

Our RevBayes implementation facilitates model modularity and easy745

experimentation. Experimenting with different priors or MCMC moves is achieved746

by simply editing the Rev scripts that describe the model. Though in our analyses747

here we ignored phylogenetic uncertainty by assuming a fixed known tree, we could748

easily incorporate this uncertainty by modifying a couple lines of the Rev script to749

integrate over a previously estimated posterior distribution of trees. We could also750

use molecular sequence data simultaneously with the chromosome models to jointly751

infer phylogeny and chromosome evolution, allowing the chromosome data to help752

inform tree topology and divergence times. In this paper we chose not to perform753

joint inference so that we could isolate the behavior of the chromosome evolution754

models; however, this is a promising direction for future research.755

There are a number of challenging directions for future work on phylogenetic756

chromosome evolution models. Models that incorporate multiple aspects of757

chromosome morphology such as translocations, inversions, and other gene synteny758

data as well as the presence of ring and/or B chromosomes have yet to be759

developed. None of our models currently account for allopolyploidization; indeed760

few phylogenetic comparative methods can handle reticulate evolutionary scenarios761

that result from allopolyploidization and other forms of hybridization (Marcussen762

et al. 2015). A more tractable problem is mapping chromosome number changes763

along the branches of the phylogeny, as opposed to simply making estimates at the764

nodes as we have done here. Since the approach described here models both765

anagenetic and cladogenetic chromosome evolution processes while accounting for766
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unobserved speciation events, the rejection sampling procedure used in standard767

stochastic character mapping (Nielsen 2002; Huelsenbeck et al. 2003) is not768

sufficient. While data augmentation approaches such as those described by Bokma769

(2008) could be utilized, they require complex MCMC algorithms that may have770

difficulty mixing. Another option is to extend the method described in this paper771

to draw joint ancestral states by numerically integrating root-to-tip over the tree772

into a new procedure called joint conditional character mapping. This sort of773

approach would infer the joint MAP history of chromosome changes both at the774

nodes and along the branches of the tree, and provide an alternative to stochastic775

character mapping that will work for all ClaSSE type models.776

Conclusions777

The analyses presented here show that the ChromoSSE models of778

chromosome number evolution successfully infer different clade-specific modes of779

chromosome evolution as well as the history of anagenetic and cladogenetic780

chromosome number changes for a clade, including reconstructing the timing and781

location of possible chromosome speciation events over the phylogeny. These782

models will help investigators study the mode and history of chromosome evolution783

within individual clades of interest as well as advance understanding of how784

fundamental changes in the architecture of the genome such as whole genome785

duplications affect macroevolutionary patterns and processes across the tree of life.786
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Höhna, S. 2015. The time-dependent reconstructed evolutionary process with a871

key-role for mass-extinction events. Journal of Theoretical Biology 380:321–331.872
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Höhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P.876

Huelsenbeck, and F. Ronquist. 2016. RevBayes: Bayesian phylogenetic inference877

using graphical models and an interactive model-specification language.878

Systematic Biology 65:726–736.879

Huelsenbeck, J. P. and J. P. Bollback. 2001. Empirical and hierarchical Bayesian880

estimation of ancestral states. Systematic Biology 50:351–366.881

Huelsenbeck, J. P., B. Larget, and D. L. Swofford. 2000. A compound Poisson882

process for relaxing the molecular clock 154:1879–1892.883

Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003. Stochastic mapping of884

morphological characters. Systematic Biology 52:131–158.885

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


Kass, R. E. and A. E. Raftery. 1995. Bayes factors. Journal of the American886

Statistical Association 90:773–795.887

Landis, M. J. in press. Biogeographic dating of speciation times using888

paleogeographically informed processes. Systematic Biology .889

Landis, M. J., N. J. Matzke, B. R. Moore, and J. P. Huelsenbeck. 2013. Bayesian890

analysis of biogeography when the number of areas is large. Systematic Biology891

62:789–804.892

Maddison, W. P., P. E. Midford, and S. P. Otto. 2007. Estimating a binary893

character’s effect on speciation and extinction. Systematic Biology 56:701–710.894

Madigan, D. and A. E. Raftery. 1994. Model selection and accounting for model895

uncertainty in graphical models using Occam’s window. Journal of the American896

Statistical Association 89:1535–1546.897

Marcussen, T., L. Heier, A. K. Brysting, B. Oxelman, and K. S. Jakobsen. 2015.898

From gene trees to a dated allopolyploid network: insights from the angiosperm899

genus Viola (Violaceae). Systematic Biology 64:84–101.900
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